APM $z \gtrsim 4$ survey: distribution and evolution of high column density H\textsc{i} absorbers

L. J. Storrie-Lombardi,1* M. J. Irwin2 and R. G. McMahon1

1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
2Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ

Accepted 1996 June 7. Received 1996 June 6; in original form 1995 November 29

ABSTRACT
Eleven candidate damped Ly\textsc{a} absorption systems were identified in 27 spectra of the quasars from the APM $z \gtrsim 4$ survey covering the redshift range $2.8 \leq z_{\text{absorption}} \leq 4.4$ (eight with $z_{\text{absorption}} > 3.5$). High-resolution echelle spectra (0.8-Å FWHM) have been obtained for three quasars, including two of the highest redshift objects in the survey. Two damped systems have confirmed H\textsc{i} column densities of $N_{\text{H}} \geq 10^{20.3}$ atom cm$^{-2}$, with a third falling just below this threshold. We have discovered the highest redshift damped Ly\textsc{a} absorber known at $z = 4.383$ in QSO BR 1202 − 0725.

The APM QSOs provide a substantial increase in the redshift path available for damped surveys for $z > 3$. We combine this high-redshift sample with other quasar samples covering the redshift range $0.008 < z < 4.7$ to study the redshift evolution and the column density distribution function for absorbers with $\log N_{\text{H}} \geq 17.2$. In the H\textsc{i} column density distribution $f(N) = kN^{-\beta}$ we find evidence for breaks in the power law, flattening for $17.2 \leq \log N_{\text{H}} \leq 21$ and steepening for $\log N_{\text{H}} > 21.2$. The breaks are more pronounced at higher redshift. The column density distribution function for the data with $\log N_{\text{H}} \geq 20.3$ is better fitted with the form $f(N) = (f_*/N_*) (N/N_*)^{-\beta} \exp (-N/N_*)$ with $\log N_* = 21.63 \pm 0.35$, $\beta = 1.48 \pm 0.30$, and $f_* = 1.77 \times 10^{-2}$. We study the evolution of the number density per unit redshift of the damped systems by fitting the sample with the customary power law $N(z) = N_0 (1 + z)^\gamma$. For a population with no intrinsic evolution in the product of the absorption cross-section and comoving spatial number density this will give $\gamma = 1/2$ ($\Omega = 1$) or $\gamma = 1$ ($\Omega = 0$). The best maximum-likelihood fit for a single power law is $\gamma = 1.3 \pm 0.5$ and $N_0 = 0.04 \pm 0.03$, consistent with no intrinsic evolution even though the value of γ is also consistent with that found for the Lyman limit systems where evolution is detected at a significant level. However, redshift evolution is evident in the higher column density systems with an apparent decline in $N(z)$ for $z > 3.5$.

Key words: galaxies: evolution – galaxies: formation – quasars: absorption lines – quasars: individual: BR 1033 − 0327, BRI 1108 − 0747, BR 1202 − 0725 – cosmology: miscellaneous.

1 INTRODUCTION
This paper is the third of a series presenting results from studies of the QSOs discovered in the APM survey for $z \gtrsim 4$ quasars. A study of the evolution of Lyman-limit absorption systems over the redshift range $0.04 \leq z \leq 4.7$ was presented in Storrie-Lombardi et al. (1994, hereafter Paper I). The intermediate-resolution (5 Å) QSO spectra and the survey for high-redshift damped Ly\textsc{a} absorbers are presented in Storrie-Lombardi et al. (1996, hereafter Paper II). The evolution of the cosmological mass density of neutral gas at high redshift and the implications for galaxy formation theories are discussed in Storrie-Lombardi, McMahon & Irwin (1996, hereafter Paper IV). In separate papers we will describe the intrinsic properties of the QSOs and studies of...
the Lyα forest clouds at high redshift. A high-resolution study of the Lyα forest region in a redshift $z = 4.5$ QSO has been completed by Williger et al. (1994).

How and when galaxies formed are questions at the forefront of work in observational cosmology. Absorption systems detected in quasar spectra provide the means to study galaxy formation and evolution up to redshifts $z \approx 5$, back to when the Universe was less than 10 per cent of its present age. Surveys for absorption features have several advantages over trying to detect galaxies directly at high redshift. Much shorter exposure times are required, because the QSOs are relatively bright ($R \approx 18-19.5$) and the large equivalent width systems are easily detected in the spectra. This provides good absorption candidates to follow up with higher resolution spectra. The redshift and column density can be accurately determined from the wavelength of the absorption system and the line profile. This is far easier and more reliable than trying to obtain a spectrum of a very faint high-redshift galaxy directly.

While the baryonic content of spiral galaxies that are observed in the present epoch is concentrated in stars, in the past this must have been in the form of gas. The principal gaseous component in spirals is neutral hydrogen, and this has led to surveys for absorbers detected by the damped Lyα lines they produce (Wolfe et al. 1986, hereafter WTSC; Lanzetta et al. 1991, hereafter LWTLMH; Lanzetta, Wolfe & Turnshek 1995, hereafter LWT; Wolfe et al. 1995; Paper II). Although damped Lyα systems are observationally very rare objects, with ~ 40 confirmed examples known, the H I mass per unit comoving volume they contain is roughly comparable to the mass density of baryonic matter in present-day spirals, i.e., a major constituent of the Universe (Wolfe 1987; LWT). Their metal abundances are much lower than Galactic values (Pettini, Boksenberg & Hunstead 1990; Rauch et al. 1990; Pettini et al. 1994), and they are characterized by low molecular content and low, but not negligible, dust content (Fall, Pei & McMahon 1989; Pei, Fall & Bechtold 1991; Pettini et al. 1994), features consistent with an early phase of galactic evolution. They may be the progenitors of spiral galaxies like our own, and are clearly important for the study of the formation and evolution of galaxies. They have been detected across a very large redshift range $z \approx [0.5, 4.5]$, providing the means to pinpoint the epoch of formation of disc galaxies and study their evolution.

11 candidate damped Lyα absorption systems out of 32 measured Lyα features were identified in 27 spectra of the APM $z > 4$ QSO survey (Paper II). The 11 candidates cover the redshift range $2.8 \leq z_{\text{absorption}} \leq 4.4$ (eight with $z_{\text{absorption}} > 3.5$) and have estimated column densities $N_{\text{HI}} \geq 10^{20}$ atom cm$^{-2}$. In this paper the QSO BR 1144$ - 0723$ with a candidate absorber at $z = 3.26$ is removed from further consideration in the sample. It has been observed with the Anglo-Australian Telescope at high resolution, and the damped candidate has been found to be all O vi absorption at $z = 4.0$ (R. Hunstead, private communication). High-resolution echelle spectra (0.8-Å FWHM) were obtained by S. D’Odorico as part of the ESO key programme studying high-redshift quasars for four of the QSOs in the APM sample (BRI 0952$ - 0115$, BR 1033$ - 0327$, BRI 1108$ - 0747$ and BR 1202$ - 0725$). The signal-to-noise ratio for BRI 0952$ - 0115$ was very poor, but the other spectra have been used to confirm two Lyα features as damped, with another falling just below the log $N_{\text{HI}} > 20.3$ threshold. We have discovered the highest redshift damped Lyα absorber known at $z = 4.838$ in QSO BR 1202$ - 0725$. The confirmation of the absorption systems is discussed in Section 2. These data have been combined with data from previous surveys (WTSC; LWTLMH; LWT) and the results for the Lyman limit systems obtained in Paper I to study the H i column density distribution for log $N_{\text{HI}} > 17.2$ and redshift evolution of these systems for $0.008 < z < 4.7$.

Numerous authors have studied the distribution of column densities, $f(N_{\text{HI}})$, for Lyα absorption lines. The first determination was by Carswell et al. (1984) for lines with $10^{17.5} < N_{\text{HI}} < 10^{20}$ atom cm$^{-2}$. They found $f(N) \propto N^{-\beta}$ ($\beta = 1.7 \pm 0.1$). Damped Lyα absorption (DLA) systems comprise the high column density tail of neutral hydrogen absorbers with column densities of $N_{\text{HI}} > 2 \times 10^{20}$ atom cm$^{-2}$. They dominate the baryonic mass contributed by H i. When damped systems are included in the column density distribution function for a single power-law fit, the exponent is $\beta = 1.4-1.7$ (cf. Tytler 1987; Petitjean et al. 1993, and references therein). Assuming that the baryonic mass is proportional to the H i column density and takes the form $f(N_{\text{HI}}) \propto N^{-\beta}$ for the H i column density distribution function, the mass contribution from the damped systems can be estimated as

$$M_{\text{total}} \propto \int_{N_{\text{HI}}}^{N_{\text{HI}}} N_{\text{HI}} f(N_{\text{HI}}) dN_{\text{HI}}$$

$$\propto \int_{N_{\text{HI}}}^{N_{\text{HI}}} N^{-\beta} dN \quad \text{(assume } \beta \neq 2\text{)}$$

$$\propto \frac{1}{2 - \beta} (N_{\text{HI}}^{2 - \beta} - N_{\text{HI}}^{2 - \beta}).$$

One problem with the power-law representation is that if $\beta < 2$, as all current estimates indicate, then the total mass in damped systems diverges unless an upper bound to the H i column density is assumed. For example, if we take $20.3 \leq \log N_{\text{HI}} \leq 22$, the fractional contribution to the total H i mass for damped systems, M_{HI}, is then $M_{\text{HI}} = 0.86$ for $\beta = 1.5$ and $M_{\text{HI}} = 0.69$ for $\beta = 1.7$. However, there is no a priori reason for assuming this upper limit, and hence there is no strict upper bound to any estimate of the total H i mass in damped systems. An alternative parametrization using a gamma function to describe the H i column density distribution was adopted by Pei & Fall (1995) and provides an elegant solution to the diverging mass problem. We discuss these points in more detail in Section 3, and the redshift evolution of the absorbers in Section 4.

2 CONFIRMATION OF DAMPED Lyα SYSTEMS

2.1 Echelle observations

Echelle spectra of four QSOs were obtained in 1993 March by S. D’Odorico as part of an ESO key programme studying high-redshift quasars. They were taken at La Silla with the
3.5-m NTT telescope using the EMMI instrument in echelle mode with a 2048 × 2048 pixel LORAL CCD as the detector. A slit 15 arcsec in length was used, and generally the slit width was 1.2 arcsec. Two grating setups were used, one covering 4700–8300 Å and the other covering 5800–9500 Å with a resolution of ~40 km s^{-1} (1 Å). (See Giallongo et al. 1994 for more details.) The observations are summarized in Table 1.

The spectra were extracted and calibrated using the optext routines¹ in conjunction with iraf. The final flux-calibrated spectra agreed well with the existing 5-Å spectra (Paper II), except in the case of BR10952 – 0115 where the signal-to-noise ratio was very poor and the relative flux different by a factor of 2. This spectrum has been excluded from further analysis. Though not of exceedingly high quality, the spectra were suitable for fitting the damped Lyα candidates.

2.2 Fitting the damped candidates

The damped candidate system profiles were fitted using the vpft² Voigt profile fitting software. The program requires three input spectra: the object, the errors and the continuum. The optext routines used in the reduction created the first two, and the continuum spectra were created by using continuum fits for the WHT spectra (Paper II) and extrapolating them to the echelle spectra, as was done in Williger et al. (1994). The centroids of the Lyα features were determined from narrow metal lines (e.g., OⅠ, CⅡ), and then the Lyα lines were fitted in a region 50–100 Å around the candidate feature. Generally, candidate damped systems seen in the low-resolution spectra appeared much stronger than they actually are, due to blending of the dense Lyα forest lines at low resolution. In all three QSOs the candidate damped systems are seen at higher resolution to break up into multiple overlapping components. The complexity of the blend, coupled with residual uncertainty in the exact placing of the continuum level, causes some of the

Table 1. ESO observations 1993 March.

<table>
<thead>
<tr>
<th>QSO</th>
<th>Date (UT)</th>
<th>Exp Slit</th>
<th>Grating</th>
<th>Slit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR10952 – 0115</td>
<td>93 Mar 14</td>
<td>5400</td>
<td>GR9CD3</td>
<td>1.2</td>
</tr>
<tr>
<td>93 Mar 14</td>
<td>7200</td>
<td>GR9CD3</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>BR 1033 – 0327</td>
<td>93 Mar 15</td>
<td>7200, 8000</td>
<td>GR9CD3</td>
<td>1.2</td>
</tr>
<tr>
<td>BR1108 – 0747</td>
<td>93 Mar 15</td>
<td>6000</td>
<td>GR9CD3</td>
<td>1.2</td>
</tr>
<tr>
<td>93 Mar 15</td>
<td>6000</td>
<td>GR9CD4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>BR 1202 – 0725</td>
<td>93 Mar 14</td>
<td>8000</td>
<td>GR9CD3</td>
<td>1.2</td>
</tr>
<tr>
<td>93 Mar 15</td>
<td>6797</td>
<td>GR9CD3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>93 Mar 15</td>
<td>7200, 8000</td>
<td>GR9CD4</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

¹These routines were written by Bob Carswell, Jack Baldwin and Gerry Williger for the reduction of CTIO echelle data.

Table 2. Lyman α absorption systems.

<table>
<thead>
<tr>
<th>QSO</th>
<th>Absorption</th>
<th>log N_{HI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR1033 – 0327</td>
<td>4.14945</td>
<td>19.80 ± 0.10</td>
</tr>
<tr>
<td>4.15314</td>
<td>18.69 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>4.16467</td>
<td>19.70 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>4.16726</td>
<td>19.37 ± 0.42</td>
<td></td>
</tr>
<tr>
<td>4.17481</td>
<td>19.60 ± 0.24</td>
<td></td>
</tr>
<tr>
<td>BR1108 – 0747</td>
<td>3.60673</td>
<td>20.33 ± 0.15</td>
</tr>
<tr>
<td>BR1202 – 0725</td>
<td>4.38290</td>
<td>20.49 ± 0.15</td>
</tr>
</tbody>
</table>

BR 1033 – 0327 ($z_{em}=4.509$, $z_{absorption}=4.15$) The absorption candidate at $z=4.15$ had been previously studied (Williger et al. 1994) with a 12 km s^{-1} echelle spectrum taken at CTIO. Their spectrum covered only the blue wing of the system, and from this the column density was estimated to be no greater than 3×10^{20} atom cm^{-2} ($N_{HI}=1.4 \times 10^{20}$). In Paper II the column density was estimated to be $log N_{HI}=20.2$. The redshifts of the Lyα absorbers were determined from five tentatively identified OⅠ 1302 lines in the CTIO spectrum. The signal-to-noise ratio in the order where the Lyβ lines lie was too low to use in the fit. The spectrum with the best-fitting line profiles and $±1\sigma$ fits are shown as solid lines in Fig. 1(a). The error array and normalized continuum are shown as dotted and dashed lines, respectively. The small spike at $≈ 0.270$ Å is real. It also appears in the 5-Å resolution spectrum (Paper II).

BR 1108 – 0747 ($z_{em}=3.922$, $z_{absorption}=3.607$) The absorber at $z=3.61$ is barely damped with a column density of $log N_{HI}=20.33 ± 0.15$ atom cm^{-2}. In Paper II we estimated the column density to be $log N_{HI}=20.2$, so this system was not originally in the statistical sample. Several of the absorbers in the survey in Paper II have estimated column densities near the statistical sample threshold of $log N_{HI}=20.3$. We expect some to be confirmed above this value and some below. The profile fit and $±1\sigma$ fits are shown in Fig. 1(b). The redshift centroid was determined from a single strong CⅡ 1334 line.

BR 1202 – 0725 ($z_{em}=4.694$, $z_{absorption}=3.838$) The damped system in this QSO has a column density of $log N_{HI}=20.49 ± 0.15$. It is the highest redshift damped Lyα system known. The ESO spectrum is shown with the profile fit and $±1\sigma$ fits in Fig. 1(c). It was also measured in a higher resolution spectrum taken at CTIO (Wampler et al. 1996).
Figure 1. The profile fit and ±1σ fits to the damped Lyα absorbers are shown as solid lines. The error arrays are shown as dotted lines. The components are listed in Table 2. (a) The H I absorption complex in BR 1033–0327 at z = 4.15 is a system of at least five absorbers with a total column density of $\log N_{\text{HI}} = 20.15 \pm 0.11$ atom cm$^{-2}$. (b) The damped Lyα absorber in BR 1108–0747 at z = 3.607 with $\log N_{\text{HI}} = 20.33 \pm 0.15$ atom cm$^{-2}$. (c) The damped Lyα absorber in BR 1202–0725 at z = 4.383. This is the highest redshift damped Lyα absorber known. The central damped component is shown with $\log N_{\text{HI}} = 20.49 \pm 0.15$.

and includes over 10 components. Lu et al. (1996) have observed it at Keck with HIRES, and measure a column density of $\log N_{\text{HI}} = 20.6 \pm 0.1$. It was estimated in Paper II to have a column density of $\log N_{\text{HI}} = 20.5$.

The status of the systems detected in the APM damped Lyα absorption survey is summarized in Table 3. (It is an updated version of table 7 from Paper II.) Those marked with an asterisk have column densities $\log N_{\text{HI}} \geq 20.3$ atom cm$^{-2}$ and make up the statistical sample of high-redshift absorbers used in the analysis. In Paper IV this data set is combined with previous surveys to study the evolution of the cosmological mass density of neutral gas at high redshift, and the implications for galaxy formation theories are discussed.

3 THE H I COLUMN DENSITY DISTRIBUTION FOR $\log N_{\text{HI}} > 17.2$

3.1 Background

The distribution of the H I column densities for QSO absorption-line systems has been investigated by several authors. Tytler (1987) found that the distribution may be represented by a single power law $f(N) \propto N^{-\beta}$ over the range $13.3 \leq \log N_{\text{HI}} \leq 21.8$ with $\beta = 1.51 \pm 0.02$. He argued that this was evidence for a single population. Fitting the higher and lower column density systems separately, Tytler found $\beta = 1.61 \pm 0.10$ for $\log N_{\text{HI}} < 16.7$ and $\beta = 1.35 \pm 0.07$ for $\log N_{\text{HI}} > 17.2$, very similar slopes particularly considering the inadequacies of the data set. Sargent et al. (1980) found a single-power-law fit over the entire column density range, but noted that since little detailed data was available for $15.5 \leq \log N_{\text{HI}} \leq 17.2$, the region where the H I becomes optically thick, this was not evidence for a single population. They also found $\beta = 1.39$ for $\log N_{\text{HI}} \geq 17.3$. LWTLMH found the best fit for the high column density data ($17.2 \leq \log N_{\text{HI}} \leq 21.8$) gave $\beta = 1.25$. All of these values for β agree within the errors. Petitjean et al. (1993) reviewed these results and concluded that neither a single nor double power-law fitted well for $13.3 \leq \log N_{\text{HI}} \leq 21.8$, but that there was clearly a flattening of the distribution function around $\log N_{\text{HI}} \approx 16$.

Looking at the damped Lyα systems alone ($20.3 \leq \log N_{\text{HI}} \leq 21.8$), LWTLMH found $\beta = 1.73$. Most investigators find no evidence for any substantial redshift evolution in the distribution function, although LWT find an increased number of the highest column density systems at high redshift. Into this quagmire we wade with the absorption systems from the APM Damped Lyα Survey (Paper II) and the results for the Lyman-limit system evolution from Paper I to attempt to better quantify what is happening with the high column density H I at high redshift.
Table 3. Status of absorbers in APM damped Lyman α absorption survey.

<table>
<thead>
<tr>
<th>QSO</th>
<th>z_{min}</th>
<th>z_{max}</th>
<th>z_{em}</th>
<th>z_{dla}</th>
<th>W_{rest}</th>
<th>$\log N_{\text{HI}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR 0019 - 1522</td>
<td>2.97</td>
<td>4.473</td>
<td>4.528</td>
<td>3.42</td>
<td>7.6</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.98</td>
<td>12.3</td>
<td>*20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.28</td>
<td>8.0</td>
<td>20.1</td>
</tr>
<tr>
<td>BR 0103 + 0032</td>
<td>2.87</td>
<td>4.283</td>
<td>4.437</td>
<td>4.23</td>
<td>5.8</td>
<td>19.8</td>
</tr>
<tr>
<td>BR 0151 - 0025</td>
<td>2.74</td>
<td>4.142</td>
<td>4.194</td>
<td>3.41</td>
<td>5.7</td>
<td>19.8</td>
</tr>
<tr>
<td>BR 0151 - 0146</td>
<td>2.86</td>
<td>4.002</td>
<td>4.053</td>
<td>3.41</td>
<td>5.7</td>
<td>19.8</td>
</tr>
<tr>
<td>BR 0245 - 0608</td>
<td>2.96</td>
<td>4.186</td>
<td>4.238</td>
<td>4.14</td>
<td>6.3</td>
<td>19.9</td>
</tr>
<tr>
<td>BR 0351 - 1034</td>
<td>3.09</td>
<td>4.297</td>
<td>4.351</td>
<td>3.62</td>
<td>6.6</td>
<td>19.9</td>
</tr>
<tr>
<td>BR 0401 - 1711</td>
<td>2.82</td>
<td>4.184</td>
<td>4.236</td>
<td>3.84</td>
<td>24.0</td>
<td>*21.0</td>
</tr>
<tr>
<td>BR 0951 - 0450</td>
<td>2.93</td>
<td>4.315</td>
<td>4.369</td>
<td>3.30</td>
<td>17.5</td>
<td>*20.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.73</td>
<td>9.6</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.15</td>
<td>7.4</td>
<td>20.0</td>
</tr>
<tr>
<td>BR 1033 - 0327</td>
<td>2.91</td>
<td>4.454</td>
<td>4.509</td>
<td>4.15</td>
<td>9.6</td>
<td>20.2</td>
</tr>
<tr>
<td>BR 1033 - 0327</td>
<td></td>
<td></td>
<td></td>
<td>20.15 ± 0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 1050 - 0000</td>
<td>2.83</td>
<td>4.233</td>
<td>4.286</td>
<td>2.79</td>
<td>8.3</td>
<td>20.1</td>
</tr>
<tr>
<td>BR 1108 - 0747</td>
<td>2.64</td>
<td>3.873</td>
<td>3.922</td>
<td>3.607</td>
<td>9.0</td>
<td>20.2</td>
</tr>
<tr>
<td>BR 1110 + 0106</td>
<td>2.58</td>
<td>3.869</td>
<td>3.918</td>
<td>3.25</td>
<td>5.2</td>
<td>19.7</td>
</tr>
<tr>
<td>BR 1114 - 0822</td>
<td>3.19</td>
<td>4.440</td>
<td>4.495</td>
<td>3.91</td>
<td>6.7</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.25</td>
<td>11.7</td>
<td>*20.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.45</td>
<td>5.3</td>
<td>19.7</td>
</tr>
<tr>
<td>BR 1144 - 0723</td>
<td>Removed from sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 1202 - 0725</td>
<td>3.16</td>
<td>4.637</td>
<td>4.694</td>
<td>3.20</td>
<td>5.4</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.38</td>
<td>7.1</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.13</td>
<td>7.8</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.383</td>
<td>13.2</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.49 ± 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 1328 - 0433</td>
<td>2.24</td>
<td>4.165</td>
<td>4.217</td>
<td>3.08</td>
<td>8.3</td>
<td>20.1</td>
</tr>
<tr>
<td>BR 1335 - 0417</td>
<td>3.08</td>
<td>4.342</td>
<td>4.396</td>
<td>3.15</td>
<td>6.8</td>
<td>19.9</td>
</tr>
<tr>
<td>BR 1346 - 0322</td>
<td>2.65</td>
<td>3.942</td>
<td>3.992</td>
<td>3.36</td>
<td>5.0</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.73</td>
<td>10.0</td>
<td>*20.3</td>
</tr>
<tr>
<td>BR 1500 - 0824</td>
<td>2.39</td>
<td>3.894</td>
<td>3.943</td>
<td>2.80</td>
<td>11.3</td>
<td>*20.4</td>
</tr>
<tr>
<td>GB 1508 + 5714</td>
<td>2.73</td>
<td>4.230</td>
<td>4.283</td>
<td>2.93</td>
<td>11.5</td>
<td>*20.4</td>
</tr>
<tr>
<td>GB 1508 + 5714</td>
<td></td>
<td></td>
<td></td>
<td>20.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG 1557 + 0313</td>
<td>2.66</td>
<td>3.842</td>
<td>3.891</td>
<td>2.73</td>
<td>4.230</td>
<td>4.283</td>
</tr>
<tr>
<td>GB 1745 + 6227</td>
<td>2.47</td>
<td>3.852</td>
<td>3.901</td>
<td>2.96</td>
<td>4.502</td>
<td>4.558</td>
</tr>
<tr>
<td>BR 2212 - 1626</td>
<td>2.69</td>
<td>3.940</td>
<td>3.990</td>
<td>4.08</td>
<td>11.5</td>
<td>*20.4</td>
</tr>
<tr>
<td>BR 2237 - 0607</td>
<td>2.96</td>
<td>4.502</td>
<td>4.558</td>
<td>4.24</td>
<td>11.5</td>
<td>*20.4</td>
</tr>
<tr>
<td>BR 2248 - 1242</td>
<td>2.94</td>
<td>4.109</td>
<td>4.161</td>
<td>4.24</td>
<td>11.5</td>
<td>*20.4</td>
</tr>
</tbody>
</table>

*These absorbers are above the statistical sample threshold of $N_{\text{HI}} \geq 2 \times 10^{20}$ atom cm$^{-2}$.

z_{min} = minimum redshift at which a DLA could be observed.

z_{em} = emission redshift of the QSO.

z_{max} = maximum redshift at which a DLA could be observed.

z_{dla} = redshift at which DLA could be observed.

$X(z) = (1 + z) (1 + 2qz)^{-1/2} dz$.

3.2 A power-law distribution function

The form of the power-law column density distribution function $f(N)$ typically used is

$$f(N) = kN^{-\beta}. \quad (2)$$

$f(N) dN dX$ is defined as the number of absorbers in an absorption distance interval dX with H α column density N in the range $N + dN$. The absorption distance X is used to remove the redshift dependence in the sample and to put everything on a comoving coordinate scale, since $\Delta z = 0.5$ at redshift 2 is not the same as $\Delta z = 0.5$ at redshift 4. If the population of absorbers is non-evolving (i.e., their number density multiplied by their cross-section does not change with redshift), the absorption distance can be defined as

$$X(z) = \int_0^z \left(1 + z\right) \left(1 + 2qz\right)^{-1/2} dz. \quad (3)$$
If \(q_0 = 0.5 \),

\[
\begin{align*}
\frac{1}{\sqrt{2}(1+z)} - 1 & \quad \text{if } q_0 = 0.5, \\
\frac{1}{\sqrt{2}(1+z)} & \quad \text{if } q_0 = 0.
\end{align*}
\]

(Bahcall & Peebles 1969; cf. Tytler 1987). The value of \(q_0 \) has little effect on the slope of the column density distribution function. In the analysis below we have utilized \(q_0 = 0.5 \). To allow for redshift evolution, the distribution function is normally generalized as

\[
f(N, z) = k N^{-\beta} (1 + z)^{\gamma}.
\]

The damped Ly\(\alpha \) systems and candidates from the APM survey shown in Table 3 have been combined with previous surveys for damped Ly\(\alpha \) systems (WTSC; LWTLMH; LWT), which results in a data set of 366 QSOs yielding 44 damped systems with \(\log N_{HI} \geq 20.3 \) covering the redshift range \(0.2 \leq z \leq 4.4 \). The total redshift path and absorption distance covered by the surveys is shown in Table 4. A maximum-likelihood technique, described in Appendix A, has been employed to find values for \(\beta \) and \(k \) to determine if a power-law fit describes the \(H_\alpha \) column density distribution for this sample. As already indicated, a disadvantage of a power-law model for the \(H_\alpha \) column density distribution of damped Ly\(\alpha \) absorbers is the divergent nature of the integral mass contained in the systems. Since it is straightforward to generalize the maximum-likelihood method to alternative forms of the distribution, we explore in Section 3.6 an alternative parametrization based on a gamma distribution (cf. Pei & Fall 1995).

3.3 Results for a single power law

A single-power-law fit to the combined data set described above of the form in equation (5) with \(q_0 = 0.5 \) results in \(\beta = 1.74 \pm 0.12 \) and \(\log k = 13.9 \pm 2.3 \), with similar values for \(q_0 = 0 \) (\(\beta = 1.75 \), \(\log k = 13.9 \)). The quoted error for the normalization constant \(k \) is large, because for a small change in the value of \(\beta \), \(k \) can change by 2 orders of magnitude. These results are in good agreement with the results found by LWTLMH (\(\beta = 1.73 \pm 0.29 \), \(\log k = 13.63 \pm 0.09 \)) and are plotted for the entire data set in Fig. 2. The data are binned for display purposes only, with the vertical error bars plotted at the mean column density for each bin. We will see in the next section that a single power law is not a good fit to the data.

3.4 Cumulative \(H_\alpha \) distribution

As shown in Paper I for the Lyman-limit system evolution, the arbitrary binning of the data for presentation in differential plots includes a subjective component that can mask exactly what is happening in the underlying data. A cumulative distribution plot is far better at revealing the true nature of the distribution, and this approach is now examined. The log of the cumulative number of damped Ly\(\alpha \) systems detected versus \(\log N_{HI \alpha} \) is plotted in Fig. 3(a). A point for the expected number of Lyman-limit systems that would be detected down to \(\log N_{HI \alpha} = 17.2 \) is shown by a circled dot. This is calculated by integrating the number density per unit redshift \([N(z) = 0.27 (1+z)^{1.55}] \) over the redshift path covered by the \(n \) QSOs in the DLA sample, i.e.,

\[
LLS\text{expected} = \sum_{i=1}^{n} \int_{z_{min}}^{z_{max}} N_\alpha (1+z)^{\gamma} \, dz = \sum_{i=1}^{n} \int_{z_{min}}^{z_{max}} 0.27 (1+z)^{1.55} \, dz.
\]

It is obvious from Fig. 3(a) that a power law will not fit the entire column density range \(17.2 \leq \log N_{HI \alpha} \leq 22 \). A Kolmogorov-Smirnov (KS) test yields a probability of less than \(10^{-7} \) that the fit represents the underlying data set. In Figs 3(b)–(d) the same distribution is overplotted with single-power-law fits for different values of \(\beta \) that were fitted to the graph by eye. (b) shows that \(\beta = 1.34 \) will fit from the Lyman limit column density through the damped systems with \(\log N_{HI \alpha} \sim 21 \), a flatter slope than the canonical 1.5–1.7 range. (c) shows that \(\beta = 1.69 \) fits the damped distribution

![Graph showing cumulative distribution](image-url)
with $20.3 < \log N_{\text{HI}} < 21.2$ well, but does not describe the high or low column density tails of the distribution. (d) shows a fit to the sharp drop off in numbers for damped systems with $\log N_{\text{HI}} \geq 21$. This can be expected from looking at the estimated column densities for the damped systems in Table 3, or by looking at the spectra. There are not many heavily damped systems. Clearly, the results for a single-power-law fit depend critically on the range of column densities included. This characteristic can explain much of the variation in the results previously seen by various authors that were summarized in Section 3.1.

3.5 Redshift evolution for $0.008 < z < 4.7$

To qualitatively study the redshift evolution of the column density distribution of the damped Lyα systems the cumulative distribution shown in Fig. 3 has been split in half at redshift 2.5 and each set plotted individually (Fig. 4). The damped Lyα systems with $z > 2.5$ are shown by the solid line, and the absorbers with $z < 2.5$ are shown by the dashed line. The higher redshift absorbers appear to have a slightly flatter slope up to $\log N_{\text{HI}} = 21$ and then a sharper drop in the number of very high column density systems, although a KS

Figure 3. (a) The cumulative distribution for $17.2 \leq \log N_{\text{HI}} \leq 22$. The stepped line is the data for all the damped Lyα systems in the data set. The circled point is the number of Lyman-limit systems that would be expected, given the redshift path covered in the damped Lyα surveys. In (b)–(d) the same distribution is overplotted with single-power-law fits for different values of β that were fitted to the graph by eye. (b) shows that $\beta = 1.34$ will fit from the Lyman-limit column density through the damped systems with $\log N_{\text{HI}} \approx 21$, a flatter slope than the canonical $\beta \approx 1.5$–1.7 range. (c) Shows that $\beta = 1.69$ fits the systems with $20.3 \leq \log N_{\text{HI}} \leq 21.2$ well, but does not describe the high or low column density tails of the distribution. (d) Shows a fit to the sharp drop-off in numbers of damped systems with $\log N_{\text{HI}} \geq 21$. This is evident from just looking at the estimated column densities for the damped systems in Table 3, or by looking at the spectra. There are not many heavily damped systems.
Figure 4. The cumulative H_I column density distribution with the sample split in half at $z=2.5$. The damped Lyα systems with $z > 2.5$ are shown by the solid line, and the absorbers with $z < 2.5$ are shown by the dashed line. The higher redshift absorbers appear to have a slightly flatter slope up to $\log N_{\text{HI}} = 21$ and then a sharper drop in the number of very high column density systems, although a KS test shows that this is not a statistically significant difference.

The evolution with redshift in the slope of the column density distribution is also apparent when looking at the differential $f(N)$. LWT plotted this in three redshift bins, $z = [0.008, 1.5]$, [1.5, 2.5] and [2.5, 3.5]. In the highest redshift bin there was a flattening of the column density distribution slope towards higher column densities. In Fig. 5 we have plotted our combined data set with this same binning, with the addition of one higher redshift bin $z = [3.5, 4.7]$. The flattening of the distribution function towards higher column density systems in the $z = [2.5, 3.5]$ bin in the LWT data is no longer pronounced. The most striking feature is the steepness of the distribution in the highest redshift bin. It is not just steeper due to an increase in the number of lower column density systems relative to the other bins. Even if 15–20 per cent of the candidate systems with $\log N_{\text{HI}} \approx 20.3$ turn out not to be damped when observed at higher resolution, as we expect, this result still holds.

3.6 Results for a gamma distribution

There are two strong motivating factors to find an alternative model for describing the H_I column density distribution. First, as shown in Section 3.4, there is direct evidence for an apparent variation in the power-law slope as a function of N_{HI}. This implies that a higher order functional form other than a power law is needed to describe the column density distribution. Secondly, as noted in the introduction, with a power-law model the integral mass contained within damped Lyα systems is divergent for realistic values of β. This in turn means that it is impossible to assign a formal upper limit to any estimate of the neutral gas content of the early Universe. Consequently, following Pei & Fall (1995), we have chosen to model the data with a gamma distribution of the form

$$f(N, z) = (N_*/N_0^*) (N/N_0^*)^{-\beta} e^{-NN_0^*}.$$

where N_* is the characteristic number of absorbing systems at the column density N_*, and N_0^* is a parameter defining the turnover, or ‘knee’, in the number distribution. Both N_* and N_0^* may in general vary with redshift, but for the moment we treat them as constants. This functional form is similar to the Schechter luminosity function (Schechter 1976). For $N \ll N_*$, the gamma function tends to the same form as the single power law $f(N) \propto N^{-\beta}$, whilst for $N \gtrsim N_*$, the exponential term begins to dominate.

We can understand how a gamma function might provide a better description of the damped Lyα data by considering the differential logarithmic slope, which is given by

$$\frac{\mathrm{d} \log f(N, z)}{\mathrm{d} \log N} = -\beta - \frac{N}{N_*}.$$

As the column density approaches N_*, the slope begins to steepen and turns over rapidly at higher column densities; this is qualitatively similar to what we observe in Figs 3 and

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
4. Furthermore, the integral H over the column density distribution (cf. equation 1) for $N_{\min} \ll N_*$ is now given by $f_\tau N_\tau (2-\gamma)$, where τ denotes the standard gamma function. This function is bounded if $\gamma < 2$.

The maximum-likelihood technique outlined in Appendix A can readily be modified to incorporate this form. We note that the likelihood solution can be found over a two-dimensional grid of pairs of values of N_* and β, since the constant f_τ can be directly computed using the constraint

$$m = \sum_{i=1}^{n} \int_{N_{\min}}^{N_*} f(N, z) \, dN,$$

where m is the total number of observed systems. This is computationally much less intensive than doing a three-dimensional grid search. The results of a single functional fit to the entire data set are $\log N_*=21.63 \pm 0.35$, $\beta=1.48 \pm 0.30$, and $f_\tau = 1.77 \times 10^{-2}$. The log-likelihood function results with confidence contours are shown in Fig. 6(a). The best fit is overplotted on the differential form of $f(N)$ in Fig. 6(b), and on the cumulative distribution in Fig. 6(c). [The single-power-law form of $f(N)$ was shown fitted to the same data in Figs 2 and 3.] The differential form of the plots (Figs 2 and 6b) show little difference between the single-power-law and gamma-distribution fits. When displayed with the cumulative number of absorbers in Fig. 6(c), the gamma-distribution now clearly fits the entire data set with column densities $\log N_{\min} \geq 20.3$. If the expected number of Lyman-limit systems are included in the fit, the results are $\log N_*=21.36 \pm 0.15$, $\beta=1.16 \pm 0.15$ and $f_\tau = 4.43 \times 10^{-2}$. This also provides a reasonable fit to the data, as shown in Figs 7(a)-(c).

4 NUMBER DENSITY EVOLUTION WITH REDSHIFT

Differential evolution in the number density of damped Lyα absorbers has been described by LWT and Wolfe et al. (1995). While the change in number density per unit redshift is consistent with no intrinsic evolution of the absorbers over the range $0 < z < 3.5$, they find that the systems with $\log N_{\min} > 21$ disappear at a much faster rate from $z=3.5$ to $z=0$ than does the population of damped absorbers as a whole. We now examine the redshift evolution of the damped Lyα absorbers in our combined data set by determining the number density of absorbers per unit redshift, $dN/dz = N(z)$. In a standard Friedmann universe for absorbers with cross-section πR_0^2 and number density Φ_0 per unit comoving volume

![Graphs showing the log column density distribution function $f(N)$ versus the log column density N_τ, plotted over four redshift ranges, $0.008 \leq z < 1.5$, $1.5 \leq z < 2.5$, $2.5 \leq z < 3.5$, and $3.5 \leq z < 4.7$. The gradual flattening of the distribution function from redshift $z=0$ to $z=3.5$ is evident. The most striking feature is the steepness of the distribution in the highest redshift bin. It is not just steeper due to a decrease in the highest column density systems ($\log N_\min > 21$), but there is also an increase in the number of lower column density systems.](image)

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
Figure 6. (a) The log-likelihood function for the gamma-distribution form of the column density distribution function, \(f(N, z) = \left(\frac{f_0}{N_0} \right) \left(\frac{N}{N_0} \right)^{-\beta} \exp \left(-\frac{N}{N_0} \right) \). The > 60.3, > 95.5 and > 99.7 per cent confidence contours are plotted for \(\log N \) and \(\beta \). The best-fitting values are \(\log N_0 = 21.63 \), \(\beta = 1.48 \) and \(f_0 = 1.77 \times 10^{-2} \), which is solved for analytically. (b) The gamma-distribution function, \(f(N, z) = \left(\frac{f_0}{N_0} \right) \left(\frac{N}{N_0} \right)^{-\beta} \exp \left(-\frac{N}{N_0} \right) \), overplotted on the differential form of the column density distribution. The fit is to the entire data set, including the surveys from Paper II, WTSC, LWTLMH and LWT. The parameters for the fit are \(\log N_0 = 21.63 \), \(\beta = 1.48 \) and \(f_0 = 1.77 \times 10^{-2} \). (c) The cumulative distribution for \(17.2 \leq \log N_{\text{HI}} \leq 22 \) as shown in Fig. 3(a) is now overplotted with the gamma-distribution form of the column density distribution function. The dashed line now clearly fits the entire distribution for \(\log N_{\text{HI}} \geq 20.3 \). The circled point is again the number of Lyman-limit systems that would be expected, given the redshift path covered in the damped Ly\(\alpha \) surveys. This is not included in the fit.

\[N(z) = \Phi_0 \pi R_0^2 c H_0^{-1} (1 + z)(1 + 2q_0 z)^{-1/2}. \]

It is customary to represent the number density as a power law of the form

\[N(z) = N_0 (1 + z)^{\gamma}, \]

where \(N_0 = \Phi_0 \pi R_0^2 c H_0^{-1} \). This yields \(\gamma = 1 \) for \(q_0 = 0 \) and \(\gamma = 1/2 \) for \(q_0 = 1/2 \) for the case of no evolution with redshift in the product of the number density and cross-section of the absorbers (Sargent et al. 1980).

A maximum-likelihood fit to the data yields \(N(z) = 0.04 (1 + z)^{1.3\pm0.5} \), which is consistent with no intrinsic evolution, even though the value of \(\gamma \) is similar to that found for the Lyman-limit systems where evolution is detected at a significant level (Paper I; Stengler-Larrea et al. 1995). The log-likelihood function for \(\gamma \) and \(N_0 \) with > 68.3 and > 95.5 per cent confidence contours is plotted in Fig. 8. We also find redshift evolution in the higher column density systems, but with a decline in \(N(z) \) for \(z > 3.5 \). These results are displayed in Fig. 9. The entire data set is plotted as dashed...
Figure 7. This figure shows the same data plotted in Fig. 6, but the fit includes the expected number of Lyman-limit systems, given the redshift path surveyed. (a) The log-likelihood function for the gamma-distribution form of the column density distribution function, \[f(N, z) = \left(\frac{f_0 N_*}{N} \right) \left(\frac{N}{N_*} \right)^{-p} \exp \left(-\frac{N}{N_*} \right). \] The > 68.3, > 95.5 and > 99.7 per cent confidence contours are plotted for \(\log N \) and \(\beta \). The best-fitting values are \(\log N_* = 21.36 \), \(\beta = 1.16 \) and \(f_0 = 4.43 \times 10^{-2} \), which is solved for analytically. (b) The gamma-distribution function, \[f(N, z) = \left(\frac{f_0 N_*}{N} \right) \left(\frac{N}{N_*} \right)^{-p} \exp \left(-\frac{N}{N_*} \right), \] overplotted on the differential form of the column density distribution. The fit is to the entire data set, including the surveys from Paper II, WTSC, LWTLMH and LWT. The parameters for the fit are \(\log N_* = 21.36 \), \(\beta = 1.16 \), and \(f_0 = 4.43 \times 10^{-2} \). (c) The cumulative distribution for \(17.2 \leq \log N_{HI} \leq 22 \) overplotted with the gamma-distribution form of the column density distribution function. The circled point is again the number of Lyman-limit systems that would be expected, given the redshift path covered in the damped Ly\(\alpha \) surveys.

5 CONCLUSIONS

Three QSOs from the \(z \geq 4 \) APM survey have been observed at 0.8-Å resolution. Two have damped systems with confirmed \(\text{H}_\alpha \) column densities of \(N_{HI} \geq 10^{20.3} \) atom cm\(^{-2} \), with a third absorber falling just below this threshold. We have discovered the highest redshift damped Ly\(\alpha \) absorber known at \(z = 4.383 \) in QSO BR 1202-0725. The two systems with \(N_{HI} \geq 10^{20.3} \) atom cm\(^{-2} \), and the remaining nine candidate damped absorbers from the APM survey, have been combined with data from previous surveys to study the column density distribution and number density evolution for absorbers with \(N_{HI} \geq 17.2 \). If the \(\text{H}_\alpha \) column density distribution function is fitted with a power law, \(f(N) = kN^{-p} \), we find evidence for breaks in the power law, flattening for \(17.2 \leq \log N_{HI} \leq 21 \), and steepening for \(\log N_{HI} \geq 21 \). The column density distribution function for the data with lines with the above fit. The results for only the absorbers with \(\log N(\text{H}_\alpha) \geq 21 \) are shown as solid lines. Fig. 10 shows \(\text{H}_\alpha \) column density versus redshift, and the paucity of absorbers with \(\log N_{HI} > 21 \) at \(z > 4 \) is apparent.
Figure 8. The > 68.3 and > 95.5 per cent confidence contours for the log-likelihood function are plotted for the number density per unit redshift of the damped absorbers. The best fit for the single power-law form $N(z) = N_0 (1 + z)^\gamma$ yields $\gamma = 1.3 \pm 0.5$ and $N_0 = 0.04^{+0.05}_{-0.03}$ over the redshift range $0.008 < z < 4.7$.

Upper Bins: $\log N(\text{HI}) \geq 20.3$
Lower Bins: $\log N(\text{HI}) \geq 21$

Figure 9. The number density of DLA per unit redshift, $N(z)$ versus z (absorption). The dashed bins show $N(z)$ for all the damped systems, and the solid bins for systems with $N(\text{HI}) \geq 10^{21}$ atom cm$^{-2}$. A single power-law fit of $N(z) = 0.04 (1 + z)^{13}$ is overplotted. This is consistent with no intrinsic evolution in the absorbers, even though the value of γ is similar to that found for the Lyman-limit systems where evolution is detected at a significant level (Paper I).

log $N_{\text{HI}} \geq 20.3$ is better fitted with the gamma-distribution form $f(N) = (f_*/N_*) (N/N_*)^{-\beta} \exp \left(-N/N_*\right)$ with log $N_* = 21.63 \pm 0.35$, $\beta = 1.48 \pm 0.30$ and $f_* = 1.77 \times 10^{-2}$.

For the number density evolution of the damped absorbers (log $N_{\text{HI}} \geq 20.3$) over the redshift range $0.008 < z < 4.7$, we find the best fit of a single-power-law form for $N(z) = N_0 (1 + z)^\gamma$ yields $\gamma = 1.3 \pm 0.5$ and $N_0 = 0.04^{+0.05}_{-0.03}$. This is consistent with no intrinsic evolution in the absorbers, even though the value of γ is similar to that found for the Lyman-limit systems where evolution is detected at a significant level. Evolution is evident in the highest column density absorbers with the incidence of systems with log $N(\text{HI}) \geq 21$ decreasing for $z \geq 3.5$.

ACKNOWLEDGMENTS
We thank Bob Carswell for providing software for and assistance with the data reduction and profile fitting of the spectra. LJSL acknowledges support from an Isaac Newton Studentship, the Cambridge Overseas Trust and a University of California President’s Post-doctoral Fellowship. RGM acknowledges the support of the Royal Society.

REFERENCES

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
Using equation (5) for the column density distribution function, the damped \(\text{Ly}^\alpha \) absorbers will be found to be randomly distributed according to this function along the QSO line of sight in \(N-z \) space. If the space is divided into \(m \) cells, each of volume \(\delta v \), the expected number of points in cell \(i \) is given by

\[\phi_i = f(N, z) \delta v. \] (A1)

The probability of observing \(x_i \) points in cell \(i \) is

\[p(x_i) = e^{-\phi_i} \frac{\phi_i^{x_i}}{x_i!}. \] (A2)

The likelihood function for QSOs, taking the product over all the cells, is then

\[L_j = \prod_{i=1}^{m} p(x_i) = \prod_{i=1}^{m} e^{-\phi_i} \frac{\phi_i^{x_i}}{x_i!}. \] (A3)

If the volume of each cell \(\delta v \) becomes very small, such that there is either 1 or 0 points in each cell, then the likelihood can be rewritten separating out the terms for full and empty cells. For \(m = g \) empty cells + \(p \) full cells,

\[L_j = \prod_{i=1}^{g} e^{-\phi_i} \prod_{j=1}^{p} e^{-\phi_j} = \prod_{i=1}^{m} e^{-\phi_i} \prod_{j=1}^{m} \phi_j. \] (A4)

Taking the log of the likelihood function, we obtain

\[\log L_j = \sum_{i=1}^{m} -\phi_i + \sum_{j=1}^{p} \ln \phi_j = -f(N, z) \delta v + \sum_{j=1}^{p} \ln f(N, z) + p \ln \delta v \] (A5)

(cf. Schechter & Press 1976). Ignoring the constant terms, in the limit where \(\delta v \to 0 \) this becomes

\[\log L_j = - \int_{N_{\text{min}}}^{N_{\text{max}}} \int_{z_{\text{min}}}^{z_{\text{max}}} f(N, z) \, dN \, dz + \sum_{j=1}^{p} \ln f(N, z) \]

\[= - \int_{N_{\text{min}}}^{N_{\text{max}}} \int_{z_{\text{min}}}^{z_{\text{max}}} k N^{-\beta} (1 + z)^{1+\gamma} \, dN \, dz \]

\[+ \sum_{j=1}^{p} \ln [k N_{\text{min}}^{-\beta} (1 + z_{\text{min}})^{1+\gamma}]. \] (A6)

To obtain the overall log likelihood for \(n \) QSOs, we evaluate the integrals in equation (A6) and additively combine the log \(L_s \), resulting in

\[\log L = - \sum_{i=1}^{n} \left[\int_{N_{\text{min}}}^{N_{\text{max}}} \int_{z_{\text{min}}}^{z_{\text{max}}} k N_{\text{min}}^{-\beta} \left((1+z_{\text{min}})^{1+\gamma} - (1+z_{\text{min}})^{1+\gamma}\right) \right] \]

\[+ p \ln k + \sum_{j=1}^{p} \left[-\beta \ln N_j + \gamma \ln (1+z_{\text{max}}) \right], \] (A7)

where \(p_i \) is the number of detected DLAs in QSOs, and \(N_{\text{min}} \) is the minimum column density.