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Abstract

The geometryof single-vievpoint panoramass well un-
derstood: multiple picturestaken from the sameview-

are taken from a single view point the geometryof the
panoramds well understood6, 12, 14]. This, together
with methoddor matchinginformative imagefeatureq 8]

andgoodblendingtechnique$3, 4] have madeit possible

point maybe stitchedtogethelinto a consistenpanorama for ary amateurphotographeto produceautomatically

mosaic. By contrastwhenthe point of view changesor
whenthe scenechangege.g.,dueto objectsmoving) no
consistenmosaicmaybeobtainedunlesshe structureof
thescends very special.

mosaicof photographsoveringverywide elds of view
[2, 12). By contrastwhenthe point of view changesor
when objectsmoved in the scene,no consistentmosaic
may be obtained unlessthe structureof the scends very

Artists have explored this problemand demonstrated special.

that geometricalconsistenyg is not the only criterion for
successincorporatingmultiple view pointsin spaceand
time into the samepanoramamay producecompelling
andinformative pictures.We explorethis avenueandsug-
gestan approachto automatingthe constructionof mo-
saicsfrom imagestakenfrom multiple view pointsinto a
single panorama.Ratherthanlooking at 3D scenecon-
sisteny we look at imageconsisteng. Our approachis
basedon optimizing a cost function that keepsinto ac-
countimage-to-imageonsisteng which is measurean
point-featuresand along picture boundaries. The opti-
mizationexplicitly considerscclusionbetweerpictures.
We illustrate our ideaswith a numberof experiments
on collectionsof imagesof objectsandoutdoorscenes.

1 Intr oduction

A single picture cannotalways capturethe full scene.lIt

hasthusbecomecommonamongartistsandamateupho-
tographersto take multiple picturesof the samescene
and composetheminto mosaics. Whenall the pictures

Artists have explored this problemand demonstrated
thatincorporatingmultiple view pointsinto the samemo-
saic may producemore informative representationthan
asingleview point panoramaan. For example,seeFig-
ure 6.a. This frescoby Paolo Uccello shavs the podium
asif the viewer is looking upward to it, yet the rider
and horseare paintedfrom a direct side view. While
the painter has the freedomto changethe view point
smoothly this is not alwayspossiblewhenstitching pic-
tures.Onecannotexpectto alwaysgetthesmoothappear
anceof a singleview panoramavhenmosaicingpictures
with view pointchangesNeverthelessartistslike David
Hocknegy and JamesBalog have demonstratedhat mo-
saicswith visible inconsistenciescrosspicture bound-
ariescan neverthelesdook compellingandinformatie.
Suchmosaicshave becomecommonalsowithin amateur
photographerg¢for examplego to http://www:. ickr .com/
andsearchfor picturestaggedwith “composites”,*hock-
ney” or“joiner”). Figurel shovs someexamples.

Therearescenariosn which multi view point mosaics
mustbe usedbecausé¢hereis no otheroption. For exam-
ple, oftenonecannotcapturethefull scengrom asingle



" (b)

Figurel: Multi view art work: (a)David Hockne/'s “PlaceFurstenbeg”, Paris, 1985. (b),(c) Two samplecompo-
sitionsdownloadedrom ickr .com,constructedy amateuphotographerdMany morecanbefoundontheweh

view point dueto occlusions,seeFigure 7.a. Changes 2 Overall Framework

in view point canalsoresultfrom peoplemoving while
being photographedseeFigures8.a,c. We thus believe
thatautomaticconstructiorof mosaicsrom pictureswith
view pointschangess arequiredtool.

Mosaicsincorporatingmultiple view pointshave been
exploredbefore.Wood et al. [13] suggeste@napproach
to computerizediesignof multiperspectie panoramasor
cel animationwhereall viewpointsare available apriori.
A wide rangeof approachebave beensuggestedor con-
structingmulti view panoramasvhentheinputis avideo
sequencéakenby asmoothlymoving videocamerag.qg.,
[14, 10, 15, 7).

In this paper however, our goal is to createcomposi-
tions of discretesetsof photographgaken from highly
different view points. Ratherthan assuminga strong
model on the geometryof picture taking (e.g. single
view point or perhaps3D reconstructionof viewpoints
and shape[5]) we look for consisteng in composition
space. Inspiredby artists, we suggestan approachthat
alignsandstacks(ordersthe layersof) picturesby mini-
mizing visible artifactsin the nal composition.Thuswe
do not assumean underlying™3D reality' but rathertake
the point of view thatthe nal pictureis a composition
whichis drivenby the photographs.

Therestof the paperis organizedasfollows. We start
by outlining the overall framework in Section2. We then
proceedanddescriben detailthe variousstepsof theap-
proachin Sections3,4,5,6. We concludein Section?7.
Our ideasareillustratedthroughexperimentswhich ap-
pearthroughouthetext.

Whenpicturesaretakenfrom differentview pointsthere
is no globally consistentway to obtain a composition,
thereforewe cannothopeto obtaingeometricatonsistent
matchesbetweenneighboringpictures. We replacethe
geometricatistortioncostof Brown andLowe [2] with a
costthatis a combinationof geometricaendappearance
consisteng. Furthermore we measuregeometricaland
appearanceonsisteng directlyonthecompositiorplane,
ratherthanon theviewing sphere We requireappearance
consisteng becausesometimegicturesthataregeomet-
rically inconsistenmay easilyblendinto eachother e.g.,
whenthereis texture or uniform color nearthe picture
boundary Alignment errorsin this caseshouldthus be
penalizedessthanwhentheerroris very salient.

We furthermorenoticethatgeometricabndappearance
inconsistencieshat are hiddenfrom view have little im-
portanceascomparedo thosethatarevisible. Our opti-
mizationtakesthis into account.

The suggestedrameavork consistsof the following
steps:

1. Foreachpairofimagesnd point-featurecorrespon-
dencesand t a similarity transformationbetween
them. Keeponly correspondencewhich can be
approximatelyaligned by the transformation(Sec-
tion 3).

2. Find global alignmentof the imagesin the compo-
sition by minimizing distancesbetweencorrespon-
dences.If importanceweightswereassignedo the



correspondencegjcorporatethemin the optimiza-
tion procesgSection3).

. Find the bestlayeringof theimages:searchover all
possibleordersthe one which minimizesdisconti-
nuitiesacrossmageboundariesn the composition
(Sectiond).

. Assignhighweightsto correspondencea®arvisible
imageboundariesand low weightsotherwise(Sec-
tion 5).

. Repeasteps? to 4 until weightsandtransformations
arenotupdated.

. If desired, blend imagesonly near visible seams
(Sectiono).

In the following sectionawe describen detail eachof
theabove steps.

3

For image alignmentwe adoptthe feature-basedech-
nigue suggestedy Brown & Lowe [2], with one major
difference.In [2] imageswereassumedo betakenfrom

a single viewpoint, thus alignmentwas obtainedon the
viewing sphereby solvingfor the cameraotationateach
image.Thisapproachsinadequatéor imagegakenfrom

multiple view points. Insteadwe optimizethe alignment
on the 2D panoramecarvas by solving for a similarity

transformatiorfor eachimage. Thatis, we allow images
to translatescaleandrotate.

Thechoiceof similaritiesis motivatedby the beautiful
compositionsve have found ontheweb (e.g.,Figure 1),
aswell asby our own experience We have collectedtens
of image datasetand compositedhem manuallylimit-
ing the transformationgo translation,scaleandrotation,
which arethe basicavailabletoolsin mostimageediting
software. We have foundthis setof transformationso be
sufcient andthusadoptit in our automatidramework.

Following Brown & Lowe, we rst extractand match
SIFT featureg[8] betweenall pairsof images. We then
useRANSAC [6] to selectasetof inliersthatarecompat-
ible with a similarity transformatiorbetweereachpair of
images.Next we applythe probabilisticmodelsuggested
in [2] to verify thematch.We discardall featurematches

Image Alignment

which arenot geometricallyconsistentwvith the transfor
mationbetweertheimages(RANSAC outliers). Finally,
giventhesetof geometricallyconsistenmatchedetween
theimageswe usebundleadjustmen{?] to solve for all
of thetransformationgointly.

Unlike the singleview pointcasewhentheimagesare
takenfrom multiple view pointsonecannotexpectall the
matchego benicely aligned. Assigningthe sameimpor-
tanceto all matches(aswas donein [2] for the single
view point case)will resultin misalignmentdistributed
acrosghewhole panoramalnstead onewould like “im-
portant”matcheso bewell alignedwhile allowing other
matchesto have larger errors. This canbe achiezed by
assigningeachfeaturematchwith a weightindicatingits
importance.The decisionon which featuresare “impor-
tant” andthe settingof the weightswill be describedn
Sectionb.

The objectie function of the optimizationprocesss
thusaweightedsumof projectionerrors:

Let uk denotethe k'th featurein imagei andS; asim-

ilarity transformatiorbetweenimagesi andj. Givena
featurematchuf $ u} the correspondingesidualis:

ri! = ufi S uf andtheassignedveightis denotecby
wk!. Theerrorfunctionto be minimizedis the sumover
all imagesof theweightedresidualerrors:

X X
e:
i=1 j2N (i) k;l2F (i;j )

klg ¢kl

)

wheren is the numberof images,N (i) is the setof im-
ageswith featurematchesto imagei, F (i; j) is the set
of featurematchesetweenimagesi andj andf (x) isa
robusterrorfunction:

¥

F(x) = if JXj < Xmax

it jXj . Xmax

X
Xomay 2)
This robust error function is usedto minimize the im-
pactof erroneousnatches. As suggestedn [2] we use
Xmax 1 during initialization and Xpnax = 1 pixel
for the nal solution. This is a non-linearleastsquares
problemwhich we solve usingthe Levenbeg-Marquardt

algorithm.
Figure 2.a shavs an alignment result with equal
weights assignedo all featurematches(i.e., wf' = 1
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Figure2: Panorama construction phases:(Top row) Inputimages.(a) Layeringthe imagesaccordingto the best
orderfound by minimizing the gradient-basedost. (b) Resultof aligningandblendingall inputimages.Thetiger's
face(enlagedon theright) is blurry (c) Visible imageboundariesnarkedin blue on top of the panoraman (a). (d)
Final resultafter layeringandlocal blendingonly alongvisible imageboundaries Thetiger's face(enlagedon the

right) is now sharp.



8i; j; k;1). Thealignedimageswereblendedusingmulti-
bandblending[3]. Parts of the panoramaooks sharp
while otherpartsareblurreddueto misalignments.

4 Ordering Images

Imperfectalignmentwill unavoidably resultin blurry re-
gionswhenblendingtheimages.Thus,insteadof blend-
ing theimageswe wishto ordertheminto layerssuchthat
imagesplacedontopwill hidemisalignmentsinderneath.
Thiswill leave uswith visible artifactsonly alongimage
boundariesvhich arenotoccluded We will referto these
as“visible imageboundaries’(seeFigure 2.c). Our goal
isto nd anorderof theimageswhich minimizesappear
anceinconsistencieacrosghevisible imageboundaries.
Onecanadopttwo approacheto ordertheimages:

1. Assigneachimageto a separatdayer and nd the
bestorderof layers. This is equivalentto what can
be easilydonein mostimageeditingsoftwares.e.g.,
Photoshop.

. Selectalocal orderof theimagesseparatelyn each
overlaparea. For exampleone could have imageA
above B, B above C andC above A in differentre-
gionsof thecomposition.

Constructingnumerouspanoramasnanually we found
the rst optionto be sufcient in mostcases. We have
thusleft the secondptionoutsidethe scopeof this paper

Given an alignmentof the imageson the panorama
plane, nding the bestorderof imagescanbeformulated
asa graphproblem. Let G = (V;E) be anundirected
graphwhereeachnodev; 2 V representsnimageand
edgexonnecbetweerimageshatoverlap.A valid order
of theimagescanberepresentetly anacgyclic orientation
of the graphedges.The setof all agyclic orientationsof
the edgesof G representall possibleordersof the im-
ages. It canbefoundin overall time O((n + m)®) [1],
wheren isthenumberf nodegimages)m is thenumber
of edgesand® is thenumberof agyclic orientations.

We thenperformanexhaustie searchover all possible
ordersandselectthe bestone. For eachorderof theim-
ageswe computea costbasedonimage-to-imageonsis-
teng/ measuredlongvisible imageboundariesdenoted
by B. Onecandesignmary suchcostfunctions.We have
experimentedvith three:

1. Sum of gr@dients across image boundaries:
Costgrad = 4y28 Pr(XY) + PZ(Xy), where
Px andPy arethehorizontalandverticalderivatives
of thecomposition.

. Sum of color differencgs between overlapping
imageS: COStcoIor Xy 2N (B)(Itop (X; y) i
I'send (X; )2, wherelp andlscng arethetop and
secondfrom top imageson one side of the visible
boundarnB andN (B) is aregion aroundthebound-
ary.

. Quality of curve continuation:We rst nd curves
of length , 5 pixels in all images and project
themto the panoramagolane. We then nd the set
of curves C which intersectvisible image bound-
ariesand are visible in the panoramg(i.e., are not
occludedby otherimages). For eachsuch curwe
c 2 C we nd the closestcurve e on the otherside
of the boundary We t aline to the last 3 pixel-
long bits of both curves. Denoteby L (c;€) thesum
of squareddistancedetweerthe curvesandthe t-
tedline. The @ine continuationcostis de ned as:
CoSteyrve = c2c Min(L(c;e);C), whereC is a
penaltyfor curveswhosecontinuationcould not be
found.

In our experimentswe found that in most casesmini-
mizing Costyrag Of COSteyr ve provided comparablae-
sults, betterthanthoseusing Costcq o - FOr consisteng
in the presentationof the paper all the presentedre-
sultswereobtainedoy minimizingthegradient-basedost
Costyrad-

Clearly, for large datasetshe number® of possibleor-
dersis too large to testall. To overcomethis limitation
onehasto adoptsomeheuristics.Onepossibilityis trying
just a limited numberof randomordersandkeepingthe
bestone. Alternatively, onecanstartfrom a small setof
randomordersandconductalittle searcharoundeachone
by performinga smallnumberof order ips betweenm-
ages. Another possibility is to computepairwise image
costs,ignoringtherestof theimagesand nding the best
correspondingrder This canbe doneby rst remaoving
from theoriginal graphG enoughedgego destry all cy-
cles(removededgesarechoseratrandomoutof theedges

1We useda softwarewritten by the Oxford Visual GeometryGroup
basedn Canry edgedetection.



participatingin eachcycle) andthen nding the minimal
costorientation.

Figure4 shavs anexampleof a compositionof 14 im-
ages{rying only 100randomordersandselectingheone
which providedthe minimal cost. Theresultis imperfect
in termsof consisteng, yetwe nd it visuallycompelling.
In all otherexperimentgpresentedh this papemwe limited
thenumberof imagesperdataseto 7 andappliedthe ex-
haustve approachWe believe thatef cient searchmeth-
odsdo exist, but thisaspecis left outsidethe scopeof our
currentinvestication.

5 Iterati ve Re nement

The approachwe adopted layers the imagesin the
panoramaso that partsof theimagesareoccluded. This
leavesinconsistenyg artifactsin the panoramanly along
visible imageboundariesWe thuswish for thealignment
to be of high quality alongthoseseamswhile we canaf-
ford it to besloppierin occludedegions. Thisis achieved
by iterative re nementof the alignmentandorderof im-
ages.

Givenaninitial alignmentandorderof imageswe as-
sign weightsto featurematchesaccordingto their “im-
portance”. Matchesnear visible image boundariesare
assignechigh weightswhile occludedmatchesaregiven
low weights:

Willgl = M AX (expi M IN (d?(u¥;B);d?(u] ;B))=%2;! ) @)

whered?(uk; B) is theminimumdistancebetweerfeature
uk andthevisible imageboundarie. The paramete#
controlsthe rateof decayof the exponentialfunctionand
I de nes the minimum weight of a feature. In all our
experimentsve used¥= 500and! = 0:1.

We obtaina re ned alignmentby applyingthe bundle
adjustmenproceduref Section3 while incorporatinghe
assignedveights. Given the new alignmentthe images
areorderedagain andweightsarereassignedccordingo
the result. This processs iterateduntil corvergence.In
our experimentswe applied3 iterations. Figures5 and7
shav there nementthatcanbe obtainedby this iterative
process.

6 Blending

After aligning and layering the imagesartifactsare left

only along visible imageboundaries. At this point one
canchooséetweertwo options,dependingnindividual

taste.The rst optionis to leave the panoramasis with

imageboundarieslearly seen,asis commonlydoneby

artists. Alternatively, one cantry andremove the visible

seamsby blendingthe images. Blendingall theimages,
asis donein thesingleview cas€ 7], is undesirablesince
it will make thehiddenmisalignmentsippeaysee for ex-

ample,Figures2.a9.a8.a8.c). Instead,we apply blend-
ing only alongvisible imageboundariemanduseonly the

topandsecondromtoplayers.Whenthealignmentqual-

ity is high this remosresseamawhile notintroducingblur-

riness,seeFigures2.d,9.b,8.b,8.d. Figure4 compareghe
resultwith and without blendingwhen the alignmentis

imperfect.We preferthenon-blendedesultin Figure4.a,

but othersmayprefertheblendednein Figure4.b. In our

experimentswe usedthe multi-band blending approach
suggestedh [3].

7 Discussionand Conclusions

In this paperwe've shavn that stitching imagestaken
from multiple view pointsis not an impossibletask. In
mary casesiicelookingresultscanbeobtained. Thiswas
achieved by addingto the traditionalgeometricakonsis-
tengy measurea new term which measuresonsisteng
in appearance.We modulatedthe geometricaland ap-
pearanceostsby whatis visible andsuggestea search
throughthe spaceof all feasibleand distinct orderings.
Finally we have generalizedhetraditionalblendingtech-
nigueto inconsistenpicturestacks.
Neverthelesstherearestill mary openproblems.The
maindif culty wasfoundto be featurematching. When
seerfrom highly differentview points,featureappearance
changesigni cantly andmatchingof correspondindea-
turesbecomesnoredif cult andoftenfails[9]. Thiscan
resultin too few matchedetweeroverlappingimagesor
evennoneatall. Sometimedoregroundandbackground
indicatedifferentalignments.This problemmaybe x ed
usingsterecandgiving priority to theforeground.A pos-
sibleavenuewe planto exploreis allowing someuserin-
putto directandassisthe panoramaonstructiorin such



High TransitionCost Low TransitionCost

Figure 3: Layering Images. Two differentcompositionsobtainedby differentorderingof the two imagesin the
picture-set.The compositionon theleft displaysmary visible inconsistencieandscoreda high transitioncost. The
compositionontheright is smoothemndscoreda lower cost(seeSection4).

(@) (b)

Figure4: Large Datasets. A compositionresultof 14 picturesshaving a manfrom multiple view points, while
moving. Due to the large numberof picturesand overlapsbetweenthemtrying all possibleorderswill take too
long. Instead we appliedthe simulatedannealingapproactof Section4. (a) Traditionalalignmentresult. (b) Our
compositionresultusingiterative re nementof alignmentandlayering.



Figure5: Iterati vere nement. (Left) Resultafterasingleiterationof aligningandorderingtheimages.(Right) Final
resultafteriterative re nementof thealignmentandorderis morevisually consistent.



(@) (b) (© (d)

Figure 6: Incorporating multiple view points: (Top row) Five picturesof animitation of the setupin Uccello's
fresco(a) takenfrom differentview points. Our “pedestal’wasa puzzlebox andwasthuspicturedfrom a sideview
to displaythe text nicely. The horsewas picturedboth from below, to shaw its belly, andfrom above to shav the
top of its mane. Therider wasphotographedrom a complimentingsideview. (a) “FuneraryMonumentto Sir John
Hawkwood” by Paolo Uccello, 1436. Uccello gave the viewer the impressionof standingbelown the pedestalthus
creatinga moremonumentakffect, but at the sametime shoved the horseandrider from the sideproviding a better
viewpoint of them. (b) A pictureof our simulationof Uccello's setuprepresentsvhatcanbe seenfrom a singleview
point. Viewing the “pedestal’from a side view resultedin viewing the headof the characterfrom belon andthe
nastygrill on the wall behindcannotbe avoided. (c,d) Our compositionresultwithout andwith local blending. As
in Uccello's frescoour compositionincorporatesnultiple view points. The“podium” is seenfrom a directsideview,
thehorseis seernbothfrom belov (shaving his belly) andfrom abore (shaving thetop of his mane)while therideris
again seenfrom a sideview providing a nice portraitof hisface.



(@) (b) (©)

Figure7: Avoiding occluding objects. (Top row) Five picturesof a building usedasinput for our multi view point

algorithm. (a) Singleview point panoramaf the samebuilding - this useda differentsetof inputimagesall taken

from asingleview point. A polein front of the building occludegartof it andcould not be avoided. (b) Traditioanl

compositionafterasingleiterationof aligningandorderingtheimagesn thetop row. Extremediscontinuitiesappear
on the yellow window. (c) Our compositionresultsafter iteratve re nement of the alignmentand orderis more
visually consistent.The occludedpole wasavoidedby moving the cameraanda full panoramicview of the building

is obtained.

(@) (b) (© (d)

Figure8: People.(Top rows) Two collectionsof pictures.(a),(c) Resultsof traditionalaligningandblendingimages
of aboy andof aman,respectrely. In bothcaseghe peoplemaovedtheir headsyresultingin blurry faces.(b),(d) The
correspondingnulti viewpoint compositionresults.
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(@) (b)

Figure9: Local blending: (Top row) Five picturesof a building taken from differentview points. (a) Resultof
aligning andblendingthe images.Halosare seenabove the building andaroundthe door. (b) Layeringtheimages
andapplyingonly local blendingproducessharperesults.

Figure10: Compelling Multi View Compositions.

11



dif cult cases. [12]
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