Supplementary Information

Photocatalytic H₂ production on trititanate nanotubes coupled with CdS and platinum nanoparticles under visible light: Revisiting H₂ production and material durability

Hyunwoong Park,¹,²,* Hsin-Hung Ou,³ Minju Kim,¹,² Unseock Kang,¹,² Dong Suk Han,⁴ and Michael R. Hoffmann³,*

¹School of Energy Engineering and ²School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Korea
³Linde-Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States of America
⁴Chemical Engineering Program, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar

*To whom correspondence should be addressed.
(HP) Tel: +82-53-950-8973; E-mail: hwp@knu.ac.kr
(MRH) Tel: +1-626-395-4391; E-mail: mrh@caltech.edu
Fig. S1. Lattice spacings and TEM image of TNTs.
Fig. S2. (a) Electron image and (b and c) EDS analysis of Pt/CdS/TNTs sample. O and S were shown in b and c, respectively.
Fig. S3. XPS analyses of O1s for (a) Pt-2/CdS/TNTs and (b) Pt-0.5/CdS/TiO$_2$ before and after photocatalytic H$_2$ productions for 6 and 12 h.

Two major contributors to the O1s spectra were found: a major fraction of crystal lattice oxygen at 530 eV and a small fraction of surface-adsorbed hydroxyl groups (>Ti-OH) at 532 eV.2,3 The surface hydroxyl groups are known to be a source of reactive oxygen species.3,4 Obviously the fraction of >Ti-OH on Pt/CdS/TiO$_2$ increased with reaction time, whereas its fraction on Pt/CdS/TNTs decreased with time.