CaltechAUTHORS
  A Caltech Library Service

Effects of waveform model systematics on the interpretation of GW150914

Abbott, B. P. and Abbott, R. and Adhikari, R. X. and Ananyeva, A. and Anderson, S. B. and Appert, S. and Arai, K. and Araya, M. C. and Barayoga, J. C. and Barish, B. C. and Berger, B. K. and Billingsley, G. and Biscans, S and Blackburn, J. K. and Bork, R. and Brooks, A. F. and Brunett, S. and Cahillane, C. and Callister, T. A. and Cepeda, C. B. and Couvares, P. and Coyne, D. C. and Drever, R. W. P. and Ehrens, P. and Eichholz, J. and Etzel, T. and Fries, E. M. and Gossan, S. E. and Gushwa, K. E. and Gustafson, E. K. and Hall, E. D. and Heptonstall, A. W. and Isi, M. and Kanner, J. B. and Kondrashov, V. and Korth, W. Z. and Kozak, D. B. and Lazzarini, A. and Maros, E. and Massinger, T. J. and Matichard, F. and McIntyre, G. and McIver, J. and Meshkov, S. and Pedraza, M. and Perreca, A. and Quintero, E. A. and Reitze, D. H. and Robertson, N. A. and Rollins, J. G. and Sachdev, S. and Sanchez, E. J. and Schmidt, P. and Singer, A. and Smith, R. J. E. and Taylor, R. and Torrie, C. I. and Tso, R. and Urban, A. L. and Vajente, G. and Vass, S. and Venugopalan, G. and Wade, A. R. and Wallace, L. and Weinstein, A. J. and Williams, R. D. and Wipf, C. C. and Yamamoto, H. and Zhang, L. and Zucker, M. E. and Zweizig, J. and Blackman, J. and Chen, Y. and Ma, Y. and Varma, V. and Hemberger, D. and Scheel, M. and Szilagyi, B. (2017) Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 34 (10). Art. No. 104002. ISSN 0264-9381. http://resolver.caltech.edu/CaltechAUTHORS:20170412-125626809

[img] PDF - Submitted Version
See Usage Policy.

3605Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20170412-125626809

Abstract

Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ~0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1088/1361-6382/aa6854DOIArticle
http://iopscience.iop.org/article/10.1088/1361-6382/aa6854/meta#artAbstPublisherArticle
https://arxiv.org/abs/1611.07531arXivDiscussion Paper
ORCID:
AuthorORCID
Adhikari, R. X.0000-0002-5731-5076
Weinstein, A. J.0000-0002-0928-6784
Williams, R. D.0000-0002-9145-8580
Additional Information:© 2017 IOP Publishing Ltd. Received 16 December 2016. Accepted 22 March 2017. Accepted Manuscript online 22 March 2017. Published 12 April 2017. Focus issue: Gravitational waves. Guest editors: P Shawhan, D Shoemaker The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educació, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. CFUIB simulations were carried out on the UK DiRAC Datacentric cluster. The SXS simulations were carried out on HPC resources provided by Compute Canada, the Research Corporation, and California State University Fullerton, on the San Diego Supercomputer Center's machine Comet and on the AEI Datura cluster. We further acknowledge support from the Research Corporation for Science Advancement, and the Sherman Fairchild Foundation.
Group:LIGO
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Max Planck Society UNSPECIFIED
State of Niedersachsen/GermanyUNSPECIFIED
Australian Research CouncilUNSPECIFIED
Istituto Nazionale di Fisica Nucleare (INFN)UNSPECIFIED
Centre National de la Recherche Scientifique (CNRS)UNSPECIFIED
Stichting voor Fundamenteel Onderzoek der Materie (FOM)UNSPECIFIED
Council of Scientific and Industrial Research (India)UNSPECIFIED
Department of Science and Technology (India)UNSPECIFIED
Science and Engineering Research Board (SERB)UNSPECIFIED
Ministry of Human Resource Development (India)UNSPECIFIED
Ministerio de Economía y Competitividad (MINECO)UNSPECIFIED
Conselleria d'Economia i Competitivitat and Conselleria d'EducacióUNSPECIFIED
Cultura i Universitats of the Govern de les Illes BalearsUNSPECIFIED
National Science Centre (Poland)UNSPECIFIED
European CommissionUNSPECIFIED
Royal SocietyUNSPECIFIED
Scottish Funding CouncilUNSPECIFIED
Scottish Universities Physics AllianceUNSPECIFIED
Hungarian Scientific Research Fund (OTKA)UNSPECIFIED
Lyon Institute of Origins (LIO)UNSPECIFIED
National Research Foundation of KoreaUNSPECIFIED
Industry CanadaUNSPECIFIED
Natural Science and Engineering Research Council of Canada (NSERC) UNSPECIFIED
Canadian Institute for Advanced Research (CIFAR)UNSPECIFIED
Ministério da Ciência, Tecnologia, Inovação e ComunicaçãoUNSPECIFIED
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)UNSPECIFIED
Russian Foundation for Basic ResearchUNSPECIFIED
Leverhulme TrustUNSPECIFIED
Research CorporationUNSPECIFIED
Kavli FoundationUNSPECIFIED
Ontario Ministry of Economic Development and InnovationUNSPECIFIED
Ministry of Science and Technology (Taipei)UNSPECIFIED
Record Number:CaltechAUTHORS:20170412-125626809
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20170412-125626809
Official Citation:B P Abbott et al 2017 Class. Quantum Grav. 34 104002
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:76537
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:12 Apr 2017 21:33
Last Modified:14 Apr 2017 16:39

Repository Staff Only: item control page