Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves

Emil P. Kartalov
Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, and Electrical Engineering Department, California Institute of Technology, Pasadena, California 91125

Axel Scherer
Electrical Engineering Department, California Institute of Technology, Pasadena, California 91125

Stephen R. Quake
Bioengineering Department, Stanford University, Stanford, California 94305

Clive R. Taylor
Pathology Department, Keck School of Medicine, University of Southern California, Los Angeles, California 90033

W. French Anderson
Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033

(Received 22 June 2006; accepted 29 December 2006; published online 19 March 2007)

A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane “pushdown” microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45–295 μm lateral dimensions, 16–39 μm membrane thickness, and 1–28 psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve’s properties as a function of its dimensions. Typical valves (80–150 μm width) are shown to behave like thin springs. © 2007 American Institute of Physics. [DOI: 10.1063/1.2511688]

INTRODUCTION
Within a decade, polydimethylsiloxane (PDMS) microfluidics has negotiated the long distance from the plain channel to a plethora of specialized components organized by the thousands in large-scale-integration devices, thereby fulfilling Feynman’s dreams of infinitesimal machines at least at the microscale. The now mature technology has been successfully used in a number of important applications, e.g.,...
FIG. 1. (Color online) Microfluidic chip. (A) Control/flow channels are filled with red/blue dye, respectively, and form a microfluidic valve at each intersection. (B) After the closing pressures of all valves are measured, the device is peeled off the glass substrate and cut along a line perpendicular to one of the control channels. The valve arch (i), flow layer (ii), control channel (iii), and control layer (iv) are clearly visible.

Thus, it makes sense to have a “thick beam” model to help account for the corresponding behavior. A thick beam is described by

$$z = \frac{FL^3}{3EI}, \quad \text{(1)}$$

where z is the deflection of the beam end with respect to the nondeformed state, F is the force applied to that end, L is the length of the beam, E is Young’s modulus of the material, and I is the moment of inertia of a unit mass per unit area,

$$I = \int y^2 dA, \quad \text{(2)}$$

where y is the coordinate perpendicular to both the bending axis and the beam axis, while A is the cross-section area of the beam.

If the valve is viewed as two joined thick beams, then $z=H$ and $L=W/2$. Also, the total force on the valve from applied pressure P must be

$$PWL = 2F$$

to balance a closed valve. Using $dA=dx dy$, Eq. (2) is integrated to yield

$$I = Lh^3/12.$$

Plugging everything back into Eq. (1) obtains

$$P = E(4Hh^3W^4). \quad \text{(3)}$$

However, the bending of the membrane is not really two dimensional (2D) but three dimensional (3D) and into the shape of a saddle, whereby a transverse contraction is combined with a longitudinal extension. Equation (3) takes only the former in the account. The latter is analogously modeled producing a formula wherein W is replaced with L. Superposition yields

$$P = E[4Hh^3(W^4 + L^4)]. \quad \text{(4)}$$

Since $H, h < W, L$ for our experimental values, this model produces small strains and thus large $E (=11 \text{ MPa}, \text{Fig. 3})$. Hence in the final model we would need additional terms of lower powers of $(h,H)/(W,L)$. Physically, the strain contribution from thick beam bending is too small to account for the entire stress.

The thin spring

The valve membrane can be viewed as a one-dimensional (1D) spring that is contracted as the valve closes. In this case, vertical pressure must be connected with horizontal stress. To do so, perhaps the valve can be treated as a semiliquid slab. After all, an elastomer does not have a strongly cross-linked matrix, the rotational energy along the Si–O bond in PDMS is zero, and most chains are free to slide past one another inside the material. As a result, just as in liquids, the static pressure on the surface must be equalized by pressure inside the volume (otherwise, the situation would not be static). Then the outside pressure and stress inside the material must be equal, while stress and strain are constant through slab’s volume. Hence,
Plugging this back into Eq. (6) then plugging the result into Eq. (5) obtains
\[P = E[16H^2/(3W^2) - 64H^4/(5W^4)]. \] (7)

The above only takes into account the transverse contraction but not the longitudinal extension. The latter is analogously modeled producing a formula wherein \(W \) is replaced with \(L \). Superposition yields
\[P = E[(16H^2/(3)(W^2 + L^2) - (64H^4/5)(W^4 + L^4)]. \] (8)

This model produces values for \(E(=2 \text{ MPa}) \) still exceeding the correct value (Fig. 3). In addition, this model lacks any dependence on \(h \), because the one-dimensional spring has no thickness. If \(N \) identical springs are arranged in parallel, they will act as a spring of \(N \) times larger constant, or a spring that is \(N \) times thicker. Therefore, the final strain expression must contain a term that is linear in \(h \), necessitating a thick spring model.

The thick spring

The valve membrane can be viewed as a suspension bridge across the flow channel, wherein the force due to the applied pressure,
\[F_1 = PWL, \]
is canceled by the vertical projections of forces \(F_2 \) along the cable,
\[F_1 = 2F_2 \sin \theta, \]
where \(\sin \theta = \tan \theta = 2H/W. \)

The cross-section area of the spring is \(hL \), while the stress is the same everywhere, and so we can rewrite Eq. (5) as
\[F_2 = E(hL)\epsilon. \]

Combining all of the above obtains
\[P = E(4HhW^{-2})\epsilon. \]

Plugging in the strain from Eq. (7) and dropping the sixth power terms (since \(h, H < W, L \) yield
\[P = E[(64H^3h/3)W^{-4}] \]

Applying the same reasoning in the longitudinal direction produces an analogous expression where \(W \) is replaced with \(L \). Superposition yields
\[P = E[(64H^3h/3)(W^{-4} + L^{-4})]. \] (9)

This model boasts the needed first power in \(h \) but still overestimates \(E \) if used alone (Fig. 3). It is clear that all models have to be combined to produce the final model.

The final picture

We can now superpose all three models. In addition, the pressure is not equal to the “engineering” stress but to the “true” stress. To write the equation for the pressure we thus have to use the true strain,
\[\epsilon = \ln(1 + \epsilon_c). \]

Now we are ready to write the final functional form,
\[P = E \ln[1 + (16H^2/3)(W^{-2} + L^{-2})] + 4H(h^3 + 16H^3h/3 - 16H^5/5)(W^{-4} + L^{-4})]. \] (10)

This final model (Fig. 2) produces the best agreement (Fig. 3) with the independently measured value and offers a good quantitative prediction, especially in the typically used regime of thin wide membranes and low strains.

DISCUSSION

From the physics perspective, it is illuminating that among the three basic linear models, the thin spring is by far closest to reality. That tells us that for the most typical dimensions, the valves do act approximately like thin springs. On the other hand, the need for the inclusion of other basic models is dictated by extreme conditions, namely, thickest membranes and smallest widths, where the volume effects become more prominent.

The final linear model presents a useful practical approximation for most applications in the field. However, it is clear that further improvements in the accuracy of predictions would require the development of nonlinear models, especially for very large strains where the stress-strain curve significantly departs from the initial linear regime. We would be happy to share our detailed experimental data with workers willing to undertake that endeavor.

The experimental part of the work also revealed interesting information about the occurrence of device failure. The only observed such was due to the valve membrane being so
flabby that it would get stuck to the substrate and become bound to it during the fabrication process, producing a non-functional valve. This is a well-known phenomenon and was observed in our study to become frequent when both lateral dimensions exceeded 115 and 130 μm for 2500 and 2000 rpm, respectively. No such collapse was observed with the 1500 rpm devices, probably because the corresponding membrane is significantly thicker while the maximal lateral dimensions were limited to 300 μm.

CONCLUSIONS

A systematic study of the mechanical properties of PDMS microfluidic valves is presented. Three linear models are developed and tested against the empirical data, and then superposed into the final model, which offers a useful quantitative prediction for the valve properties as a function of its dimensions. The dominant linear behavior of valve membranes typically used in the field is shown to be one of thin springs.

ACKNOWLEDGMENTS

The authors thank Alejandro Meruelo and Daniel O’Hanlon from Caltech for their help with preliminary steps, and Alejandra Torres, Christina Morales, and Ali Ghaffari of the Caltech Micro/Nano-Fluidic Foundry for their help with device fabrication. Financial support for this work was provided by the NIH 1RO1 HG002644-01A1 and NIH K99EB007151-01.