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Abstract

Thegeometryof single-viewpoint panoramasis well un-
derstood: multiple picturestaken from the sameview-
pointmaybestitchedtogetherinto aconsistentpanorama
mosaic.By contrast,whenthe point of view changesor
whenthescenechanges(e.g.,dueto objectsmoving) no
consistentmosaicmaybeobtained,unlessthestructureof
thesceneis veryspecial.

Artists have explored this problemand demonstrated
that geometricalconsistency is not the only criterion for
success:incorporatingmultiple view pointsin spaceand
time into the samepanoramamay producecompelling
andinformativepictures.Weexplorethisavenueandsug-
gestan approachto automatingthe constructionof mo-
saicsfrom imagestakenfrom multiple view pointsinto a
singlepanorama.Ratherthan looking at 3D scenecon-
sistency we look at imageconsistency. Our approachis
basedon optimizing a cost function that keepsinto ac-
countimage-to-imageconsistency which is measuredon
point-featuresand along picture boundaries. The opti-
mizationexplicitly considersocclusionbetweenpictures.

We illustrateour ideaswith a numberof experiments
oncollectionsof imagesof objectsandoutdoorscenes.

1 Intr oduction

A singlepicturecannotalwayscapturethe full scene.It
hasthusbecomecommonamongartistsandamateurpho-
tographersto take multiple picturesof the samescene
andcomposetheminto mosaics. Whenall the pictures

are taken from a single view point the geometryof the
panoramais well understood[6, 12, 14]. This, together
with methodsfor matchinginformativeimagefeatures[8]
andgoodblendingtechniques[3, 4] havemadeit possible
for any amateurphotographerto produceautomatically
mosaicsof photographscoveringverywide �elds of view
[2, 12]. By contrast,whenthe point of view changesor
whenobjectsmoved in the scene,no consistentmosaic
maybeobtained,unlessthestructureof thesceneis very
special.

Artists have explored this problemand demonstrated
thatincorporatingmultipleview pointsinto thesamemo-
saicmay producemoreinformative representationsthan
a singleview point panoramacan.For example,seeFig-
ure6.a. This frescoby PaoloUccelloshows thepodium
as if the viewer is looking upward to it, yet the rider
and horseare paintedfrom a direct side view. While
the painter has the freedomto changethe view point
smoothly, this is not alwayspossiblewhenstitchingpic-
tures.Onecannotexpectto alwaysgetthesmoothappear-
anceof a singleview panoramawhenmosaicingpictures
with view point changes.Nevertheless,artistslike David
Hockney and JamesBalog have demonstratedthat mo-
saicswith visible inconsistenciesacrosspicture bound-
ariescanneverthelesslook compellingand informative.
Suchmosaicshave becomecommonalsowithin amateur
photographers(for examplego to http://www.�ickr .com/
andsearchfor picturestaggedwith “composites”,“hock-
ney” or “joiner”). Figure1 showssomeexamples.

Therearescenariosin which multi view point mosaics
mustbeusedbecausethereis no otheroption. For exam-
ple, oftenonecannotcapturethefull scenefrom a single
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(a) (b) (c)

Figure1: Multi view art work: (a) David Hockney's “PlaceFurstenberg”, Paris,1985. (b),(c)Two samplecompo-
sitionsdownloadedfrom �ickr .com,constructedby amateurphotographers.Many morecanbefoundon theweb.

view point due to occlusions,seeFigure 7.a. Changes
in view point canalsoresult from peoplemoving while
beingphotographed,seeFigures8.a,c. We thusbelieve
thatautomaticconstructionof mosaicsfrom pictureswith
view pointschangesis a requiredtool.

Mosaicsincorporatingmultiple view pointshave been
exploredbefore.Woodet al. [13] suggestedanapproach
tocomputerizeddesignof multiperspectivepanoramasfor
cel animationwhereall viewpointsareavailableapriori.
A widerangeof approacheshavebeensuggestedfor con-
structingmulti view panoramaswhentheinput is a video
sequencetakenby asmoothlymoving videocamera,e.g.,
[11, 10, 15, 7].

In this paper, however, our goal is to createcomposi-
tions of discretesetsof photographstaken from highly
different view points. Rather than assuminga strong
model on the geometryof picture taking (e.g. single
view point or perhaps3D reconstructionof viewpoints
and shape[5]) we look for consistency in composition
space. Inspiredby artists,we suggestan approachthat
alignsandstacks(ordersthe layersof) picturesby mini-
mizing visible artifactsin the�nal composition.Thuswe
do not assumeanunderlying`3D reality' but rathertake
the point of view that the �nal picture is a composition
which is drivenby thephotographs.

Therestof thepaperis organizedasfollows. We start
by outlining theoverall framework in Section2. We then
proceedanddescribein detailthevariousstepsof theap-
proachin Sections3,4,5,6. We concludein Section7.
Our ideasare illustratedthroughexperimentswhich ap-
pearthroughoutthetext.

2 Overall Framework

Whenpicturesaretakenfrom differentview pointsthere
is no globally consistentway to obtain a composition,
thereforewecannothopeto obtaingeometricalconsistent
matchesbetweenneighboringpictures. We replacethe
geometricaldistortioncostof Brown andLowe[2] with a
costthat is a combinationof geometricalandappearance
consistency. Furthermore,we measuregeometricaland
appearanceconsistency directlyonthecompositionplane,
ratherthanon theviewing sphere.Werequireappearance
consistency becausesometimespicturesthataregeomet-
rically inconsistentmayeasilyblendinto eachother, e.g.,
when there is texture or uniform color near the picture
boundary. Alignment errorsin this caseshouldthusbe
penalizedlessthanwhentheerroris verysalient.

Wefurthermorenoticethatgeometricalandappearance
inconsistenciesthat arehiddenfrom view have little im-
portance,ascomparedto thosethatarevisible. Our opti-
mizationtakesthis into account.

The suggestedframework consistsof the following
steps:

1. For eachpairof images�nd point-featurecorrespon-
dencesand �t a similarity transformationbetween
them. Keep only correspondenceswhich can be
approximatelyalignedby the transformation(Sec-
tion 3).

2. Find global alignmentof the imagesin the compo-
sition by minimizing distancesbetweencorrespon-
dences.If importanceweightswereassignedto the
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correspondences,incorporatethemin the optimiza-
tion process(Section3).

3. Find thebestlayeringof theimages:searchover all
possibleordersthe one which minimizesdisconti-
nuitiesacrossimageboundariesin the composition
(Section4).

4. Assignhighweightsto correspondencesnearvisible
imageboundariesand low weightsotherwise(Sec-
tion 5).

5. Repeatsteps2 to 4 until weightsandtransformations
arenotupdated.

6. If desired,blend imagesonly near visible seams
(Section6).

In the following sectionswe describein detaileachof
theabove steps.

3 ImageAlignment

For image alignmentwe adopt the feature-basedtech-
niquesuggestedby Brown & Lowe [2], with onemajor
difference.In [2] imageswereassumedto betakenfrom
a single viewpoint, thus alignmentwas obtainedon the
viewing sphereby solvingfor thecamerarotationateach
image.Thisapproachis inadequatefor imagestakenfrom
multiple view points. Insteadwe optimizethealignment
on the 2D panoramacanvas by solving for a similarity
transformationfor eachimage.That is, we allow images
to translate,scaleandrotate.

Thechoiceof similaritiesis motivatedby thebeautiful
compositionswe have foundon theweb(e.g.,Figure1),
aswell asby ourown experience.We have collectedtens
of imagedatasetsandcompositedthemmanuallylimit-
ing the transformationsto translation,scaleandrotation,
which arethebasicavailabletools in mostimageediting
software.We have foundthis setof transformationsto be
suf�cient andthusadoptit in ourautomaticframework.

Following Brown & Lowe, we �rst extract andmatch
SIFT features[8] betweenall pairsof images. We then
useRANSAC [6] to selectasetof inliers thatarecompat-
ible with asimilarity transformationbetweeneachpairof
images.Next we applytheprobabilisticmodelsuggested
in [2] to verify thematch.We discardall featurematches

which arenot geometricallyconsistentwith the transfor-
mationbetweenthe images(RANSAC outliers). Finally,
giventhesetof geometricallyconsistentmatchesbetween
the images,we usebundleadjustment[2] to solve for all
of thetransformationsjointly.

Unlike thesingleview point case,whentheimagesare
takenfrom multipleview pointsonecannotexpectall the
matchesto benicely aligned.Assigningthesameimpor-
tanceto all matches(as was done in [2] for the single
view point case)will result in misalignmentsdistributed
acrossthewholepanorama.Instead,onewould like “im-
portant”matchesto bewell alignedwhile allowing other
matchesto have larger errors. This canbe achieved by
assigningeachfeaturematchwith a weight indicatingits
importance.Thedecisionon which featuresare“impor-
tant” andthe settingof the weightswill be describedin
Section5.

The objective function of the optimizationprocessis
thusaweightedsumof projectionerrors:
Let uk

i denotethek' th featurein imagei andSij a sim-
ilarity transformationbetweenimagesi and j . Given a
featurematchuk

i $ ul
j the correspondingresidualis:

r k l
ij = uk

i ¡ Sij ul
j andtheassignedweight is denotedby

wk l
ij . Theerror function to beminimizedis thesumover

all imagesof theweightedresidualerrors:

e =
nX

i =1

X

j 2N ( i )

X

k ;l 2F ( i;j )

wk l
ij f (r k l

ij ) (1)

wheren is the numberof images,N (i ) is the setof im-
ageswith featurematchesto imagei , F (i; j ) is the set
of featurematchesbetweenimagesi andj andf (x) is a
robusterrorfunction:

f (x) =
½

jxj if jxj < xmax

xmax if jxj ¸ xmax
(2)

This robusterror function is usedto minimize the im-
pactof erroneousmatches.As suggestedin [2] we use
xmax = 1 during initialization and xmax = 1 pixel
for the �nal solution. This is a non-linearleastsquares
problemwhich we solve usingtheLevenberg-Marquardt
algorithm.

Figure 2.a shows an alignment result with equal
weightsassignedto all featurematches(i.e., wk l

ij = 1
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(a) (b)

(c) (d)

Figure2: Panorama construction phases:(Top row) Input images.(a) Layeringthe imagesaccordingto thebest
orderfoundby minimizing thegradient-basedcost. (b) Resultof aligningandblendingall input images.Thetiger's
face(enlargedon theright) is blurry (c) Visible imageboundariesmarked in blueon top of thepanoramain (a). (d)
Final resultafter layeringandlocal blendingonly alongvisible imageboundaries.The tiger's face(enlargedon the
right) is now sharp.
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8i; j ; k; l ). Thealignedimageswereblendedusingmulti-
bandblending [3]. Parts of the panoramalooks sharp
while otherpartsareblurreddueto misalignments.

4 Ordering Images

Imperfectalignmentwill unavoidably resultin blurry re-
gionswhenblendingtheimages.Thus,insteadof blend-
ing theimageswewishto ordertheminto layerssuchthat
imagesplacedontopwill hidemisalignmentsunderneath.
This will leave uswith visible artifactsonly alongimage
boundarieswhicharenotoccluded.Wewill referto these
as“visible imageboundaries”(seeFigure2.c). Our goal
is to �nd anorderof theimageswhichminimizesappear-
anceinconsistenciesacrossthevisible imageboundaries.

Onecanadopttwo approachesto ordertheimages:

1. Assigneachimageto a separatelayer and �nd the
bestorderof layers. This is equivalentto what can
beeasilydonein mostimageeditingsoftwares,e.g.,
Photoshop.

2. Selecta local orderof theimagesseparatelyin each
overlaparea.For exampleonecouldhave imageA
above B, B above C andC above A in differentre-
gionsof thecomposition.

Constructingnumerouspanoramasmanually we found
the �rst option to be suf�cient in most cases.We have
thusleft thesecondoptionoutsidethescopeof thispaper.

Given an alignmentof the imageson the panorama
plane,�nding thebestorderof imagescanbeformulated
asa graphproblem. Let G = (V; E) be an undirected
graphwhereeachnodevi 2 V representsan imageand
edgesconnectbetweenimagesthatoverlap.A valid order
of theimagescanberepresentedby anacyclic orientation
of thegraphedges.Thesetof all acyclic orientationsof
the edgesof G representsall possibleordersof the im-
ages. It canbe found in overall time O((n + m)®) [1],
wheren is thenumberof nodes(images),m is thenumber
of edgesand® is thenumberof acyclic orientations.

Wethenperformanexhaustivesearchoverall possible
ordersandselectthebestone. For eachorderof the im-
ageswe computea costbasedon image-to-imageconsis-
tency measuredalongvisible imageboundaries,denoted
by B. Onecandesignmany suchcostfunctions.Wehave
experimentedwith three:

1. Sum of gradients across image boundaries:
Costgr ad =

P
x;y 2B P2

x (x; y) + P 2
y (x; y), where

Px andPy arethehorizontalandverticalderivatives
of thecomposition.

2. Sum of color differences between overlapping
images: Costcol or =

P
x;y 2N (B) (I top (x; y) ¡

I scnd (x; y))2, whereI top andI scnd arethe top and
secondfrom top imageson one side of the visible
boundaryB andN (B) is a regionaroundthebound-
ary.

3. Quality of curve continuation:We �rst �nd curves
of length ¸ 5 pixels in all images1 and project
them to the panoramaplane. We then �nd the set
of curves C which intersectvisible image bound-
ariesand are visible in the panorama(i.e., are not
occludedby other images). For eachsuch curve
c 2 C we �nd the closestcurve ~c on the otherside
of the boundary. We �t a line to the last 3 pixel-
long bits of bothcurves. Denoteby L(c;~c) thesum
of squareddistancesbetweenthecurvesandthe �t-
ted line. The curve continuationcost is de�ned as:
Costcur ve =

P
c2 C min(L(c;~c); ~L), where ~L is a

penaltyfor curveswhosecontinuationcould not be
found.

In our experimentswe found that in most casesmini-
mizing Costgr ad or Costcur ve provided comparablere-
sults,betterthanthoseusingCostcol or . For consistency
in the presentationof the paper, all the presentedre-
sultswereobtainedby minimizingthegradient-basedcost
Costgr ad .

Clearly, for largedatasetsthenumber® of possibleor-
dersis too large to testall. To overcomethis limitation
onehasto adoptsomeheuristics.Onepossibilityis trying
just a limited numberof randomordersandkeepingthe
bestone. Alternatively, onecanstartfrom a small setof
randomordersandconductalittle searcharoundeachone
by performinga smallnumberof order�ips betweenim-
ages.Anotherpossibility is to computepair-wise image
costs,ignoringtherestof theimagesand�nding thebest
correspondingorder. This canbedoneby �rst removing
from theoriginalgraphG enoughedgesto destroy all cy-
cles(removededgesarechosenatrandomoutof theedges

1We useda softwarewritten by theOxford VisualGeometryGroup
basedonCanny edgedetection.
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participatingin eachcycle) andthen�nding theminimal
costorientation.

Figure4 shows anexampleof a compositionof 14 im-
ages,trying only 100randomordersandselectingtheone
which providedtheminimal cost.Theresultis imperfect
in termsof consistency, yetwe�nd it visuallycompelling.
In all otherexperimentspresentedin thispaperwelimited
thenumberof imagesperdatasetto 7 andappliedtheex-
haustive approach.We believe thatef�cient searchmeth-
odsdoexist, but thisaspectis left outsidethescopeof our
currentinvestigation.

5 Iterati veRe�nement

The approachwe adopted layers the images in the
panoramaso thatpartsof the imagesareoccluded.This
leavesinconsistency artifactsin thepanoramaonly along
visible imageboundaries.Wethuswish for thealignment
to beof high quality alongthoseseamswhile we canaf-
ford it to besloppierin occludedregions.This is achieved
by iterative re�nementof thealignmentandorderof im-
ages.

Givenan initial alignmentandorderof imageswe as-
sign weightsto featurematchesaccordingto their “im-
portance”. Matchesnear visible image boundariesare
assignedhigh weightswhile occludedmatchesaregiven
low weights:

wk l
ij = M AX (exp¡ M I N (d2 (u k

i ;B) ;d2 (u l
j ;B)) =¾2

; ! ) (3)

whered2(uk
i ; B) is theminimumdistancebetweenfeature

uk
i andthevisible imageboundariesB. Theparameter¾

controlstherateof decayof theexponentialfunctionand
! de�nes the minimum weight of a feature. In all our
experimentsweused¾= 500and! = 0:1.

We obtaina re�ned alignmentby applyingthe bundle
adjustmentprocedureof Section3 while incorporatingthe
assignedweights. Given the new alignmentthe images
areorderedagainandweightsarereassignedaccordingto
the result. This processis iterateduntil convergence.In
our experimentswe applied3 iterations.Figures5 and7
show there�nementthatcanbeobtainedby this iterative
process.

6 Blending

After aligning and layering the imagesartifactsare left
only along visible imageboundaries.At this point one
canchoosebetweentwo options,dependingonindividual
taste.The�rst option is to leave thepanoramaasis with
imageboundariesclearly seen,asis commonlydoneby
artists. Alternatively, onecantry andremove thevisible
seamsby blendingthe images.Blendingall the images,
asis donein thesingleview case[2], is undesirablesince
it will makethehiddenmisalignmentsappear(see,for ex-
ample,Figures2.a,9.a,8.a,8.c). Instead,we applyblend-
ing only alongvisible imageboundariesanduseonly the
topandsecondfrom toplayers.Whenthealignmentqual-
ity is high this removesseamswhile not introducingblur-
riness,seeFigures2.d,9.b,8.b,8.d. Figure4 comparesthe
resultwith andwithout blendingwhen the alignmentis
imperfect.Wepreferthenon-blendedresultin Figure4.a,
but othersmayprefertheblendedonein Figure4.b. In our
experimentswe usedthe multi-bandblendingapproach
suggestedin [3].

7 Discussionand Conclusions

In this paperwe've shown that stitching imagestaken
from multiple view points is not an impossibletask. In
many casesnicelookingresultscanbeobtained.Thiswas
achievedby addingto the traditionalgeometricalconsis-
tency measurea new term which measuresconsistency
in appearance.We modulatedthe geometricaland ap-
pearancecostsby what is visible andsuggesteda search
throughthe spaceof all feasibleand distinct orderings.
Finally wehavegeneralizedthetraditionalblendingtech-
niqueto inconsistentpicturestacks.

Nevertheless,therearestill many openproblems.The
maindif�culty wasfound to be featurematching.When
seenfromhighlydifferentview points,featureappearance
changessigni�cantly andmatchingof correspondingfea-
turesbecomesmoredif�cult andoftenfails [9]. This can
resultin too few matchesbetweenoverlappingimages,or
evennoneat all. Sometimesforegroundandbackground
indicatedifferentalignments.This problemmaybe�x ed
usingstereoandgiving priority to theforeground.A pos-
sibleavenuewe planto exploreis allowing someuserin-
put to directandassistthepanoramaconstructionin such
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High TransitionCost Low TransitionCost

Figure3: Layering Images. Two differentcompositionsobtainedby differentorderingof the two imagesin the
picture-set.Thecompositionon theleft displaysmany visible inconsistenciesandscoreda high transitioncost. The
compositionon theright is smootherandscoreda lowercost(seeSection4).

(a) (b)

Figure4: Lar ge Datasets. A compositionresult of 14 picturesshowing a man from multiple view points,while
moving. Due to the large numberof picturesand overlapsbetweenthem trying all possibleorderswill take too
long. Instead,we appliedthe simulatedannealingapproachof Section4. (a) Traditionalalignmentresult. (b) Our
compositionresultusingiterative re�nementof alignmentandlayering.
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Figure5: Iterati vere�nement. (Left) Resultafterasingleiterationof aligningandorderingtheimages.(Right)Final
resultafteriterative re�nementof thealignmentandorderis morevisually consistent.
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(a) (b) (c) (d)

Figure6: Incorporating multiple view points: (Top row) Five picturesof an imitation of the setupin Uccello's
fresco(a) takenfrom differentview points.Our “pedestal”wasa puzzlebox andwasthuspicturedfrom a sideview
to displaythe text nicely. The horsewaspicturedboth from below, to show its belly, andfrom above to show the
top of its mane.Therider wasphotographedfrom a complimentingsideview. (a) “FuneraryMonumentto Sir John
Hawkwood” by Paolo Uccello, 1436. Uccello gave the viewer the impressionof standingbelow the pedestal,thus
creatinga moremonumentaleffect, but at thesametime showedthehorseandrider from thesideproviding a better
viewpoint of them.(b) A pictureof our simulationof Uccello's setuprepresentswhatcanbeseenfrom a singleview
point. Viewing the “pedestal”from a sideview resultedin viewing the headof the characterfrom below andthe
nastygrill on thewall behindcannotbeavoided. (c,d) Our compositionresultwithout andwith local blending. As
in Uccello's frescoour compositionincorporatesmultiple view points.The“podium” is seenfrom a directsideview,
thehorseis seenbothfrom below (showing hisbelly) andfrom above(showing thetopof hismane)while therider is
againseenfrom asideview providing aniceportraitof his face.
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(a) (b) (c)

Figure7: Avoiding occluding objects. (Top row) Five picturesof a building usedasinput for our multi view point
algorithm. (a) Singleview point panoramaof thesamebuilding - this useda differentsetof input images,all taken
from a singleview point. A polein front of thebuilding occludespartof it andcouldnot beavoided.(b) Traditioanl
compositionafterasingleiterationof aligningandorderingtheimagesin thetoprow. Extremediscontinuitiesappear
on the yellow window. (c) Our compositionresultsafter iterative re�nement of the alignmentand order is more
visually consistent.Theoccludedpolewasavoidedby moving thecameraanda full panoramicview of thebuilding
is obtained.

(a) (b) (c) (d)

Figure8: People.(Top rows) Two collectionsof pictures.(a),(c)Resultsof traditionalaligningandblendingimages
of a boy andof a man,respectively. In bothcasesthepeoplemovedtheir heads,resultingin blurry faces.(b),(d)The
correspondingmulti viewpoint compositionresults.
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(a) (b)

Figure9: Local blending: (Top row) Five picturesof a building taken from differentview points. (a) Resultof
aligningandblendingthe images.Halosareseenabove thebuilding andaroundthedoor. (b) Layeringthe images
andapplyingonly localblendingproducessharperresults.

Figure10: Compelling Multi View Compositions.
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dif�cult cases.
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