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ABSTRACT Many problems in early vision can be formu-
lated in terms of minimizing a cost function. Examples are
shape from shading, edge detection, motion analysis, structure
from motion, and surface interpolation. As shown by Poggio
and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London,
Ser. B 226, 303-323], quadratic variational problems, an
important subset of early vision tasks, can be ‘‘solved” by
linear, analog electrical, or chemical networks. However, in the
presence of discontinuities, the cost function is nonquadratic,
raising the question of designing efficient algorithms for
computing the optimal solution. Recently, Hopfield and Tank
[Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybérn. 52,
141-152] have shown that networks of nonlinear analog ‘‘neu-
rons’’ can be effective in computing the solution of optimization
problems. We show how these networks can be generalized to
solve the nonconvex energy functionals of early vision. We
illustrate this approach by implementing a specific analog
network, solving the problem of reconstructing a smooth
surface from sparse data while preserving its discontinuities.
These results suggest a novel computational strategy for solving
early vision problems in both biological and real-time artificial
vision systems.

This sti:dy addresses the use of simple analog networks to
implement and solve problems in early vision, such as
computing depth from two stereoscopic images, reconstruct-
ing and smoothing images from sparsely sampled data, and
computing motion. Within the last years, computational
studies have provided promising theories of the computations
necessary for early vision (for partial reviews, see refs. 1-5).
A number of early vision tasks can be described within the
framework of standard regularization theory (5). Standard
regularization analysis can be used to solve these problems in
terms of quadratic energy functionals that must be mini-
mized. Previous work by Poggio and Koch (6) showed how
to design linear, analog networks for solving regularization
problems with quadratic energy functions. The domain of
applicability of standard regularization theory is limited,
however, by the convexity of the energy functions, which
makes it impossible to deal with problems involving true
discontinuities. Such problems can be described by
nonconvex energy functions involving binary line processes
(7-10). More recently Marroquin (11) has proposed an ap-
proach to early vision based on the use of Markov ran-
dom-field models and Bayes estimation theory (11, 33). We
will show how these algorithms map naturally onto very
simple resistive networks.

There has been considerable interest in the computational
properties and capabilities of networks of simple, neuronal-
like elements (12-15). Recently, Hopfield and Tank (16) have
shown that analog neuronal networks can provide fast,
next-to-optimal solutions to a well-characterized but difficult
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optimization problem, the ‘‘traveling salesman problem.”” In
this paper we show that networks of simple, analog, or hybrid
processing elements can be used to give fast solutions to a
number of early vision problems.

SMOOTH SURFACE RECONSTRUCTION

Surface reconstruction is a typical problem of early vision
that can be formulated in terms of minimizing a quadratic
energy function (17, 18). It occurs in several situations. For
example, if a stereo algorithm computes depth values only at
specific locations in the image, for instance along edges, the
surface must be interpolated between these points. Another
instance occurs when the data is given everywhere but is
noisy and needs to be smoothed. Grimson (17) studied
surface interpolation in the context of stereo matching. He
considered a stereo algorithm (19) in which isolated primitive
features—zero crossings corresponding to significant events
in the images—were matched, yielding a depth value at the
feature points. He then proposed an interpolation scheme to
obtain depth values thoughout the image that corresponds to
fitting a thin flexible plate through the observed data points.
Both Grimson’s (17) and Terzopoulos’s (18) interpolation
schemes can be described in terms of standard regularization
theory (5): the energy or cost function E( f) to be minimizeéd—-
derived from the inverse problem Bf = d + n, where the data
d and the linear operator B are known, n represents some
noise process, and f is to be computed—is given by

E(f) = |IBf — d|* + of|Sf]]%,

where the first term gives a measure of the distance of the
solution to the data and the second term corresponds to the
regularizer needed to make the problem well-posed (a is a
“‘regularization’’ parameter and S a linear operator). For
surface interpolation, B is a diagonal matrix with elements
equal to 1 at those locations where the depth is known and 0
at all others. The stabilizer S corresponds to the operator
associated with a membrane or thin plate, depending on the
kind of smoothing desired. E can be reformulated as

L) = 22 TV, + 3 Vil
i,j i

(1]

(2]

by identifying the matrix T with 2(B’B + aS7S), V with f, I;
with —2BTd and dropping the constant term d’d. In an
electric circuit implementation, V; corresponds to the voltage
(relative to ground) at the processing element i, henceforth
termed ‘‘neuron i,” I; to a current injected into neuroti i and
T;; to the conductance of the connection between neuron i
and j. If no connection exists between i and j, T; ; is set to 0.
Fmally, every neuron is ‘‘grounded’’ by a resistance R; (with

ZT, i 1t 1/R;). L now corresponds to the total power
d1ss1pated by the circuit as heat (6). We can also interpret this
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expression as the Lyapunov function of the network. To
introduce dynamics into this network, we associate with
every neuron a capacity C; in parallel with R;. The equation
describing the change in the potential is then given by:
i L 3]
dt aV,
For the case of quadratic regularization principles, L(V) is
positive definite quadratic, and therefore the system will
always converge to the unique eneérgy minimum. In other
words, every quadratic variational principle of the type
shown in Eq. 1 can be solved with an appropriate electrical
network, where the connections can be implemented by
linear Ohmic resistances and the data is given by injecting
currents.

LINE PROCESSES

However, quadratic variational principles have limitations.
The main problem is the degree of smoothness required for
the unknown function that is to be recovered. For instance,
the surface interpolation scheme outlined above smoothes
over edges and thus fails to detect discontinuities (Fig. 1).

Marroquin (9) has proposed a scheme to overcome this
difficulty (see also refs. 7, 10, and 18). Following ref. 8, he
used a probabilistic formulation of the surface reconstruction
problem; the behavior of a piecewise smooth surface is
modeled by using two coupled Markov random fields (20): a
continuous-valued one that corresponds to the depth f; at
location i and a binary one, whose variables are located at
sites between the depth lattice (see Fig. 24). The function of
this unobservable ‘‘line process’’ is to indicate the presence
or absence of a discontinuity between two adjacent depth
elements. By using Bayes theory, it is found that the
maximum a posteriori estimate of the surface corresponds to
the global minimization of an ‘‘energy’’ function. In one
dimension this function is given by

E(f, B) =2(fis1 = £%A — h)
+cp 2 (fi — df + L2 b (4]

Here the A; corresponds to the line process. If the gradient of
f becomes too large [i.e., (fir1 — fi)? > cL, where c is some
fixed parameter], it becomes cheaper to break the surface and
put in a line—paying the ‘‘price’’ ¢y —rather than to inter-
polate smoothly. The line process k; introduces local minima

Fic. 1. Smooth-surface and piecewise-smooth-surface recon-
struction from hoisy and sparse data. (A) Three-dimensional repre-
sentation of a reconstructed and smoothed surface from sparse
observations using a quadratic energy expression corresponding to
interpolating with a membrane. The depth is sampled randomly every
second point along the ridge in the main plane of the figure and along
the rim of the ‘‘tower”’ (see arrows). The observations are assumed
to be corrupted by a Gaussian noise (o = 0.25). The state of the
system is shown after five time constants of the linear depth network.
(B) Piecewise-smooth-surface reconstruction from the same data set
after one time constant of the line process network 7. Both surfaces
were computed by using an analog network with constant coupling.
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into the energy function, making the problem nonquadratic.
The term (f; — d;)?, describing the difference between the
measured data d; and the approximated surface value f, is
weighted by c¢p, which depends on the signal-to-noise ratio.
If d; is very reliable, then ¢cp >> 1. For two-dimensional
images more terms are required in Eq. 4. In ref. 9, the
minimization of the optimization problem was carried out by
using simulated annealing.

Here we sketch another method based on refs. 12 and 16.
Hopfield’s idea was to solve combinatorial optimization
problems by allowing the binary variable to vary continu-
ously between 0 and 1 and to introduce terms in the energy
function that forced the final solution to one of the corners of
the hypercube [0, 1]V. Briefly, iet the output variable V; for
neuron i have the range 0 < V; < 1 and be a continuous and
monotonic increasing function of the intérnal state variable
U, of the neuron i: V; = g;(U;). A typical choice is g(U;) = (1
+ e~2Uj~1 ] jke before, the ‘‘strength’’ of the connection
between i and j is given by the matrix element T; ;, and each
neuron has an associated capacitance C; and resistance R;
(with 7 = R;C;). The resulting charging equation that deter-
mines the rate of change of U; is

dU; U;

R QRN JO5 VA o |

g TR

where I; can be considered as fixed input to neuron i.
Hopfield introduces the quantity

+ I, (5]

Vi

=13 nvwes if T V)V ~S1V; (6]
2 i i Ri7o i

and shows that E is a Lyapunov function of the system, as
long as T;; is symmetric (12). In other words, by using the
update of Eq. 5 [C{(dU;/dr) = —(3E/aV)], the time evolution
of the system is a motion in state space that seeks out minima
in E and comes to a stop at such points. The relation between
the stable states of the continuous model and those of the
binary ones, in which the output of every neuron can be either
Oor 1, is governed by \. For A — «, g; tends to either 0 or 1.

Following ref. 16, we shall map the binary line processes
h; jand v; ;into continuous variables bounded by 0 and 1. One
possibility for choosing an associated cost function is out-
lined below. This function has four contributors: the term
implementing a membrane type of surface interpolation E;
together with the data term Ep, the line potential term E; , and
the gain term Eg:

Ei + Ep =Z(fu+1 - fi’Q = hyy)
iJj
+ CD.Z (fij — di). (7a]
ij

E. = ch hij(1 — hij) + CPZ hijhij+1 + CCZ h;j
ij iJj J
+ CLZ hij - [ = hivry = vig = vig+e1)?
i

+ (A = hiyj = Viery — Vie1g+)?] (7]

hij
Eg = cc 2. L g} (hidh ;. [7c]
ij

Here f;;, vi;, and h;; correspond to the depth, the vertical
line process, and the horizontal line process, respectively.f
Note that the summation in Ep only includes nodes where
measurements are available. The first term in E; forces the
line process to the corners of the hypercube—i.e., to either
0 or 1. The second term penalizes the formation of adjacent

IWe have only derived the energy expressions for A; - The expres-
sion for v; ; can be obtained by replacing h; ; with v; ; and i with j and
vice versa.
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FiG. 2. (A) The two-dimensional lattice of line processes (lines) and depth points (crosses). Each depth value is enclosed on all four sides
by a line process. (B) The local connections between neighboring line processes (filled squares) and the depth lattice (open squares).

parallel lines, while the third term represents the cost that
need be paid for the introduction of every single line. The
fourth term is an interaction term that favors continuous lines
and penalizes both multiple-line intersections and discontin-
uous-line segments. The gain term forces the line process
inside the hypercube [0,1]V. Fig. 2B illustrates the connec-
tions required to implement this energy function within the
line and the depth lattices. Following ref. 12, we choose the
following update rule:

oy _OE g dmy_ OE

dt af; J dt ah; J

where m;; is the internal state variable for the processing
elements corresponding to the horizontal line process—that
is, h; ; = g(m; ;). It is easy to see that for this update, the total
energy will always decrease. The system will evolve in such
amanner as to find a minimum of E. Note that, different from
refs. 12 and 16, our energy function contains cubic terms

(e.g., fij+rfijhij).

(8]

SIMULATION RESULTS AND HEURISTICS

An analog network for a 32 by 32 image was simulated on a
digital computer. For the simulation, two sets of parameters
are important. First is the weight of the term describing the
interaction among the line processes, E;, versus the weight
of the smoothing term (equal to 1). This ratio determines the
limiting depth gradient beyond which no more interpolation
takes place. Decreasing the importance of the line interaction
term E; versus the smoothing term encourages the formation
of lines at smaller and smaller depth gradients. This number
requires some rough estimate of the limiting depth gradient
for which no smooth interpolation should occur. The second
parameter is the relative weight of the individual components
of E; and Eg. Fortunately, the choice of these parameters
does not seem to vary from image to image. Results in this
paper refer to cy = 0.5, c. = 4.0, cp = 5.0, cc = 1.0, and ¢
= 0.5. As boundary conditions we set A; j and v; ; to 1 along
the boundaries of the square. As initial conditions we set the
internal state variable of the line process neurons, m; ;, to 0
and all horizontal and vertical lines in the image to 0.5.
The final state of the network should approximate as
closely as possible the state of lowest energy. Since f, h, and
v are independent variables, the solution can be found by
minimizing E(f, h, v) for a given arrangement of the line
processes by varying f [since E(f) is a quadratic function for
fixed &£ and v]. These considerations lead us to adopt the
following strategy. After the depth lattice is ‘‘initialized”’
with the sparsely sampled depth data, the network computes
the smoothest surface assuming all line processes set to 0.
Subsequently, the depth network is updated 10 times for
every single update of the line process network. Function-
ally, this is equivalent to assuming that the line process
network is stationary or substantially slower than the depth
network. However, independent of the relative speed of

these two processes, E(f, h, v) is always a Lyapunov
function. Fig. 1 illustrates the difference between smooth-
surface and piecewise-smooth-surface interpolation (for
equivalent results, see also ref. 11).

How does the choice of A\ affect our results? For large
values of A—that is, in the high-gain limit—the line processes
will almost always be either 0 or 1, while in the low-gain limit,
values of k; ; and v;; will be distributed around 0.5, and the
energy function of Eq. 7 will be almost quadratic. Experi-
mentally, we found satisfactory convergence for A > 5 (in
Figs. 1, 3, and 4, A = 16). Choosing different values of A
clustered around this value affected mainly the convergence
time—since logical ‘‘decisions’’ (i.e., 0 and 1) are computed
faster for higher As—but not the final solution to any
significant extent. Lowering A below 0.1 prevented the
formation of lines altogether—at least within reasonable
times.

Figs. 3 and 4 show more complicated synthetic images
where the depth is sampled randomly at, on the average,
every third point and the measurement process is corrupted
by Gaussian noise. This condition represents the most
stringent performance test of our algorithm. Contrariwise,
when the depth is assumed to be known at edges, as for
instance in the Marr and Poggio stereo algorithm (19), the
network converges rapidly to a good solution. However,

FiG. 3. Temporal evolution of the states of the network for a
sparsely sampled synthetic scene containing three slanting rectan-
gles. On the average, every third point is sampled. These measure-
ments are corrupted by Gaussian noise (o = 0.25). (Upper Left)
Initial state of the network after smoothing. Subsequent illustrations
show the changing states of the network, with time specified in terms
of 7. Note, that in order to reconstruct such objects, there is a critical
number of sampling points per object, below which the reconstruc-
tion yields ambiguous results. A variable coupling was assumed.
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F1G. 4. Smooth-surface (A) and piecewise-smooth-surface (B)
reconstruction of a sparsely sampled synthetic scene containing both
flat and curved surfaces. Smoother surface interpolation can be
obtained by the use of a higher-order stabilizer, such as the thin plate
stabilizer (10). The network is shown after 1.67 (for more details, see
Fig. 3).

when the depth measurements were assumed to occur ran-
domly throughout the image, we introduced the following ad
hoc procedure to reconstruct the original, fully sampled,
image as closely as possible. Most images contain, unlike Fig.
1, more than a single depth scale. One way to scan for
different depth values is to change the weight of E; during a
simulation run. We multiplied E; by a factor 1/K(z), where
K(1) starts out small—typically at 0.1—and increases linearly
until a given saturation threshold. In other words, initially the
formation of lines is strongly penalized, encouraging a
smooth interpolation everywhere except at very steep dis-
parity gradients. Subsequently, by paying a smaller price for
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the formation of lines, the surface will break at smaller depth
gradients (see also refs. 10 and 18). The final state of the
network is independent of the speed at which K(f) changes,
as long as it increases slowly enough (adiabatic approxima-
tion). A second method to achieve next-to-optimal solutions
involves varying A\ during a run (16). Both methods yield
roughly similar results.

ANALOG NETWORKS FOR EARLY VISION

The results we have presented indicate the plausibility of
using graded networks of simple neuron-like processing
elements to ‘‘solve’’ constraint satisfaction problems in early
vision that can be formulated as minimization of an energy
function or as finding optimal Bayesian estimates. They
include surface interpolation (9, 10, 17), edge detection (21),
shape from shading (22), velocity field estimation (23, 24),
color (34), and structure from motion (25, 26). The solutions
we obtain using analog networks are similar to the solutions
obtained using simulated annealing or other algorithms de-
rived from estimation theory (9, 11).

Another problem that maps very naturally onto our networks
is the recovery of the two-dimensional velocity field. In general,
only one independent measurement of the change in image
brightness is available from an image sequence, while the
velocity field has two components (aperture problem). In order
to recover the global velocity field, various constraints have

A

F1G. 5. (A) A neuronal implementation of the analog network for the piecewise-smooth-surface interpolation problem. The depth values are
assumed to be represented in a two-dimensional network of pyramidal cells within the visual cortex. These pyramidal cells excite, via
intracortical arborization that can extend over many hundreds of microns, neighboring pyramidal cells in a roughly symmetrical way. The
measured depth at isolated points or edges is computed at an earlier stage and relayed to the pyramidal cells via excitatory synapses. The line
processes are implemented via inhibitory GABAergic (GABA = y-aminobutyric acid) interneurons, in this case basket cells. Their axon ascends
from the cell body, usually giving off extensive horizontal collaterals at several levels. We assume that the synapse of the interneuron onto the
dendrites of the pyramidal cells vetos locally the excitatory signal from a neighboring pyramidal cell, on the basis of the nonlinear and local
interaction between excitatory and silent or shunting inhibitory synapses (see ref. 28). GABAergic interneurons also contact other GABAergic
interneurons, thus providing the substratum for the interaction between line processes (see Fig. 2B). Basket cells receive input from neighboring
pyramidal cells, computing locally the difference between the electrical activity in adjacent pyramidal cells. Activation (i.e., firing) of the basket
cells signals the presence of a discontinuity in the visual scene. Information regarding the location of these edges obtained from different sources
(for instance, by using the flow field) can be incorporated in a natural way into this network by exciting the appropriate interneuron. Since the
pyramidal cells code for depth, their dynamic firing range should be large compared with the dynamic range of the interneurons. (For the anatomy
of cortical cells, see ref. 29.) (B) A circuit implementation of the hybrid network for the piecewise-smooth-surface interpolation problem. The
linear resistive network minimizes the quadratic energy function for a specific setting of resistances (i.e., line processes). The digital processors
of a very simple *‘single instruction multiple data’’ array processor—shown here in a ‘‘connection machine’’-like architecture (ref. 30; indicated
as solid squares)—set or break the resistive connections in the analog network (with the help of some transistors) as a function of the current
state of the analog network and of the previous state of the digital processors. Note that sampling the current depth value requires a
analog-to-digital conversion and thus increases the convergence time. When an observation is present at site i,j a positive current of value cpd; ,
corresponding to the measured depth, is injected at this node, which must also be connected to ground via a conductance of value cp. This scheme
combines the speed of a simple analog network with the versatility of a digital processor and would permit real-time execution of vision
algorithms.
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been utilized, such as assuming that the reconstructed motion
field is the smoothest field compatible with the known velocity
components (23, 24). We propose that the use of line processes
marking the boundary between moving objects will greatly
ameliorate this problem. Thus, an image consisting of several
overlapping figures moving within the plane superimposed on a
stationary background will have a smooth velocity field every-
where but at the boundaries of the moving figures where the line
processes will be ‘‘turned on.”’

The single most important advantage of analog networks is
their speed. Typical convergence times are on the order of
several time constants. The convergence time does not
depend per se on the size of the image array but rather on the
size of the largest patch of smooth surface without associated
depth measurements in the image: it takes on the order of n?
time constants for information to propagate across such a
n-pixel-wide smooth patch. This behavior contrasts favor-
ably with simulated annealing (27). The principal drawback of
our method is that there is no guaranty that the network will
converge to the state of lowest energy. We can only show
experimentally that the computed solutions seem reasonable
compared with solutions obtained with other algorithms. As
has been pointed out (16), the main reason for this good
behavior is the smoothing of the solution space upon trans-
forming the problem from a discrete, binary space into a
continuous one.

Fig. 5A shows a hypothetical implementation of our analog
network within the visual cortex that is in accordance with
known cortical anatomy and physiology. However, what are
the implications of our results for the architecture of artificial
vision systems? The feasibility of building analog very-large-
scale integrated (VLSI) systems has been demonstrated by
Tanner and Mead (see ref. 31). They have built a single cMOS
(complementary metal-oxide-semiconductor)-motion detection
chip that combines a grid of high-performance bipolar photosen-
sors with purely analog components. On the basis of graded
light variations, their chip extracts the velocity vector of a
spatially uniform flow field.

Purely analog networks do have one major drawback with
regard to conventional programmable processors. Once
built, it is difficult to change their parameters—such as the
specific form of the penalizing terms or the stabilizer. Thus,
every task requires a dedicated analog network. A possible
solution to this dilemma is a mixed hybrid architecture. The
basic idea is to combine a regular grid of simple, serial
programmable processors communicating locally with a lin-
ear resistive network. The digital processors, corresponding
to the line elements, can break the resistive connection
between two neighboring analog processors with the aid of a
simple switch (Fig. 5B). Coupled binary and smoothly vary-
ing Markov random fields map naturally onto this type of
architecture (8, 11, §). The hybrid machine has two basic
cycles. In the analog cycle, the processors inject current—
corresponding to the depth measurements—into the analog
network. Subsequently, the resistive network finds the
unique (6) smoothest surface, given a certain distribution of
lines—mimicked by the breaking of resistances between
nodes. In the digital cycle, the digital processor network will
read out the current voltage at every node in the resistive
network and compute a new estimate for the binary line
process using conventionally programmed digital software.
Stochastic optimization techniques (11, 27, 32, §) could easily
be implemented here. Subsequently, the processors will set
or break the appropriate connections in the analog network
and the machine will switch back into the analog cycle.
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