Optical-IR SEDs of SDSS Quasars in the \textit{Spitzer} First Look Survey

G. Richards1, M. Lacy2, L. Storrie-Lombardi2, X. Fan3, C. Papovich3, S. Gallagher4, P. Hall5, D. Hines6, S. Anderson7, S. Jester8, D. Schneider9, D. Vanden Berk9, M. Strauss1 and D. York10

1 \textit{Princeton University Observatory, Princeton, NJ 08544-1001}
2 \textit{Spitzer Science Center, MS-220-6, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125}
3 \textit{Steward Observatory, The University of Arizona, Tucson, AZ 85721}
4 \textit{UCLA, Div. of Astron. \& Astrophys., 405 Hilgard Ave., Los Angeles, CA 90095}
5 \textit{York University, Dept. of Physics \& Astronomy, 4700 Keele St., Toronto, ON, M3J 1P3, Canada}
6 \textit{Space Science Institute, 4750 Walnut St., Suite 205, Boulder, CO 80301}
7 \textit{Department of Astronomy, Univ. of Washington, Seattle, WA 98195}
8 \textit{Fermilab, PO Box 500, Batavia, IL 60510}
9 \textit{The Pennsylvania State University, Department of Astronomy and Astrophysics, 525 Davey Lab, University Park, PA 16802}
10 \textit{Astron. and Astrophys. Center, Univ. of Chicago, Chicago, IL 60637}

Abstract. We analyze the spectral energy distribution (SED) of SDSS-selected quasars in the \textit{Spitzer} First Look Survey area. Optical+IR colors allow for efficient selection of quasars. We construct a mean quasar SED that can be used to learn about accretion disks, disk-winds, and dusty tori. Future improvements in determining multiband SEDs of different classes of quasars are needed to improve estimates of physical parameters of quasars such as bolometric luminosities and accretion rates.

1. SEDs and Quasar Physics

We explore the properties of Sloan Digital Sky Survey (SDSS; York et al. 2000) quasars and quasar candidates in the \textit{Spitzer} First Look Survey area, including 50 SDSS-DR1 quasars and 140 photometric quasar candidates from Richards et al. (2004). It has been shown (e.g., Lacy et al. 2004) that \textit{Spitzer} colors allow for relatively efficient and complete samples of AGNs (both obscured and unobscured). Here we demonstrate that unobscured quasars can be selected in an even more efficient manner by coupling \textit{Spitzer} data with optical colors from the SDSS (Fig. 1). Black contours represent point sources, grey are extended sources (SDSS morphologies), and black crosses are known quasars. Even lacking morphology information, coupling SDSS and \textit{Spitzer} photometry can be very effective in selecting quasar candidates.
Accurate determination of quasar SEDs are crucial to our understanding of quasar physics. Comparison of the IR-Opt-UV SEDs of quasars can reveal the geometry of the IR dust emission (e.g., Nenkova, Ivezić, & Elitzur 2002). SEDs are also needed to determine bolometric luminosities and accretion rates, which are currently determined using a single mean quasar SED from Elvis et al. (1994). Future improvements in IR-Opt-UV SEDs in terms of filling in wavelength gaps and adding more objects (Fig. 2) will allow for SED determinations as a function of various properties: improving our ability to determine accurate bolometric luminosities and accretion rates.

Acknowledgments. Funding for the SDSS archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, NASA, NSF, the U.S. DoE, the Japanese Monbukagakusho, and the Max Planck Society. Based on archival data obtained with the Spitzer Space Telescope, which is operated by JPL/Caltech under NASA contract 1407. Support for this work was provided by NASA through Contract Number [1262694] issued by JPL/Caltech.

References