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1.2

1872 ~ Boltzmsnn: Announced the H-Theorem which was supposed to give an

explanation of the 2nd Law. Soon after there appeared criticisms
of this theorem dominated by the names of?

Loschmidt Reversibility

" poincaré | Recurrence Paradox or Wiedereinwand

Zermelo
Boltzmann ﬁhen>formulated a statistical interpretation which evaded

these objegtions and also gave a statistical explanation of irreversibility

1931-1932 - von Neumann & Birkhoff produced their Ergodic Theorems

1958

1963

They succeeded in showing that time averages existed and under certain
assumptioﬁs equalled phase space averages. Their assumption is now callied:
Trreducibility of Flow or Metric Transitivity. However, not many flows

could be shown to be of this kind.

Kolmogorov introduced the important comcept of "Entropy per unit time"
and what is now called a K-system, Further work showed every K~system

is ergodic and has positive entropy per sec.

Sinai succeeded in showing that hard spheres in a box form a K-system.
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uilibrium.

ilisfons occur at the sape vate in e
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We now al

uge a bypical arpuwment.

Asaume theve are 2 kinde of molecules: 1 and 2 with masses ¥y and

&

'NliV} dv = nuwber of 1 wolecules in dv

HE{V} dv = numbay of 2 molecules in ¢v

Ap this stage we have made 2 continuuw wmodel of what ls in fact & dis

distvibution. The ecollision considered tskes

Vys Uy P v i !

2 i, ¥y

balance and cancelling cross-~gses tlons we get

% Py pbay -4 . : 2 t 3 [ H (2
o (erav, M, ) dv, = Myley') dv,t M, (v, 'y dv, | L

Conservation Laws fory the collision give:
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and assume M, (v) (or L. {v)lhas 3 derivatives. More general assumptions are

3 i

also possible. We have in fact also assumed M (v) » 0.

(7.1} can now be vewritten to read:
L, (v 4 u, v ral) + L T
g Wept ¥y vrel) + Ly (v -

o 2 .
{7.13)

= L - re . e -
1 €VQ% Myoow al) Ty (vt rel)
Ve now show that the wmost general solution of [2.13) is a quadratic in V. To
do this, differventiate (2.13) with vespect to / rel 3 times and set V rel = 0.

1 diffeventiation:

C v ) | (2.14)
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2 diffeventiations yields an identity.

£2.34) and {2.15%)} covbined imply that
L FEY )
i (v = 0 for al
: om’ or all v
. 2
vy o= a, + b, v 4+ e,v (2,16}

fferantiseine {2.16) and comparing with (2.1} we conclude that

b, = m,b and ¢, s wm,C
3 3 3 3
Hence B
o ﬁ 0,2, (2.19
. = ¢ SR gs.:‘g*%% {v ~ v hI

Ty o . L o o . ; ’.g -y . 3 .. o 3 T -
Tn the derivation we didn'? worvy about tie positlons of the particles ela.

not clear what swxplicit micrescopic ssumptions are involwved.
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f apree, we lose particles from dv. This is
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we need wmore statisticsl sgsumy

One of these ie the Stosszazhlansatz. We alse make the approximation of
- . = . ; -y v
ronsiderving denzities at a point ¥ instead of 2 region about ¥. Alsn only
binary collisions are considered.
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And so we can finally write the Boltzmann equation
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H Theorem
We shall now use (3.15) to derive Boltzmann'’s H Theorem. Notice, however,

shat the Maswell-Boltzmann distribution

. . 2
£f_ (2,v) = € ewp {-Blhwm v+ v(x) )}

(3.16)
satisfies (3.15) with F e - Q?x V{x)
We shall suppress the x dependence and define
W= [ t(h,e) log £(%,0) &V (3.17)

et

The 11 Theorvem states:
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Thare are no drift terws.
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dg © Jjdv dv dft  jw

gty 8 8 YTl & o4
vi o (f %1 f fi}iiag £+ 11

dn

(3.20)
B3 o ) . R o
How interchange v and Vs in {3.20) and sverape the resultant equetion with (3.20
4t

1

o

= uf & av; an §§§ ¥ e (e e -1 £} 2% log rorl (3.21)
How interchangs tﬁe primed and unprimed coordinates and use (3.10), (3.11),

dH

gad (3,12} and a&grage the resultant equation with (3.21) teo get:

£ ;‘i:‘ f > ’B‘ i * ...‘o# I a ¢ P Y { g
i favav, e | vy vl o (¢ £ £ fy) (low £ f

~ Yop £IEYY {300
1 1
E B3 b
Now v, - vl >0

o » O

&nd using (3.18) we get:

dn }
e &%
dt 0
and @,
gt ’

(3.23)
only if §' fz’ = £ f

3247
One can deduce in 3 dimensions (see K. Huang) that f'fi’ = f fl implies the
Mawwell-Boltemann distribution. Thus any non-ernuilibrium distribution

will
tend to a Mawwell-Boltsgmann distribution.



which iz oot in eguilibrium will aleeys approsch equillibriumg

we hove here the first proog of Belizmann's argument for arviving at thermoe
& E

dynanic properties from statistiesl mechanics, Ancther prong of Boltzmans's

is the so called "Ergodic Hypothesis™ introduced by Baltzmann in

{"Ergodic™ comes from the Greek: EPTCH - work, energy; 080T - pathl.

Ergodic Hypothesis: There 1s a unique orblit on a connected compouent of an
snergy surfsce in phase space; l.e., the orbit goes through every polnt.

{8ee Truesdsllis article in the Proceedings of the International Schocl of

&

Physies "Enrico Fermi®, Course Mt Ergodic Theoriles, Acedemic Press )

The Ergodic Hypothesis aroused suspilcion since it intuitively cennot be true,
It was later re-interpreted to mean that the orble is aense in the encrgy
surface, but then one camnet so easily draw the bidy concluslons that are
easily obtained from the stronger form of the hypothesis, The sbove re-inter-

x

retation is ealled the "Quasi-Ergodic Hypothesis®.

quasi-Ergodic Bypothesis: Bach orbit is dense in a connected component of an

energy surface in phase space,

in our E?&&imunu of the ven Beuwmsnn and B kboff Brgodic theorems we shall not
make use of the Ergodic and (uasi-Ergodic Hypotheses but rather work with the

hypothesis of the irreducibility of the flow; it s instructive nevertheless
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wWe firet show thet the time aversge of a function deflined on

£t ¥ be n function on the energy surfacey

surfece is constant there,
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Let 4 be a point on the same orblt as

O
dimit sxiate,; we hsves

- (x)) = tw

@ f {KT ¥,

. Assuming the time aversge

f{xt} dt = lim
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e
St

is a fixed number

The sacond equaﬁity'f@kiﬁws since f

By the Ergodic Hypo-

C ) T
pendent of Ty the third follows from lim

appropristely,

thesis the orbit passes threugh every peint, hence by plcking TS

is independent of position,

% can be any point snd we conclude that

&
We further conclude that

don average,
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syer false for systems of differential

tions although it is not fslse in general sl

Pesno curves., 'The sxistence of time averasges 1s Juetified by the Bivkhoff

T

oren, and at least for hard spheres in a boy the

and time svereges was proved by Sinai. The cuasi-Brgodic
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Poincays resurrence theg cRN ever

In parbicular the quantity B cannot decraase monotonically
to it equilibrium value bul must return in the course of time srbitrarily

closze to 1ts dndidial vaelue., The Polncare recurrence theorem staies thalbt unde

3 hyﬁ@th&aéaS almost every orbit sterbting from any set of positive
‘megsure will after a%biﬁr&rily long times return to that set.
Boltemann and the Bhrenfests introduced a stﬁtisiical treatment of this

tusntion, One associstes with esch system a set of mscroscople vardables and
then one makes a probabilistle assumption concerning the orbits corresponding
Lo bhe values @f the mecroscopic varlablesy in effect; one assoclates =
tochastic process with the sysbem. A well ﬁefineé‘sﬁﬁ of macrosceople varlables
should be in~%mq§tive'tg the particulsr stochastisz @rocess gttached to the

syve hem,

Let X be the phase spsce of the gystem, and X, the Tlow given by a

deterministic 8 ynmm¢cs with no probebilities invelved anyvhere, Let X now

e

be pertitioned into s finite set of regions {&iﬁ o Take some finite set

of functions Pony 5 on X and form thelr "coarse-grained aversge”
hED WM.

inorespect o the partition:

LA 4
A AP 1 - £ £ Py
Folx) = ﬁﬁiﬂﬁax} for w £ S, , S
W l - 3 . “}K-f»& -».}
o ey 03 S S g gl il s e . e FEw oy ER
region 8B,  itsken with respect Lo the canonical
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of » given dietyibut
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of given values of the £ (1),
J
Flow in X 7 assigmment of probabillt;
: on the x¢s which give
b 2 »
! variables

Flow in macroscople varlables Stochastlic process

P

s the formulal

cew gy < £.{1,) < b e

w oy (fu | e {4 £ 3 *ﬁ‘& € b}
= oy ({n | a, \,,3'{2:?1} bl,'m” 2y ft‘g(x%} by

where ¢ i8 the probability wessure on the x's and picked by tho physiclst.
Boltzmenn®s stabistical argument is that the assertion of the decrease of
¥ will hold with overwhelming probability for the coarse~grained H., Frevious

phase space now become probability statements about the above
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specific example. Considey N wolecules in a box; we then have a Ef-dimensional

chage or [-space and a & %<1 b -dimensional energy surface. Partition the u-space

into subsets §,  of physically significant size, i.e. each Si containg wmany

molecules but is sufficiently small to yield useful information abeut the dig-
tribution of quantities in the system., In the previ@us lecture we copnsidered
pertitioning the phase s@ace; the same set of ideas are appliceble here. Let
x denote the phase point and n {S,, x} denote the number of molecules in

-3

N ' ' A
&, vhen the system has phase x. Define the Tepurse-grained™ quantity H by

e

He) = T a (5, x) tna (5, N . (5.1}

i®

B s L
The flow x + x, induces a chenge in H: HB{x ) — ﬁ{xt}. It is convenient

to introduce the functions of position ﬁt defined by

i, (x} = &lx,). | (5.2)

t

We note that ﬁtix}; T T for Tixed x is plecewise conustant since

¢

E%ixl'is constant as leng as x remains in a single .

f,(x]

|
)

ﬁiifiw
K

t

\]
)

Boltemann introduced o messure in the family of all H curves.

probability of (a, © B, <€ biseoey g, < H < b}
1 'i‘ai e ¢ I
L FE . & 3 [ 7§ : 4 1Y -
iz | o8y nvgjﬁzg s CPRTEERLN fha {z) < b, b {5.3)
i .
Ao

The left hend side is the probability that tue observed H curve passes through
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Ou the right hand side the assimmment of the muasure U is & physicsel

hypothesis depending @ﬁ the wickedness or skill of the person giving you s

set of macroscopic me&aurements; that is, assigmment of pu 1s 2 Ttheory™,

¥he test of the the@ry consists in teking & set of coples of the system and
meking statistical frequency meagurements on t&e ¥ curves which appear., If
for ¢ one tskes the microcenonical mcasure {this is Boltzmenn's choice},
i,e, the phase volume on the energy surface induced by the cangnical flov-
inveriant measure in phase space, then one gets a theory giving the resulis of
the kinetic theory and ﬁhich escapes the objections raised b; Zermelo and
Loeschmidt.,

custes of typlcal Boltzmann statements as decoded by Ehrenfests

1. IfH a%'time ¢t has a value remote from its equilibrium value, then

is overvhelmingly mo e probably thau

L, st
A + '/’ 2
N ;
K & . » /s”
M&: | _ or s t
\ Yo Y

2. If ene looks & H, at s sequence of times t ;...,t Then there is s
t : 1? *"n

sequence of most probsblg velues which Is given approximately by the H curve

sf the Boltzmann equations that is, consider a set of gates obtained from the



in Boltzmennsstatistic to-any slochastio

M. Koo, Probability =and Related Toples in the Physlical Sciences,

+

s

Interscience: Chapier 11,

fonsider 2R balls numbered consecutively which can be distributed in an
arbitrary manney between two urns, The stochastic process consists of randomly
ﬁicking & number from i to 2R and then transferring the ball having that mumber
from the urn in which:it is to the oﬁhgr urn; the procedure belng repeated

indefinitely., One can see that starting from a configuration

?g%%;.

}:{;f/’ 7

since one is more likely to pick a number of s ball in the more nearly full urn,

the system will tend to a configuration

(R balls in each urn)

L?f;f*:;* s
G 7z

which is ite equilibrium state, A system nearly in equilibrium will tend to
fincetuate about the equilibrium state.
Mhis nodel is explicitly soluble for the various quantities of interest

such zs H. These solutions are given in Kac's book.

i o8 oy o g e D g 3 U - .
underestimated by the Ehrenfests,
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Let A and B be sete in phase space and x —F Xe & vam s e %gﬁ

e, askinie A o Atk, The flov is oaid to have the mixdng property with
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41 Rifferenti dbi- Manifolds

Definitions A measure space 1s o triple (X,7 , u ) counsisting of a set X

Somes Mwwnmm

{emlled the space}, a family of subsets I {called meesurable sets) and a
memsure W

v is a mmmempty 0 -glgebra of sebss

1) Sey=» S &3 where { . )}° denotes complementation,
J) . % , ‘&ﬁ 3)({ § =X
:?éi € L, 1 = b 2, vas .»“%v i }_ui g L

¥ is & non-regative reale or + « - valucd function on ¢ vhich is

countably addll i'm g

-

S, f, A= 1,200 S NS e, L #F ]
—-;»;s(x,,,« )= nis) .
Do) = v
we will assume that (X, ¥ , ¥ ) is O=finite:
Xe ) ¥t and (%) < .
4=1 i

As s exzmple of 2 measuve space one can taks the Buclidean space of any number
of dimensions in wvhich ¥ iz generated by complementation and countable unione

Tyrom a}l aaaih_;ﬁu boyxes and  u is itsken to be the Buclidean welume,
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4 of X oonto R uvhddbh aedke L correspond Lo I v and

If the two spaces ore the same, ¢ is called an awbomorphlsm.

pefinition. A flov in a memsure space (X, L, u ) 1s a reprosentntlon ef the

A A D AT

additive group of resl mzmh@r in the sutomorphism group of (X, I, v ). That

iz, for all real t there exists an am.tm@r@hiﬁm e Xy having the property

£

-3 ) FE 1
W) R (€.1)

i

Furthermore {t,x) = *,

A flou in a messure space will be called a messurable flou,

should be a measursble correspondence,

ey s PR e
Suppose ¥ has in addition a topologys that is, s distingulshod class [
SIPSL08Y 5 ?

of subsets, calied open sete, satlsfying

L ? b | . i

) 88 L, weT=PAS 5o 4

- ’ L& T
vhere 1 is an arblirsry index set.

pefinitions A set 8 in o space vith a topology is sald to be compact in

PN TRt

ce every open covering of 8 contains a finite subcovering, In other owds

5, 2 fab s . e P fods o
S o ;»»_g{,’ By, & € - 1,..,.,,4; g ¥ such dhed

sete genorated by complementation and counteble unions {row

3 sets.  le regudre

ealied the  o-plgeb:

in v and that
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serresponden

SO TE v Rari Ty RPN

o . ¥ 5 o n . & -
1¢ ¥ nas in sddition the structure of s differcntiable wani!
gnalogy with the sbove ve have the notion of a diffe syentiable fiow,
L smittonien Mechandes For § Perticles in e Box
L] N W bl
Iet ¥ be a nonenegative ¢ {infinitely differ ﬁ*ﬁ iable,; function of FSERERRS
S
\: %ty A Y 70 ) an % 3 g':;; 2”'%""" o e K - % e FO S SETY L“"
which approsches unifornly as 1%y o £ & s for axample;

" " “*ﬁ* 5,000,006 P
§j g‘?&:! TR X,ﬂ,} bl %‘M‘_‘gwm ) %‘{i’@ éf],’

®

P

4{% ksre ¢® functions vhich vanlsh for

‘Piciently lerge real number,

&

B{ vy ~ E= O

£153¢0
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# ]
£

s SRy 5 i nd Yayeg s
vy By By one oan

and hanes the suy i smooth as as olaimed,
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for ordinary differentiol squatlons ve

for a1l time provided the potentisls are smogth encugh, hich Lo ths
7

Moreover the solutionz depend smoothly on the initisl conditlons.

5 eguatione in faet provide us vith a €% fleld of tangent

vertors on the energy surface; this can be secn by explicitly computing

F.Un 1 s dp, 4 T Ux,1l edw
§ "3 i i

dn and dy. are given by Hamilton®s equatisns, snd shoving that it

4 3

indeed dees vanish, By the fundemental existence thceorem for flows one gols

s Gifferentisble flow gencrated by this fleld of tangants.
Phe invarisnt messure in phase space: #

. » o e C3 L R P
T r . 4 £
p(s)y = }qa”ag dx; e ooz, dpy ..o dpy (6.5)

induces on the energy surface H-E = ¢ the invariant measurc

P ¢ 1) d’# d* o ‘i#
{5} = ,}'?;- . e "Xl***-»x\g gg}’l’“” p}; ({}e&;

Nt

s
&

&
[
f=2}
P
ol

=
™

&E~E) can be sxpressed lecslly by solving H-B=0 for some one £ the S

e . EEEY . ; ) e ; .
Bypeons Xyl pgoce ﬁ§} in terms of the others) e.g.,
3y N FUN T
2 e ATt Vvt e’ ’pﬁ ({z:‘e?},
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die O varieblss for whileh
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the Buclidean n-dipensionsl spoce R regarded as an
s 1 . ‘ e b ppmae e
ditlve group of n-tuples, Lt 2 pe the subgroup with integer courdlinstes,
IR VIR ¢ . _— ; . .
factor group " = R " /% is an n-dimensional torus and constitutes

1%

space % lor this example, To gel the flou taske the one parameter subgroup of R

Lk . s , By
o, = {ta] -~ m et ee N4 aew ]

¢

iz held fixed). This group, vhen projected inte v s Bives a subgroup of
Y ' - R S 4
q isgmorphlic to the grﬁup.ﬁQ_ﬁQ@vf} E?) « The image of G» in T gives

a eingle flow line, the flov of the other polnts is giv@n by the correspondence

. T n ) s PR
% (wod 2 ) + {(x + ta) {(mod 2)

i the coopydinates of o are relsatlvely rationsl the lov lloes are closad

Jhdeh wind seversl times around the torus ond then come back upon thewm-

T,

wewy in the other case the flow lines never eclose but vind densely in the

Por s detalled treatwent of flovs on groups see;

N

Green, and Hehn, Flove on Homogensous Spaces, Princeton




Lecture No. 7

i

Discussion of Integral Imvariamts

Suppose we are given a differential equation {(more generally it will be some

differentiable flow}.

— = Vi(x) i= 1l,00e,n (7.1)
Find a differéntiable positive function p such that

!J.(S) = -?S 0 (X) dxlooodxn » (702)

is an imvariant measure. Since we are working locally in E® we may take § to be
one of the family of Borel seis.

Thus we want the p{s) defined by (7.2) to satisfy
u(s) = p{S) : (7.3)
where by definition

- C.o000 €

u(st) = rs o (xt) dx dx (7.4)
_ £ 1 n

Methods
We shall find a differentlal equation satisfied by p .

We first express u(st) as an integral over S ¢

X .
w(s) = fgo (e ) T ( ;> dx o oodx_ (7.5)

For the single-valueduness and differentiability of xc(x) we appeal to the existence

theorem for {(7.1).

ax

x &\ |
35 = det ( axik_ ) | (7.6)

Here

i3 the Jacobhian determinant,

Then



7.2

dw

£
d_ 20, = 20 i a3
T ney = JIGE+Z S =377 3+ o Grldmgeeodx, (7.7)
i=] ti v
We now prove that
g @vwa 7.8)
where
o S
divV = I P Vi(x) (7.9)
i=1 Y71
Proofs
ox ox o 3x 3x ox
t t t t t
d : 1 e 1 d k “n
""""{det ( coo@ )} = ZJ I coe Taa oco_"‘-—_'i (7010)
de %y oy kel 0%y 96 0%y %y

Here we have explicitly written out the columns of the determinant.

But

axtk dxt
d_ ok . 2 k. 2
at (axi ) 3%, Cac ) 3%, Vi (x) )
* (7.11)
n v, (x.) ox
.z axk el | t!
=1 _&1 axi

How if we substitute (7.11) in (7010) the only term that will contribute from the

sum will be the onme with £ = i since by appropriate multiplication of tne other

terms we

Thus

which is

Since §

or

can make these columns equal to columns already present in the determinamt.

ox ax ox

n t t £ oV, (x)
%—t-"‘? = I —g}?l" oaoagx‘_ls'ooo axn B: S (d iv V) J
. k==l i i i tk

equation 7.8,

in (7.7) is an arbitrary set we therefore get that if %E"(st) = 0 then

J%ﬁdW(wN = 0

§§-+ div (V) = 0 (7.12)

Conversely the ecuation of coantinuity implies that

‘r‘s p dxlouodxn

is an integral invariant.



7e3

If div V= 0 then the flow defined by (7.1) and the measure (7.2} is incom~
pressible. In this case p = constant defines an integral imvariant.
Theorem (Licuville)

A differentiable flow arising from a Hamiltonian system of differential eqna-v

tions is incompressible.

Proof:
op, .
bt Y- : 8 %G _ m
ot oq, at or;

C2 2
divyvmzp-2B ol o
3 9Py%4y 4 94;0P;

i

There are wmore general theorems about these"inéegral invariants as formulated by
Krylov and Bogoliubov. These will not be discussed here. See, however, D. C.
Oxtﬁﬁy, Bulletin of the American Mathematical Society (about 1951 or 1952) -
Ergodic Sets. He &iscusSes the existencé of invariant measures in more general
cases.

We shall now give,a.diecuSSioh of Koopman's Idea for Classical Flows.

Given a measurable flow, there is a family of mappinés of measurable
function on X (phase space) defined by:

£,(2) = f(x_) (7.13)

whera X is to be regm#ded as a function of xo If among these measuvable functions
we now aeléci certain specific ones, we get the various functlon spaces. Thus the
integrable functions give Ll{X,p) , and the square integrable functions give
LZ(X,M) o« We shall be especially interested in chx,u) which is well-known to be
a Hilbert space, and hence the notion of unitary operators on L?(X,p) is defined.

We shall now prove the theorem of Koopman.



Theorem (Koopman)
Each measurable flow In its action on Lz{X;H) defines a continuous uuit&ry
one-parameter group by the\fmrmulaa “
(v 5 (=) £,(x) (7.14)
We first note that Ut not only carries measurable, square integrable functions
into themselves, but that the range is every such function. This is clear since
any g{x) can be writ:én as some ft(x) o
Explicitly, |
B8x) = (& ) =) | (7-15)

Therefore U, is a bijection of LZ(X,Q) o
Also Ut is clearly linear, since
(U (of + p2)) (x) = (af +Pg) (x )
| = of(x_ )+ Bg(x_ ) = af(x) + pg (x)
= ofU,£) (=) + B(U,gE) (x)
Furthermorsa Ut is isometric: .
e 7 a = ]
= Pl dutx )
= [ le@ ] o
wherse the last equality follows from the fact that the measure p  is invariant

under the f£low.
° : 2 2
o o 217 = (g1 (7-16)
Combining this with the fact that Ut is linear and a bijection, we get that

ﬁt is unitary.



3% ] : £ g
Thus Houo o= 1 Oou. o= 1 : {7.17 3
F [

It can also be verified diréctly that Ut preserves the scalar product.
(£ Ug) = [ (0.8 () (Ue) (x) du(x)
= [Ex_) slx_) du(x)

= [ £(x) g(x) dulx,)

e (UE U = (£,8) - (7.18)
Also
W, U, 6 &) = (U, D &)
| = £(0x ) )
. A
U U, f gt (7.19)
witn U = 1 | ~ (7.20)

Continuity Properties.
Since the Ut form a one~parameter group, the continuity of Ut can be interpreted
in at least two ways whiéh are equivalent; namelyﬁ
1. THeask continuity:

{£, Utg} is continuous for all £, g e L?(x,u)
Zes  Strong continuity:

Stf ie a continuous function for all £ ¢ L?(X,u) o As usual the
strong continuity implies wesk continuity, the converse follows from:

fo g - B8 = fu_ £ - 2 = 2l - 2mequ,_,£,8) (7.21)



7o
Then clearly as € - t' with wesk continuity assumed
” -

2l€]l" - 2ReU__ o £:£) 2/ £ll

- 2Re(U_£,£)
= 2llel? - 2iet? = o

Hence 1im [0 £ - U 1 = 0
fot?  © t f

By the way, by reversing the argument we also get weak continuity from strong.
Thus 1. and 2. above are equivalent. So to complete the ﬁroof of the theorem of
Koopmzan we need only show that Ut .is (strongly) continuous.
To do this we sketck the proof from Dunford and Schwartz - Linear Operators
Part I, page 616. But ﬁirst we need a definition.
Definitions
An operator valued;function Ut such that
Ut+s = Ut Us s Uo =1 £,820.,
ig called a semiwgroﬁp of cgeratdrso
Fow for the theorem.
Theorem:
et {Ht} be a semi-group of bounded linear operators in a Hilbert space T ,
defined for 0 £ t < » so that U . h is measurable on [0;») for each h ¢ A%,
then U.h i{s continuous at every point im [0,®) .
w&bassume U§£H is bounded on each open interval (8, 1/8), 8 >0 .
et 0 < a'<.6 < to and pick 2 & such that
W<l,a,t ~B, (t:(,-M)"1
since
Ut h = Ut(Ut ntn) and since the zi@hh side in independent'éf £,
o (3

it is integrable over the finite'interval (055) « Now if ]el < & we haves

(-0 E‘”tﬁe - ﬁts)h] - -,rg U, [Uto-:»e-t]h dt



-~

77

:3is we bave an M > 0 such that

ol <m for te (oB)

Hence
) I - ol <y B )
{B~0) l{gst we = U nll < i‘altcut 4o -t " U ol de |
[¢] . [+] 4] ©
to-a; (7.22)
=M Fto”Bs‘(U@+e -Us)ﬁlids v

where we have set s = to“t :
‘Now it can be shown that (although it is a rather technical argument) the right

side of (7.22) tends to zero as ‘¢ = 0 and henée
‘ - 1 commeremereeed
"(uﬁ +e ;’Ut )h?‘ e =0 0
o o
Thus Ut is continuous for every to in any finite interval 0 s ¢ < to <<

To apply this theorem in our case we need only notice that "Ut” =1 i.e.,
all U, are uniforuly bounded, and all U.f are measurable for £ ¢ L?(K,g) s
and furthermore the Ut(t > 0) form & semi-group. We now extend the theorem to
t = ¢ by noticing that all the aﬁnve conditions also applj to Ut* = ‘Util  for

t =0

B

o

o’» ' Tue theorem also holds in our case for t <0



©opne unditary

group of one-parametey operators., Then It
fw false to ssv that the pr@pertieé of these groups up to equivalence de-
parmine the flows. Héwew@r; it is true that one of these one~parametey grouns
in concrete form determines all properties of the flow.

Thus given Utg the properties of the flow are determided. i.e., U con-

L

tains all the Information. However, if we go to Vt = § Ut 5»1 (arbitrary §)

then Vt contalins Qﬁly information about the spectral invariants: the spectyum
and the mulﬁipliciﬁy of the spectrum.
Koopman, theéafare, gives us the following program:
1. Studvy the one-parametey groups.
2. Determine what the properties of the unitary operators are in

terme of the dynamics of the system.

Special Properties of the CGroups CObtained

i. The Ut‘s which occur have a very speclal multiplicative property:
If f, g ¢ LZ;(X,u) and the point wise product (fg)(x) - f(x} g(x)e Lz(x,u}v
then '
U (f2) = (U£) (U G) . (8.1
tithough this is not a meaningful equation in terms of functions on Hilbert space,

it 1= a m&aﬁingful equation in terms of functions on measure space,

Furthermore, thé'validity of (8.1) has a large effect on the eigenvalue
problewm of U, for 1f f and ¢ are eigenfunctions, so is fg if fg ¢ chx,u)“

He now turn to a move explicit examinatlon of this statement, -

iAgr At

2. Let e oo be proper values of Ut {the unitavity of ﬁt guarsncees

he reglity of the &?} with the corresponding proper functiOﬁslél*..e ¢k. Then,

m, o

i ¢ ;

B

ceee K (ml“*'mk a set of non-nepative integers) is square Integrable



my m, m, .
v‘;: (?j \;:} mimu¢’ K wfk?‘i ff. .?:'; ‘ﬁ‘j -'é} ﬁjﬁ)} cuag@‘k s (8@ *}

hat the sigenvalues form s semi-group.

Foy simpilclity aéﬁum& ﬁt has a purely discrete spectrum. Thus, we
e¥pect Lo gal a complete set of éke Then taking powers as before, we expect
te pet all eigenvalues as linear cowbinatioms with integral coefficients of s
basic set of elgenvalues.

Foy completenéss we state at this stage without proof a theorewm repard-

ing groups of amitéry operators.

one’'s Theorem:

Every continuous one-parameter group of unitary transformation Ut is gen-
ersted by an infitesimal transformation 1A, where A is a self-adjoint trans-
formstion which is, in peneral, unbounded:

U, = oltA | (8.3)

:ﬁ.ﬁl = %.%%1 %‘3_:____ (Uh - 1) (8&&}

e
Yy

the space ig separable, continuity follows from measurability.

Yor the proef of this important theorem see Riesz and Sz.-Nagy - Functional
Analysie - chapter X.
| From the sbove considerstions Lhere arises a very natural mathematical

134

problem, the so-called “Conjugscy Problem,"” which was first considered by
won Neumann: Find a set of "invariants" to characterize non-isomorphic
measurable flows.

Although this problem is natural from theimathematici&ns'view point it
it pot natural from the physicists’ wiew point. To ¢larify this let us recall
the definition of isomorphism.

1f we have two flows x, =nd x't defined on 2 measure spaces (X,Z,u ) and
(0, ', u') then the 2 fiawa are iqomorpnlc if we have a bijection ¢ of X

&

onte X' which makes I QG#T&QEO&& to L' and 1s such that



. . - e
plm 2 o= x' o= (§(x}) (8.5
[N & t

be destroyed by ﬁgah mappings. For instance flows on a plane and line are
in certain cases izomorphic, but the mapping (Peano éurve) although it is
continuous, destrove differventiability.

We get the following enswers to von Neumann's question.

1. If the spéctrum of the on%wparameter group of operators is discrete,
vhen the spectral imvariaﬁts are all the invariants needed. Thus all the
inf@fmﬁtiﬂﬁ is contalned in ’

ﬁv = jw exp (ith) dii;,L {5w6}(;
- P43 N

{won Neumann - 1932)

2. If the spectrum is not discrete, more invariants are needed (Kolwog@rov -

There are many wore results in Koopmanism. HMore later.
We shall now introduce some more terminology for classifying flows.
i. The old "Ouasi-Ergodic” Hypotheses in one possible interpretation}):

& continuous flow is topologically transitive if it possesses a dense orbit.

Théz is, if éhere is a single poiﬁt such that it comes arbitrarily close to
svery point.

Z, 1t is minimel 1if every orbit 1s dense. Thus, minimal is equivalent
to the guasi-ergodic hypothesis in the styictest possible intevpretation.

Euv A measurable flow is gggggig if measﬁiaﬁle s@bsets of X Invariant under
the Flow are sither of measure zerc or differ from X by 8 set of measuvre zevo.
This weansz that if‘the flow iz ergodic, the underlving ﬁeasura‘space cannet be
eut up into parts of non-zerc measure which are inveriant undey the flow. This

eondition was alsoe called wetricallv transitive by G. D, Birkhoff.



Ay miwine LY

FERALUTE Whafe L8 f8lled W

k) *;" "iﬁk £ a T ﬁfﬁ.}g(ﬁ} i S
L v (e, By - PEIESS | de =

o

for all measurable sets A, B,

& measurable flow In a finite measure space is strongly mixing or

TP T .V 1710:) R

for all measurable A, B,

T&e notion affﬁixing may be viewed as a spreading out of dye in a fluid
{the measure space). Then the flow of the fluid is strongly mixing if starting
with the dve concentrated in some vegion Ao at t = 0, the dye is spread'unifarmly
throughout the fluid as t + ®.

ﬁe may also ﬁ%ink of mixing as stating that eventually there will be no

serrelation between measurable sets.



Lecture No, 9

We shall now do sowe ergodic theory. The cldest theorem of this type
is the Pecurrence Theoyrem of Poincaré (18%0). In the context of flows,
Poincaré’s theorem pertains =0 the question about what happens 1f we take
a veglon 8 and see if g given particle returns to S. It is neater to discuss
instead of U_, to see if a particle returns in a
fixed time say(l second)md thes Jiscuss ’Jl,
Therefore, we will prove a discrete case of

Poincaré’'s theorem.

In statisticgl mechanics 1t is, of course, of interest to compare the
“relaxation time with the rvecurrence times. Birkhoff (1932) Proc. Nat'l.
" Acad. has shown that for an ergodic transformation the asverage recurrence time

T is given by

o - . .

T () .
‘ " u(8) \ ' 9.1)
- which is precisely what phtsicists intuition would have suggested. Now
for the

Recurvence Theorem

S

Let S be a measurable subset of a fiﬁitebmesure space Kg and let T be
a'me&sure=@wéserving transformation of X into itself. Then alwost zll points
of S are infinitely recurrent. That is, if Q’egs then T° x € § for infinitely
many positive u, with the possible exception of a set of x's of measure zero.
Digression: |

We recall that a transformation T is méas&re-preserving or measurable if

W) = ua) | (9.2)

lA is the set of sntecedents of A under T and the notation does not

where T
imply the existence of an inverse transformation Tnl. For comparison recall

that a.mappiﬁg is continuous if the antecedent of an open set is open.



Lot N be the set of points of § which are not vecurvent. That is,

9 L . ~
Ti, T ,.0. ete. § S Ve show that N is measurable and has measure zero,

by actually disnlgying N,

N = $/3 'r"l (%-83} /1 T2 venneennns
Here X-8 islihe set theoretic difference of X and §, that is
X~ 5 = {xeX| =¢S} ' | (9.3}
Here we have dispiayed N as a countable intersection of measurable sets and
gince any intersection of measurable sets 1s measurable, ¥ is measurable.

We now s&uéy the sets T N e 1, 2,044, that is, the sets that are
mapped dnto N by fn.’ We will show that these are disjoint {(their mutual
intersections are empty).

Now the statement that

¥V xeN: Tx, sz““é N
is equiwvalent to the statement
.- | N'K§Twnuw ¢ for n‘w 1, 2,... because the set N /} T "Nis pre-
cisely the set of those x which are in ﬁ, and which are such that ™% te in N.
But N AT " N = § implies that N, Tt

TP AT 5 e TPEATTN = ¢

N, ?.ZN,... are disjoint, because

Berause we have aseumed the invariance of p under T, the measure of all these

b .

sets N, T W.m?i:is’tha sawe. Dut this leads to a contradiction unless they

all have measure 2ero,
gince p(X) < = and unless u(?hnﬂ) wi}ﬁfry

oy - e R wn . »
p (U Tkx}az ;j(*’rkm)-wv.‘
k=1 , kel S

Now, this would mesn that the messure of a measurable subset of X, exceeds

the (finite) measure of ¥. This, however, cannot be since for measurable sets

ACE = w(a) 5 wB.



s set of w

o, we apply the preceding g gument o

kA ) . . N ) o
™. lLet ﬁﬁ he the set of

. o) .
se ® & 8 which do not vecur under T . Then

wa heve shown

"‘ﬁ {3 ei{jpéri%

wAN ) = ¢

Henece ! » (5.5
v gy o | )

because it is & coumtable unloun.

So if we can now show that the points of (S - i} Nk) arve infinitely recurrent  we
3 kel
are finished.

How 1f x € (- W)

B :
Then surely x &(S-'Nl) so that there is a positive integer n; 2T 1y = 8. But

foy the same resson
i

: 1t
; 1 |
# el - Nn and hence 5} & positive integer n, > (T x e.§.
We could now use formal induction and thus conclude that the terms
n, 0.0 n. .0
T lxp T i Zx, T 1273 fy «oosl So

The second part of this proof can oe comsiderably shortened as foliaws.

The points of S whose last recurrence in § is at time k = § ) kaﬁ

This is clearly measurable,

[

S ' mk, c =}
> » Ihe set of peints vecurring only fin{tely many times = A = ﬁﬂl(s Ao N}@g ™
' " ' kel

e uYAY w0 since y(UT"kN) = 0,

It ig¢ also possible to study the behaviour of a system on a time average. An

example 13 von Neumann's Mean Ergodic Theorem. The proof given is due to F. Riesz.



Mepan FNroodic Theorem:

‘ . H - V . A
et U ba an éﬁ@mﬁﬁry of the Hilbert space y%? » then the sequence

A = i gl gl
: S0

has a strong limit P which is the projection onto the subspace iInvariant under U.

Remarks:
Let ;%? be 1 dim&nyiana}, then U is wmultiplication by u, & complex number of
podulus 1.

1fu w1 R

1}
: _1 x-—-a“}
Ifuég 1 A =3 (' T

And

2 1 ’
Ia0é s S e O

So it i{s clear that P is z projection since its eigenvalues are 1, 0. In this case

the subspace is sll af’Z%gg,



Lecture 10

We continue with some remarks concerming the Mean Ergodic Theorem. 2) Let
H be n-dimensional. The isometry of U implies

gy = 1 . (10.1)

det U det § = ldecmz = 1 = detU ¢ O

*
Hence U 1is the inverse of U and we also have
* .
vy = 1 (16.2)
Hence for a finite dimensional Hilbert space every isometry is a unitary trans-~

formation, and U can be brought into a diagonal form by an appropriate choice

. of basis:

U = . (10.3)

By remark D we see that

A - Lo . (10.4)

where 1 occurs in case eilv = 1 and 0 in case elly $ 1. 3) When H is
infinite dimensional an isometry need not be unitary:
*
fgel = Mgl U U = 1 (10.5)
* *
U U = 1 s g = 1 (10.6)
*
In any case U U will be an orthogonal projection. For an operator F to be an

. . *
orthogonal projection it is necessary and sufficient that F =F and F = FZ -

HWe ha?es
’ ® % i * . '
~ (uu ) = U 4] = U 10.7)

¥ 2 * % . * *® ,
(UU)° = U0 DU = U = UD . (10.8)



10=-2
'x. .
U U can however be a proper projection since in the infinite dimensional case
U may map onto a proper subspace and still preserve norme.
4) There is a special property of iscmétry needed for the proof:
. E .
Uf = £ e UEf = £ (10.9)
The necessity is immediates
* * ‘ *
Uf = f 2 U Uf = U = f = Uf
For the sufficiency we proceed as follows:
lug - €12 = (UE, UE) + (£,£) - (UE,£) - (£,Uf) =
2 % * *
= 20gll© = (£, U'E) ~(UE£,f) = 0. f = UE
Proof: (See F. Riesz Comm. Math. Helv. 17, 221-239 (1945)).
Consider first a vector £ satisfying Uf = £ . For these

n-l

L j
Aff = T o, UE = £ (10.10)

If now £ is vector of the form g - Ug , g ¢ Af we haves

1 omlg, .
Af = = o T U(g Ug)
j=0
-1 n~1l
Lo ¥l
= 2 (zjao | H zj-o 1 2 ¥3
= i’(g - %) (10.11)
1
>, la £ Lopgl & .
. lAnfi < nz!g 0 (10.12)
o e Af - O strongly (10.13)

Now the f of the form g - Ug form a linear manifold M ; the idea of the
rest of the proof is to show that the closure M of M and the set of £ satis-

fying £ = Uf are orthogonal complements. A general £ then decomposes

£ = £ +f ; Uf, = f. , £, eM - (10.14)



10=3
fre ther has to show that An f2 - 0 as n o ., Clearly Pf = £, and
fz = (1l -P)f, so if the above statements are established the theorem is proved.

We compute Mr£ = ﬁ% where (°)& denotes the orthogonal complemant.

Vge#, (h,g-Ug) = 0 Lo
& vgeH, (h-Uh, g = 0 =3
& h-Uh = 0 &> h="0n | (10.15)
e MY = {fl UFf = £} (10.16)
Note that ¥ feH
" ; 1 n-1 5
Anf{! < -r;zj o TUEl = |lgl (10.17)

Consider now a general element of M . Such an element is a strong limit of

a sequence '{fk}ﬁal 2 where £ are of the form:
k 2 sovo

k

B = & " U

(10.18)
fk - f strongly
My £l = JlA (£=-£)+4 £l <
n n k n 'k (10.19)
" - ] | If - ! !
< An(f fk). + "An fk! < g fkl + lAn fku
let n = o , then
Moy e < g - g (10.20)
. neo® n k
Since this is true for all k and sisce fk - £ strongly we have
lim 1 ]
oo e |-Anf = 0 Q.E.Do (10.21)
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D Beges i ] $ 34 - % 34 Py 3 - s v - >
b ofust as in the discrete case if { sael

e a5 oo . e - s sl « -
Gfw F, Wt then Lf the strong Mwiv exiats, PF = f,

Seoewds 4F the ean be nveved For T and 5 intoeevs, then it

ﬂn

te ryue for arbitreyy vesl 7T and %, This can be seen sz VYollows:

{{x] = the preatest Intepsr in %), TF T2

N
B
%
-v%«
<
T
Fh=
N

P

—— 5

e = - %

W

&

The last two terms -+ { in the limit since

Led | & Led ,'%3 ; ‘
wat s | = [ [ tustede < gt

5 s : |

e

s §
hensne § !g U, & 4t §§ = 1 and similarlv for g
s b i

freces]
Honesoms
-
o
ﬁu
ot

Also  ( LT] -Llsl] VAT =8) w4 , hence
T i
4 g’ ‘ E { .
Up dT (119

Y ; j Uy dt = S ,,mwm}
g TS S pry-Lsl=e® L7]-1%1 »

provided either limlt exmists.

7

Foy the vest of the proof we comsider T and € to be integers, we thon

have by the sewiproun property

- ‘ £
y " 4 ‘ v (11,9
wlw ( Updt = “’_‘“’“”’f"”"” éj ,uﬁ» Ve <t
s T8 S T

i

3



Whe B, Pl & N 1
’ 5,
‘ ¥ 1
+ . - et ﬁ.-—:;* H g RN
(i e U P o= o= Py i
by the  inesuality zprifed o L Tty
{17 consider
T T
% { g g ,,‘i ?ﬁ § { ngm ;
Wy = | W gl = Vo T U
L z = i
# t S
o
£ s
t LA
' o . ‘tf., *T [ %
o o ven [ et J L7 e v /
- - A S @
j o 4 ¥
’:"‘hsg@ £ ot e " [P P B gy if f i'ﬁ o =l ranye ﬁf ’p éf § - y’;’w téi‘pgﬂ
This identity shows hatl Fis in fue ranpy 4

1 F = £: this proves (§4). It is also true that P apnnihilates every
o
vector that 1s orthogonal to 21l vectors left invarlant oy ?L?ta.
shown by repeating the Riesz svgument: by {(i1)

T ) .

S

Ve end ¥ oM, P(3mlgi =0

BmOTEOVEY

Ve and dg e, (fg-Uegl=o &
& Ve andVyen , ($-U 910 &>

E Ve, F=U0 e VE, = Ut

tienes ammihilateg the srthocosmliemant of the sat of soteys §
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(e 1 L
Vi, o= Uy !
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11.4

Physical Integgretatioh of the mean convergence of time averages

Von Neumann argued that the sbove ergodic theorem and not Birkhoff's,

which we shall state and prove later in these notes, is the physicaily
relevant one. The argument being that if f 1s a physical quantity the

physical question is: 1is there a ¢ such that the duaﬂtity
Sl S §<x Yo - cl putdx) (11.14)

is arbitrarily small provided T-S is sufficiently large? However, there are

typical physical situatiqns which cannot be formulated in the above manner.

A typical Boltzmaﬁn statement is: |
For a system in which u @< e

Probability (Lim S Fixpde = 24— {fuomtax)) oo

T=S20d 'l‘-
=1,

By the statistical interpretation this is translated to:

»(X)

#({n!g,,w -;-S% X, Yok =..,.-— S.g.m),..(otx)})-,q.(x) (11.16)
T=5 -»a0
Thie resﬁlt can be proved by Birkhoff's theorem assuming the flow is ergoﬂic.
‘but>is 1mpbssib1e to get from von Neumarn's argument. A result in such a

direction is contained in the following theorem:

1t §, =2 § in the mean, thew (YE>6)(YF>0)
(IN) such that  (YkON) w(ix[1fo0-F]>F )< €.
This result however cannot lead to Bitkhoff'g statement.

Conclusion: There is a physical point to Birkhoff's theorem.



inteprals of motion., Tn fact, in lamilton-Jecobi theory
ryie wapally meets with a transformation o & new set of canonicael warisblen
o owhich one inecrsases linesrly with time snd 281l the vest are constant.

gt ceordinates however exist only locally and in peneral due to evpodicity

mint be patehed topether Lo give global fnvariants. This situation is

illustrated in the following theorvem:

i

tet (X %, ) be a measure spasce and T a measure preserving transformation
P P ! ! N

of j{ intﬁ}{ . then T is ergodic € everv measurable function which is

{i.e. f{Txn) = f {2} z.2.) is constant alwost evevrvwhere.
if in place of T we liave a measuvrable flow, the sawe statement holds.

{1 pessurable funetion iz {nvariant under a flow g{ for alwost all X

Fixy = Fixy Y+ )



?

T

unday

nvarisat

i

fomyeras 1

"

&

N

= W

LR E

€

n, because § Is

invari ani

&
i
fe

4 n,

24

a fiwne

For

te= 0.

R

antion

5
p=s

toey

e

e

34

38 gl te




et £

ey
Erad = [
it o ﬁ *
o4 o 4 o
e e S gt st
et et Pl _—
o v
[ -

e
ton has

324

T
ne
nterse

et




wiie theorem, but first we need a

tet a, #.,.,.4 he a uence of real numbers and m oan integer (lgmen):
k] £ i

the sequence I1s said to be an m-leader if there exists

an inteper p (l€pgm ) asuch that
a, 4+ oa, g b el oa z 0.
k b+ kednee
Thess s, e asald to lead this sum.

The sum of all m-leaders of Bgeeef is non-negative.

If Ayesed has no m-leaders, the lemma is vacuously true. Therefore,

to be the first »n leader and 8 4 ...4a the shortest sum {2

k7 k

kdn-17

leada. Then T gegert that each aﬁ occurrine in this sum is also an m~leader

A
.
s
&
o
A\

.

o < 0. Then + g 4+ L ..d, > 0 which wiolates
fan~l Y B T P h-1
F oot A, is the shortest sur that a, leads, so the
kdbn—1 k

criion is proved. To cowplete the lewma 1t sufflces to brealk up the se-

guencs into blocks of shortest non-negative sums an ghom

ayonatbla oo otba, caot( +oa
"1 g‘ﬂ"x @ ¢ )

3 .
btp-17 )

a, is an w-leader and by the assertion just proved each term In the block
is an w-lesder and thefy sum is non-negative. This is true for each block so
the lemma is proved. Ve state this arguwent wmore explicitiv. Apply the

process used in the assertion o the sequence ak&m+a.&+&ﬁz that is, look for
B b7 -



shoviest sum 1t leads. The abowve gsreument shous

that every taym of that sum iz an w-lesder. Procsed in this panner until tle

it of weleaders iz exhausted. The result is a break-up of Bi.0008  inte

- “h

peks sy lay o3 la g }$Mam” Fach block consists entively of
< <,

3

w-leaders and cach s-leader 48 in 8 DLlock and the sum over sach blsek is nen-

werative. So the lewwa 18 true,

Proof of the Maximal Frpedic Theoremw

. 3y 5 RPN
et L o= {x@f{x) & f{Txbé»»~~+€€TFx} 2 0 fer at least one integey pegw! (13,1

i
Sinee £ is assumed to be reasurable and T is a weasurable transforration, L is

a measurable set. Algo

e
A
]
-
[=N
iy
A
&
=]
-
e
ok
L3
P
St

? T F § ‘ -
Cand U ¥ = F
TR - L
sl 3 .\___““ : .

definition of Em i nonvhegative. Thus, to prove the theorew, it is cleariv

ke

-sel of gll y such that at least one such sum as ocours in the

[

sufficient teo prowve that
% Flxidu(x) 20 , : ‘ (13,3}
m

e now do sowe skuldugperv that allous us to make pood use of the lemma Just

proved. Let n-be a positive inteper snd comsider for cach point x the p-leaders

bl .
x}, We let n be the running Index and

< o - . mlﬂﬁ‘“ 1
we are leoling for w leaders, henece the final term is £(T x

of the seauence f{x), F{Tx), ¥
J. Let S{x}
. . o e !

be the suw of theas w-leaders, Let ﬁk Le the wnion of all % such that f(?lx}

be
is an w-leader of this sequence. Finallv let xq‘(xl4€ha characteristic function

it is clear that 5 (x} s weasurable and integrable. So f's{m} di (%)

Nope

exinte end is ovon-nerative and hence arniving thig to (13,4

S S -
-t i




e omake

Thi laast » ig
beswndded L
TF we adwit this, the proof is easy to cornlets bhegause thon
7 / i:’ﬁfdﬁ#f#} = f’!’ Coor aveny = O {13.6)
b T A [ feal guen y
&
apnd sinee 8 = F
I w
i ; . ey » .
,j frod s+ 5 [ feaslgpor 2,0 (13,73
fﬂy i .

'

for atl n.

Letitine n + o, e pet

PG duGay D
which is the desirved enuation (13.3%.

Ye mow justify the assertion., To do this, notice that for L = 1,....,n, the

' } 1 ST SN
statement €%, is equivalent to F(T'§) + f(Tl 1%)+.a+ffTL ' 1x3 30 for some
b

. . k \
P& w. But this is equivalent to Tx ¢ SO, That is,

g! = T"“k 5‘;0 2‘{ g },g ;.,e,.!’; {13;2’%}
Hanee
5. F{TR) ) ek
j:ﬁk f(T x} dﬁ{gﬂ;) = fm% f ‘iT }ﬁ} ﬂ‘%l{)’i)
T ﬁﬁ :
Fd
m Jo £(a) du(a)
a

where we have uped the invariance of the measure. This establishes the ecuslity
of ghe first w terms. The bound for the last terms follows frow

[ firsydmen] 2 Uil dmo = [ If ol dres
iy b1 X

$o, the assertion and hence the theorem is nroved.

Yo now introduce sowe fuvrther terminolopy for sequences of real numbervs,

infa =8, 1, b a = p

g

regbeat lower bLbound of 8

= lowest upper bound N



Yty 5 "
Ak BUwm &
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Hy

that Tiw iaf and 11y =un

thay are esual the Liwit exists and iz eousl Lo Lhow.

Theover (Individual Evgodic Theorem - Discrete Case)

Let Le a measure - preservineg transforration of a weasure sp

jnts ftuelf, and let § %& a real inteprable

f!ﬂ* mw :g {l Tﬁk

by i S gc'c

% and defines an Inteprable

function, then

% ) R
exists for almost all invariant function £ . Turther-

more IF pl¥i< o then

[0 qutx) = [ F (0 dulx

and we ean identify it with the function in the mean evendic

theorem.
- Proof
“ & 1 z { { y }K ) 1
Connider the seauence of averages . Let a, b Le tuvo
JE e
resl numbers & < h and le

1t ¥ {a,b} be the set of all x sueh that

¢
‘if?ﬁﬁ”if"’*f'{f;‘*}‘{@ 2 fiem Jvﬁgz j(('?;"}
) & e
Ve can without loss of penerality take L »* 0 since we can alwavs consider

-5

jnstead of ¥ 1f necessary. The next step is to rrove that

(¥ (a,b)) <=

and then to prove that

u Y {a,k) = 0. For gimplicity we suppress the a, b

o
Y 4g pertainly a measurable set. Yurthermore ¥ 1is an invariant set since
= f ‘ G ., . i {:;-f / #;
Yim inf < ) ;i:g 7o uﬁ o i sﬁfﬁééj’; .;5 iy 3“',5
Bon Qi ¥ »
T e Ty ol g P
g ol G 4; P ‘?& B
That is, the equality holds with 4

Let € be sny pDeEasurad

L e
ef f af Finite weasure and consider § - By



1
i

The Function f - by 1= cevtainiy intepral.le and so we gan &pprly the
o

ral erpodic theorsm to it,  Let ¥ Le the snalepue For this functien of

v

Fhe set E oocourring in the statement of the maximal erpodic theorew,

Feer
FEERY§2

we have v
!’ ~ | o ,; ?w i o ) .
j‘“‘? [{ fix; - ég ,{éé’g§j C/ ! {14.1%
fs
et Y & F

itk |

' i
for 1f ® ¢ Y = b ¢ lim sup L f{TjK)
I ey 5P :

j=o
and this implies that at least one of the surs

Boef .
= Z firx) > 6
. j#@

Thiz in turn {implies that

S [T =8X (T ] 5 0
420

and hence x & %o Thus v e ¥,

Hence

!léiﬂqﬁﬁ{“% j;,{q’”i;@%mﬁ 7 %/M{’gj
R R .

. f,dm’({} = ﬁ,/éj {;ﬁmzl ef/«ma

This iwnlies u (¥ )< =. To nrove thls statewen recall that p is g-finite.

=1

)f;j‘;
"

is,

35 3 XwUS amd u(s) <o

°1

¥ = U (Y(}S4) {14.3)
&

Honee W{}f‘% - /Lfléﬂw _e"w (grg{ {Y‘ﬁ“g}}
©Tf iful 420

Without loss of penerality we can take the as nop-overlapping. Then

s

Ty see pow that p ( ¥ is in fact zevo, apply the maximal ergodie theorew to the
functiens £ - b and a — §f on the set ¥ {(a,b) itself. This is legitimate because
{a.hY i invariant undeyr T {alreadv shovn) and both §f - b and a ~ ¥ ave

# .

{ v Thias Finite measure).




-
=

|

R owe pel ‘
/ !
Jy ! foed =4 ) o perns 2 0 (14.5a)
/ ‘
Jy (a= fia) d oy no (14.50)
Adding ?iﬁiﬁﬁf
' (14.6)
,{Q“éﬁ}j/ (:%/wfx} I !
¥
Put b ¥ ow
R JM{Y} = 0 (14.7)
Aprlying this result Ffor all rational a,b $ a < b we see that
(14.8)

-t ; yod . e / ij
7 Y PSR | A £ '
e £ ¥ TR0 liming £ 1) limsup 2 (T
T e a2 e 7 - of dce
#
for all x with the ezception of a set of measure zero. The limit funection T
is also, in fact, intepgrable. To see this we will need a lemma which we state

without proof. For the proof see liglmos - Measure page 113.

Fa tou's Lemma
IF f is a seauence of inteprable functions for whieh lim inf jfn{%§&p(x} € w,
' N f

n-bes

/{iﬁ_ d/@m; & i:’i;:f//ii‘ T i:f/“fw

-

: %
New back to our assertion that § is inteprable.

Cnﬂ§ider et . at 1)
) w > . ¢ £ & ) &
g’!«&fﬁﬁ’fﬁfﬁ?ﬁ'f“” §£z j//i’s’?aiic{;,w;»} £ /;;mi} et
j J?ﬂ# ﬁ‘ .

snd apply Fatou's lemma, then it follows that £ is inteprable.

T is simply a consequence of
g} ¢
T FLr

Rl
fut this states that

Then the limit function f(xr) defined by f(x) = lim inf Fn(x) is inteprable

and

%
The invarisnce of F under
£ 4

Newf ‘gl'
. A -
Gom AT gi?xf“ ,
! R oy D
LR ] J"“’
whenavey the llwit exists.

$ia

{14.9)

® . %
fo(Te) = F (x}



P

R P U S Py S Y] oot {ug '
remaing to syove fthat 16 g {3} < « then

F e e f e, :
jg ff Py ,%;M faf B jg ﬂﬁfﬂ?@:ﬂ? :”:f;m L ad

-

Umre that +oie 1a the onlv place where ve use u (X)) €
Aepiy the parimal evpodic theorew again.
LR
W F(x) »a
. ¥ . ) . - @ .
pwerywhere on an invariant set ¥ & X (obviously measuravle}, then at least

cne of the suma

?“w"f ; :
L FUTx - v
JE=O

L)
wmust he non-nepgative for each € 2 0 and % € X

and hence

j i{é“ :f/fmf tx} Zo C*//“ {X,}
2,4’

(14.10)
*
similarly £ (%) £ b guarantees that
[ 0 dutx) £ bu (X)) (14.11)
Kf
Now let
s b ol - % . R
}{[ﬂa“fx!u & f1 & (ren)) Mr0, Kend y intfegers (14.12)

and apply (14.10% and (14.11) to X(k,n). This is again legitimate since X{k,n)
is invarisnt.

Hence we get
) -2
g;'ng’mm;} foxt dueral < “”*’M‘l’w’”””i (14.13)
f&'n:

Putit alseo follows from integrating

k2" 2 f Tt < (ko) 2 (16.14)
B2 (Klen)) € e A ‘}f’l’””’ < trend _aafJelr 1) s
o

subtracting {1&»1&} from (14.13)

2 R i) & /f§f§f~ffx;§d”’“égé 2w (KR )
«km{'ﬁ;?@aA )



[ A
Loy vb

Mow swuw over b oy fixedin to get
ff { ff' £ e & Wﬁd {gfh} & %5
P £ o LTV of e %w}g s o Lia.Ld)
B i - p Y P
| }ﬁf ! J v 2
Sipee Lo ‘rue for all positive intepers, the left hand side vanishes.

This coppletes the discrete forwm of the theorvem. Tor arnlications to
statistical @eﬁhanieg we need the continuous case of the thecrem. This, however,
follows readiliv 1f we observe that the original proof did not really depend on
being discrete. Ve first, however, state a covollary vhose proof is left as

s exereise.

2

Let T be s measurespreserving transformation of a measure space (X, %,u)
w -t .
1 FITR) mymono

j?m

into itself. Then everv subsecuence of the family :%2;

#
for which n-m + ® , converges almost everywhere to the same function f which by
the above theorem is Integrable. Suppose further that there exists a set § of
measure zero in X so that T is a bijection of X-S, then the sawe conclusion holds
with n>m30 replaced by ndm.

. . .
Ve know that if T is ergodic then f 1s a constant almost everywhere and
# .

f 4s integrable.

lence it follows that i1f

' ] %
ul{¥) = o then f = 0 a.e.
and 31f uw(X) <« =  then

[ e autw = [ £ du = £ (@u®

S finallv, iﬁl” ezg?diﬂf’;*je getb /;‘{M; ot () . e |
lim T X F(Th) = s (14.18)
M g wlp P j: baad - .

That is, the time avevage I1s alwost everywhere equal to the space average.

Notice, hovever, that this does not rrove ergodicity, That wiig come later



The funetion § - Ly | is certainly intepralle and so we ean apply the
o8 "

wanimal ersodic theovem to it. Let ¥ Le the analogue for this function of

the set P pceurring in the statement of the maximal erpodic theovew. Thus

WETOTAWE

e
w

Fo
S—

1[ i £ - &ng‘ﬂj@ﬂcx; wo o .
0“'?

oy ¥ o F
for 1f 1 Lo+l el
or 1f e ¥ h < wosun F(T %
$ oy anfe GE¥ B ng

snd this fwplies that ‘at least one of the sums
5 "J”’g i J7
L7 f(rh) >4
J'fa '
This {n turn Implies that
odnd . é - j .
Zi%"{?’x}wék’@{? x)j » O
d=e
angd hence x ¢ T, Thus v & Fe

Hence

gi%f’“%“‘“ : ‘élff{‘”iaf/“‘” 7 bl (14.2)

;:‘/M[f}' = é’é | foal A A ()

This fwplies v (¥ }< =, To prove this statement recall that u is g-finite. That is,

: S : aﬂfg TR l: .m.
j_ig% %= U im‘d gg(&i}«f

Without loss of penerality we can take the Si as nou-overlapping. Then

¥ = U {Y'!’}Si:’ {14.3}
&

e

llence () = /fi;;ﬁﬁ s {Lf: {/Yﬁpﬁ}j

< Ef fpoag 2o

Te see new that uw ( 73 is fa fact zero, apply the maximal ergodic theocrew to the

e
be
P
o
Je
&
£
S

functdions f - b and a - £ on the set ¥ (a,b) itself. This is lepitiwmale hecause
¥

W

(a1} 1ia ipvariant under T (alreadv showm) and both f - b and a - f ave

fins Finite weasurel.




,
jy {1 =¢) ol stins 2 o (14.5a)
_/f}» CE féazj ,g:{f,wfm o : {14.5b)

Adding vields:
¢ e
(a~b) [ 5fﬁéfa§ 2 0 (14.6)

Y

Bt b » a

c. mlY) =0 (14.7)

Applying this result fcr all rational a,h ® a € b we see that

I 4 X f{ﬂxiw /;m.ﬂ; Yf(f‘g;}’ lim sup % - {{TJ‘) (14.8)

w Bie 3G =~ D é’ ¥ Of J &

. #
for all yx with the exception of a set of measure zero. The limit function f
is also, in fact, integrable. To see this we will need a lemma which we state
without proof. For the proof see llglmos - Measure page 113.

¥a tou' s Lemma

If f is a seauence of inteprable functions for which lim inf ff {zxydux) < =.

feaxd
Then the limit function f{xy defined by f(x) = lim iInf f {x) is inteprable
Frieasd
and
o a0t P Jim in j {xt cf 4oted
j{u{ S ] ’n%wf Ir A
Now back to our assertion that f is integrable,.
u0m§ide1 =t A Jaetx)
w0~ ¢ 4 £ &¥ A
16 s « i [y ¢ fir
o J g

and apply Fatou's lemwa, then it follows that f is integrable.

The inwvariance of F under T is simplv a cansequence of

. Nd ; 4
s 4T ferhr s [0 z f”ﬂ;
e J,‘.’a ) i J'

whenevey the limit exists. Tut this states that

3ie

f (Tx) = f {x} {14.2)
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ke that sois s the onlv place wheve ve use y (X} € o,
&rply the waximel erendic theorew apain.

e ’ﬁ:'

TFF (%) »a

. ¥ .. 4 N N

sverywhare on an invariant set ¥ & ¥ (obviously measuravle), then at least

one of the sums i

Z Tx) = avé
aw{f{‘f /

]
wust be non-negative for each £ » 0 and » ¢ X

and hence

4&(; }((,;p d'/Mmﬁ Zr O!//‘” {X’I

(14,103
*
gimilarly § {x) € b puarantees that
[ f£0x) dulx) £ bu (X)) (14.11)
Xﬁ
Now let
L ¥ . - ¢
K{hn; e.-fxfku? & f(xﬁ«é(ﬂwj) ;%7‘;; Eaad g ,gi@avré’ (16.12)

end apply (14.10) and (14.11) to ¥(k,n). This is again legitimate since X{k,n)
ig invariant

Hence we get

xa““,«w{x{{&n}} jff“’“j?‘w“ "“93'2/“{#“”,/ (14.13)
Xfé’n)

Putit alseo follows frow integprating
- % = -
kN g fag g (ke (14.14)

that

2N (K thn)) £ [ £ durixt < E’*"““”ﬂfﬁ?kwﬁ (14.15)

ﬁfk«ﬁé

subitracting {14.15) from (14.13)

“2 e Xtrnr}) £ /ff:;; <fra JOAS DS 2w (e ns )
" HLE 0



14,4

News sy over B for finedin o peb
) . ot (X ) ..
{ f R ERIN B — (14.17}
; 8 2
Sives fhis ‘rue for all positive intepers, the left hand side wvanishes

This vowpletes the discrete form of the theorem. TFor apnliecatioms to
statistical ﬁeﬁhanicg we need the continuous case of the theorvewm. This, however,
follews readilv if we observe that the oripinal proof did not really depend on
being discrete. Ve f;rst, however, state a corollary whose proof is left as
an ewnercise.
ﬁggﬁli&rv;

Let T be a measure-prﬁserving transformation of a measuTn space (X2 g}

tnte itself. Then everv subsequence of the family ,.,,,,, f f”u % SR Al

2 von
) ‘:E «
for which n-m = = , converges almest everywhere to the same function £ which by
the above theorem is integrable. Suppose further that there exists a set S of
messure zero in X so that T is a bijection of X-S, then the same conclusion holds
with n >m%ﬁ replaced by n>m.
* .

e know that if T is ergodic then f 1is a constant alwost everywhere and
5 :
§ is intepgrable.

Hence it fellows that 1f

: %
p(X) =«  then f =0 a.e.
and if w(X) <« = then

[ £ dute) = [ £ @ = £ @u®

S finally, for ergmdic T we gat J/?{{k; oles tx}
A= .
. i TH 1 = e 4. €.
e Py ;z %f o P fX} (14,18}
Mo e Sy B J" -

ek is, the tiwme averape is alwost everyvhere equal to the space average.

Wetice, however, that this dees not prove ergodicity, That will come later



Continuous Case. Lebt -

o pye asnace (X, T,ul, thes
Cage
Ll
| flm, 3 dt T » &
: £
o
w9

I oz independent of the Individuesl behaviour of 1

FE(x) dutx) = [ £(x) dulz)

Before the wvmwﬁ beging we have to sscervtaln that o

that F{x } is locallyv inteerable in ¢

This, however, follows frow 3 things.
1. Tovardaoce of the weasuve under z #*Rt
2. Yessurabilivy of {t,m) = %,

LY ‘3 o il . .
Sabini s Theorews

1¢ 1F(x,6) | 1s anm integrable function om ){ x ﬁ:ﬁ.

Soeow, It defines su {nvariant integral le fuobion

thgn fa @] £x,t)|dt or any other order exists and hence [|f(x,t)]dt exists

for almost all =x.
In our case we have from 1. & 2. that

%

f?%f‘ .i&uix, is Independent of £ and Findte sod hence phat

[ v § o ok . o 3
! &@%f{%gié existe for alwost all u.
: 3

can restyicet ouy aftention to inteﬁ%ai 5 and T Lecsuse
ind i *I R




Furthermore, the vemainder tewwm

& 4 g fgq}f{, Y B
R o ‘jf;:ﬂ; ;i ;{EK)LM. 4 i ﬂt?
“ {1} s
vl
¢ N g vT ”}*JA_ A o T8
LTS leCe,) ar + fl(x ) lec]
) {t} [83-1 °

Now et A be the flow through 1 second

Then

21

IR < f%:g (171 I %i‘fxg)Edt-&A{SI%i I
Y

< {} hecause

I£(x) lat

ilow use the corollary of the discrete form of the theorem in the form that

-1 i
a wm = % £{1'_) converges a.e.
fi,m 4t} N b 'Y
. i

gah,yx - anw}.,mﬁlg + 0 a.e.

But "ot : . nod “,J |
. 4y o -
e 0y ) ] :;%,mz fira) - ==3 F4
JEmd T
o ! e ¢ (iij sg
-»/w Zﬂf"?‘xh;::j /ﬁ‘x IR ff ;m;—,ﬁﬁn, A
J T o NIy e
, 7 kg :u f}"ﬂz}
Nowe , % t A {f( }%f} x4 Bt - pon nﬂm»zg’”f
et f{f‘xﬁ -~ f7
LRl , i
a’m ml “ m'?u“ "f"vw_ g;f ;’f df ? lx-j R ﬁ’ <. e %
fnd hence - o M sy
i b n=1l.1 g
L, Ired « cah] -
We now replace T by A and £(x) by
L S .
hix} = fghix?j}gdﬁ
fsfod

- ; |
Henee Lri- L33 erf o
T-5 4&W 'é“ffj 7 J[ {f'@aiﬁ’f‘" + A

Since -E' j»w*iwz * }i;v

?‘
@ ¢ . .
PRI g?{f + ) s needed,

é;gfﬁgﬁj jfj



£5.3
Tow notiee that when S and T are intepers
7 - .
L R Z [ Adx ) (15.2a)

wvhare A x + x, le. Ax = x 4 (15.2b)

and

&

[Moeex) ae (15.2¢)
o

g (x)

Now using the corcllary of the discrete form of the individual erpodie
theorem we know tﬁ%t the right side of (15.2a) has a limit almost everywhere.
fo the first partfaf the theorem is proved. That is, f* exists and is in-
dependent of the indiviéual behaviour of T and & as long as T - § » «, Ii%
rust verify that f* is invariant and Inteprable. But frow the discrete form
of the theorem we get integrability and invariance under A. To get invarisnce

under the whole group comsider

%
f {xt} = lim

L/
Togae 15 g flxp,)de

1 T+t
= dm = f f(x) de
T8 T§ S+t
%
= f (%} a.e. (15.3)
¥We now prove the last part of the theoremw. .

If u{X) < = , the discrete form of the theorem arplies.

{ f*(x) du(x) = [a(x) du(x) (15.4)

But the right side is in Fact f{flf(xt)dt) du(x)
o

50 we get

[ £ ) dutx) = [racdfeex) dutxh

[e]
o [ £0x) dulx) ‘ | (15.5)

The last ecuality fellows from the fact that
for . s 1
"$(x.) du(x) is independent of t and J*ar = 1.
& £ e o . ‘ ‘ 0
YRR Thegyen {s proved.
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We now state anothey consevusncs of this convergencs theat will be

o
s
®

naeded latev.
Theorem

If T ia 2 measure-preserving transformation of a messure space

(¥, £,u) into itself, if w (¥} « o, and i¥ f i3 an inteprshle Functiom, then

. . 1 ngl p L ) . -
im,, f1 A i f’x'i‘jﬁ} - £ 00 | auo =0 (15.6)

That is, the convergence is ip Lf.
P?ﬂﬁr“ :

. If f i& a bounded function, that is §f{x)} M then

",

| 2 2 TSl £ = T £

and the wegalﬁ follows by the foellowine standard theovem nf Tebes~uw theory.
The Em%mggw& ﬁ@@ﬁﬁ@%@d Cemvergents Theepem ~ Halmos pape 110
if fn o= 1,2,... ia a2 sequence of inteprable Ffunctions which converges
2. g. to £ andlg iz an integrable fumction such that
f 0] € sl ace.
then f is integrable and

Hm flf ) - £ dulx) =0

e
£- 2. Tf £ is not bounded it can be approximated arbitrarily well in norm
by 2 bounded fﬁﬂcﬁian. That 4s, for sach & » ¢ theve ewists a g which is
ounded and such that

[aut [fim - 5 (0]

fatet)
kgms%ﬁ’ Lirhpe ;’wﬁﬁ ﬁmmf é;i:f?ﬁ '”él{?”g;,ﬁ %’?WWZ @w’ﬂ “"ﬁ?(ﬁiif
M & wp
4 | ’ | | +£s‘,{m ~ ﬁf;%mscfg (15.7)

v ® :
where § »5 4 POE the % porm and the existence of g is gusranteed by our

previsrus theovsm.



e consider the terms on the right side individually.

b , . ’
oot tomty ¢tz 3Tl = D gl < €
e

where we have used the invariance of the measure under T.
For the second term the First part of the proof applies. To contrel the

third term, apply Fatou's Lemma to h = f-g and get that

el el <

Recnll that Fatou says.
1f 2, is a seqﬁence of positive functions and if lim inf fgn(x) dulx) < =

then
[ iim inf g, (x) du(x) § lim inf fgn(x) du(x))

In our case take ﬁ?»liﬁ{ &,35
-t T
jﬂ*m{x$ T e fJ"”‘ )

Then by the same argument as we used above,

1im inf fgn_m(x) du(x) {}J/}h{x){ du(x)

and hence 1
» n- :
flim -ﬁﬁ; | §=ém h (zj)} du{x) & ﬂh{x)l du(x) < e
n-gree

So the proof is complete.
Fxample
Flow on T, {(n -Torys)
¥We shall use a “"Fundawental Theorew of Fcurigf analvsis' namely that the

functions

1
e (2=t L k, X

Qﬁﬁ, 6319 dxz,‘»dxn} where klf"kh are integeys. S0 we have

"
} are a complete orthonormal set in L”

) ' 0 : .
Lix o xalb ~ . by .y, eup gmgf‘::a ky X)) (15.8)

5&}" - l?@@
wheye msmeans that the right side converges to the left side In the mean, and

. £ ) B
. # - . . T’ .
bayoin, = wj;fﬁ"e”- Au, eapl=2i0 L W) fmwzsa! (15.9)
Le™ JF

, alwavs module L.



| " . # IR
(i} = f{w 4+ 5 ¢} VR3e st

s & is a wector and therve ave no intepers 1, sugh that ‘Eia w {J gnoep

3 ' 1

I, = 0 4F this flow 18 to be evpodic. HNote that the ewponentials ave eigen-

funcetions of this flow, zince

g Y T N }m eqp {2me T &, (k) ra,¥))

= M;"Hé’l'f’ %‘qi f)?; 22 (2 T A 2y

~
[
(%]
®
=
fand
p—

S %very exw@n&ﬂtiél iﬁ a proper function with the proper value
271 T ka8, t).
exp 1%y

From this it is cleaf that the linear independence of the comnenents of a over

the integers is a necessary condition for ergodicity. It is also suffiﬂgﬁﬂt e

cause ﬁtf has the Fourier expansion whose coefficients are

n
B, coe exp {Z%i ¥ a,t)
SH T |
These coefficients ecan not be bk Tk if the linear independence holds. This
- ll

disposes of Lz'invariant funections. %f there is an invariant function £(x)
not in Lzﬁ one can form arctan f{x). This Ffunction wili be non comstant 1f and
only if £ is non cénstant. Also arectan § ié bounded and hence in Lz. So the
preceding argument shows that arctan f(x) is constant almost everywhere. lHence §
is constant almost everywhere.

This flbw,was studied by H. Weyl prior to the ergodic theorems. (Math.
Amn. 77 (1916) 313~352). He was able to show
Theorem

If £ is a Riewsnn Integrable funmection on T,» then under any of the above

erpedic flows

lim - B . ‘ :
T e -5 fg f(xt} dg = ff(x} dx for all =x.

Az we suall sze, this flow fs mot wixing., The flows that one usually wants to
consider in statistical wmechanics, are wixing. We will now charaﬁgerize wmining
and other propevties of flows in terms of the spectyum of the assoclated one—

parameteT group.



Py

e
b

The Flows on T ave closely related to what ave called in

cases in Hamiltonian mechanics. Consider a system whose phase space Is
~ g~Cross
T % (subset of ?ﬂjwhﬁva the coordinates lie in the Tn,amd the momenta in
. ' a _
the ﬁﬁ;and such that 11 ispfunction of p's alene., Hamilton's equations

HEW AYe

p? = 0 # j = 15‘”“5“

N . S ' 16.2
oy {(p) %pj {p} . (16,23

Fach torus p = constant is left invariant by the flow., If the wi(p} are
linearly independent ovey the integers, then the flow is said to be con-

ditionally periodie. Variables q, p for which the equations of wmotion take

the forw (16.1) are called angle and action variables. Hamiltonians which

can be brought iﬁtm this form by a2 csponical transformation are called
integrable.

There iz a well known sufficient condition that H be integrable; it is
that there exist n integrals of motion in invelution, meaning that {¥

figg.y,fﬁ ave these iuntegrals of motion that
{f,, fk} =0 j#k (16.3)
H

e

where §, I is the Volsson bracket:

3f_3h _ 3f 3h )

a
{f.hl = I (mmww ‘
” gmpl 3P, 84, 89, 8P (16.4)

’ £

2

Almost all the problems Interesting for statistical wmechanics are not

integrable,



16.7

The yelation between spechrum and erpodicity.

dn invertgble méaﬁuv@-praaerving transforwation T of avmeasure gnace
(¥, &, u}»af finite weasure is ersodic if and only If 1 is a simple, proner
(i.e., non-degenerate)
value of the induced wnitary operatoy U.
If T is arpodic then the absolute value of every proper function ig
constant almost eyetvwhere, everv proper value is simple, and the proper
values form a subérﬁup of the multiﬁlicative group of the unit circle.
Proof
If ¥ (X) ¢ = then the constant functions arve integrable and Ul = 1: se
1 ig a proper funetion of proper value 1. An integrable function is invariant
if and only 1f it 18 a proper function of proper value 1, this is so sinee
(Uf) (%) = £ (Tx) (16.5)
snd, therefore,
Uf = f as vector of Lz(u} & f(x) = £(Tx) a.e.. - (16.6)
The theorem stating the equivalence of ergodicity anﬁ the constancy almost
everywhere of invarisnt integrable functions implies that the dimension of the
subspace 0E-LZ(K L) consisting of functions invariant under U is ome, and con-
vergaly if ﬁhé dimension ig one the same theorem implies T {8 ergodic.
V¥e now lock at other proper functions. If g is one such

Ug = kp € g(Tx) =jg{x) a.e. (16 .7}

where since U 1s unitary [a] = 1.

Consequently,
lectey| = Al e = [a], | (16.8)
s ulgl = el (16.9)

Conclugion: 1f 7T is erpodic Zg! is constant almost everywhere,



- fupckions £, g as-

Oy g T L
LT | 3

4

aoeiated with the proper walue A, then £/p would Le & proper funcbion

sssociated with the proper wvalue 1. By erpodicity of T, ffg = const, a.e.
which contradicts ﬁha:iin%af indevendence; hence, X 1s a simple proper value,
Hote that the above division is legitimate sinece bv what we have already
shown [g] = const. a.e., , hence |g| # 0 a.e.,
hence [£]/]al = const. s.e., and /g is integrable.

Fnally, if f is a proper function of proper walue XA, and g is & proper
function of proper wvalue y, then f/¢ is a proper function of proper walue
v, Ve see, ghefefur&, that the proper values form a subgroup of the multd-
plicative proup af the unit circle. 0.E.D.

We now state z& continuous version of the above theorem.
Theorem

A weasurable flow on a finite measure‘space is ergodic if and only if 1
i{s a simple proper value; that 1s, the subspace of Lz of vectors left invariant
by the induced aﬁg-ﬁaxameter group is one dimensional.

if Mx is the subspace of all square integrable functions gatisfving

' b
U £ - 25 e, Il =1 | (16.10)

thex EA ig 6n§ dimensional and |f] is constant almost everywhere.

The proof of this theovem is the same as for the discrete case with Uﬁ

replacing Tx, and Rt'repla@ing Ao

replacing U, *,

Ve now want to retuern to the guestion of miwming and study sowe examples
and properties. As a fiyst egawple we show that the flow on ™ discussed
before 1s not mixing though 1t iz ergodic. To see this dirsctly ftom the
definition of mixing take

E 4 d .: u
jlesp 2wi T kj{xj + ajt}/ ig(x)de . codr (16.11)
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{16.1

dntepral (16,11} has no limit s t -+ = gince 1t always oscillates with

@

congtant amplitude; this cannct happen for g mixzing flow for which the

following Is true:

lim fé x.) %o {x) u(dx) = HOMEEMIC (16.133
e N u (X}



“flatevsl Shifts: the Laker's Traasf@rmaéimn

This section preovides an exawple of a wixing transformation (see lizlmos
Measure Theory pp. 154 - 158).

Consider the set X of sequences Ry, %,, Xy,eoe, viere %, € {0,1}. Such

spayences can be wmapped onto veal numbers by the formula

x=7" 274 x, ‘ - (17.1)
1 |

ghen D € x € 1 and % just that real number whose binary decimal is
¢ XyFpHgeew o Conversely each real number {n the interval [0,1) has a Linary
expansion unique except for the equivalence

& ¢ ’ 0 68 © e s cooleoe s s

. xlxga.axﬁlﬂﬁ,,*d. - X X,y anIL 1 (17.2)

By convention we exnclude the secuences ending in 1, l,sse,lycer o I1f we

-3, + x by S, then S is a bijection of X = X¥_ -

denote the map {xi 1,2, .0 o

{sequences enéiﬂg in i, 1,0.0,1,0..} onto {0, 1), To avoid annoving cow-
plications we shall fram now on work solely with X.

Lebesgue measure assigns a measure L{A) to‘each measurable subset of
o, 13 this measure bging erdinary length when A is an interval. This in-
duces & weasure on X via the formula

g (1) = L (S(¥)) o (17.3)

whare evidently the measurable subsets ? of X are by definition the antecedents
gﬂé&r S of the weasurable subsets of {0,1)
‘ C@ﬁ&iﬁﬁ? in particular the cylinder set

of B A e (d » b~ r 3y

AT o {xg,xINBGQXg;*Wh“«~;an %h»} (17.4)

whers ksﬁq$u§%P are distinet positive intepers and ﬁ(k 3 ) ¢%&F&
5 ] L]

are O ar 1. An example of such a set is:



&y

ot

i

Y &

i'e gee that o,  belng 0 or 1 determines whether the points we are con-

ki

sideving are in the left or respectively the right half of the intervals
forwed by the (ki ~1}-st binomial subdivision of the interval [0,1}.

{ne essilv finds that

y (.&““i%e L } == Q:R (17.6)
Ve define ﬁﬁe transformation T by
(Tx)& = Xy (17.7)
hance | o Q"h ey D(k -] ‘
T‘g( ﬂw’hﬂ o N ) = /A | " o, (17.8)

and B<T~1 (A)Y = ey whenever A is a cylinder.

To sgoﬁ‘that T is measureepreserving in ganera%’ane wust show that the
cylinders generate the g-algebra of measurable seté. Yor this it le sufficient
to show that by means of o-algebra opevations the cylinders cau genevate avery
set of the form ﬁ“iggg,b> } where @saﬁbgi, since the intervals generate the
Borel sets of [0,1) and the operation of taking inverse images commutes with

the g-algebra operations. lowever,

sta e = N U 4T

n (o, ¥l 7.9

.».Qfﬁ

a - -4 PV
shs die 2, %2 <h
EE-N
The right hand side is a countable Intersection of finite unions of cylinders

and hence is 2 set in the o~algebra generated by the cylinders.

1 -
T induces s transformation T° = ST§ 1 on the interval [0,1)

5

1 o5 - o P '

PR .gjwﬁ z

w 2% (mod 1). o f17.10)



ey £ gu K gs Fgy Ky Eysene s xj = 0, 1 (17,113

where we leave out all sequences that are eventually constantly 1 in either
the positive or the negative direction. We introduce the same cvlinder sets
a5 before but with the restriction to positive integpers of the ki removed.

Ye introduce a map Sl of X} onto ¥ x X via
CRCR I Kw25 x’”lg KO' ‘Xl, Xz,,o.-

+ (ys Kypeees Xy Kgs B geee) s (17.12)
and then map this pair into two numbers from {0,1) via the maps 5 and 5'

defined as:

o mj )
x = z - xj - Xys¥ygeen + x €{0,1)
j=1
(17.13)
y = ¢ ‘ Zjnlxj : s’ E 2% 19 X_grees +y e [0,1).
J et
The map S, = (s x5")e 8, ¢ (xi} + (%,¥)
maps Kl onto [0,1) x {0,1) and we define
v (Y) = L, (8, §9)) (17.14)

where iz is tﬁe Lebesgue measure on the square and ¥ is an antecedent under Sz
of a L&besgue’measurable set.

It is still true thatﬁt{,ﬁ%‘m%“}: Q,‘nand if (T‘x)j = %y, then
ﬁ(Tmi{ﬁ)) = u(A) for all eylinders and again in fact for all measurable sets.
The induced transformation Tlg on the square is

TQEEX;Y} = {X',Y“) (1?:15)



iy -
whara

$ . & PO g § g
w o= Em z 3 ﬂ§$1 cw 2w {mod 1) {17,163
j=1 )
‘= 1° ijmg x
¥ fmnen 141
=% (e, +1° 237
jmmm j

=13% (y) , x, = 0 4% Ogx<s
; (17.17)

i% (y-'-l)., xy =1 & hex<l

The transformation may be pictorially conceived of as taking place in twe

~

steps:

I | o
¢ & 14 .3 3

Za = B

. /.«:;;' -'—:‘—/:':/{‘/-/:»:'

stepd stepé T ,

*sguash “pre” '

The similarity of this picture to what a baker does to a piece of dough is

(17.18)

a o wa®

s B e p
re o ® g
oo & o

N

'
pip @ @

respansi&ie for the name "Baker's transformation.”
The two shift operations T introduced above are wixing; that is

m oy (TN B = u(a) u (B). (17.19)
Tyebee .

To prove this we will first show that (17.19) holds for eylinders and then
ghow that asny measursble set can be approximated in measure by a finite

union of cylinders thereby proving mixing in general.



P & o T PO S s S g AT S ey & '
proof of the mizing propeyey of T

A = . ' ( Q&ﬂp

o F‘&,%

A, = O

be twe cvlinders, then it is immediate that
: , fov
| rg f k= ;ﬂj«(ﬁm thet «.kﬁ,% #

. ' Vg <o Y,
§ el
N A = A .f{- G{ki.::,@hj. whmw%h‘_.%&
amd where £.$é{l};“»,.}hp}t}{hh,”)hgg
- @"{g& :.:cafh‘: !j“’ € =R, apd &’ésm ‘,@%
Now
e Hp +n o Nhy+n
T (A,) = A ™ P
henee for sufficiently large n

{ky + nyeeey kom0 3 0 {y,.cosn b=o0 g

and in this case

T TMANN A = ﬁ“‘ﬂsﬂﬁ‘”’fk,m B, -+ Phy

moereover we then have
ulT {Al) N Az} z W (Ai) u gAz)

and thus the wiwing property holds fer cylinders.

Let now

(18.1)

(18.2)

(18.3)

(18.4)

{18.8)

(18.7)



sufflotently large noulT C{AY &% Y e ufAY ulB) B 4 N ALY
sutfinfently lavge o, ull (A} 7% B} = u(a) p(B). By waking use of (I8.%1%

and the fdentity p{SLJ/T) = u(8) + (T} - (S T) for anvy measurable ssrs
2, T we can proceed by induction on either ¥ or s. We fllustyate the pro-
cedure by induction on v, the srgument on s is entirely similar. Assuming

by induction wixing holde for v and smaller unions we have for sufficientls

larpe o

w(™ Ay A )M B)
i=1 |

Y B)

= v \ P
u{(T (;:_;*, A N BY &S (T (Arﬂ)

1

=TT D AN+t (A e

i=1

= (T (L 4, A ALY B)
151

ww (0 AD w @+ wA_) w®
i=1 ' «

. ¥ . .
u A, OV ALY u B = (& A, \J A_,.) u (B)
= ;:;fl i r+l gl 1 r+1

je have used (18.2) to cenclude that each of Ai M Ay iz a cylinder.

To prove the theorew in zenevral we fivst note that the complement of ¢

evlinder is‘a finite union of cvlinders, in fact:

- S e 5 & " (el + 1) {wod 2) o
(A% %) = g a -
. o g .

This follows divectly from the definition of a ¢ylinder. Ve intvoduce the
aympmetric difference A AB of two sets A

, Bt
AbAB = (A-B) A (B-8) - (18,10}
The symmetric difference has the following properties which we shall need
(1y 4% a8 = aan

)

P
[
s
.
S
j

an (M s ey

LT

{A, AB
eef 1 1

(7111 A 48 C (A4 DY (D2 b)Y
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Let ¥ be the set of those wmeasurable sets that can be approximated

o s

in measure arbivrarily well by fioite uanions of cylinders; that is,

Ag XO éi e O‘EE eviinders Dy,...,D
on .
guch that Q(A&{Qﬁﬁ ﬁ&} Yy % g (18,05

n .
if A e £ and i AA(Q;% DP} Y 2¢ , then by (18,11(L))
e Qb ¢ o) e e
p{A A{kwi ﬁk} 3 o= M<Aﬁ(k#1 Dk) Y =g, £18.148)
n
but ( By } @ {}jﬂkn aund (18,23 and (18. 9) show that this too is a finite

unnlon of {:ylinders,f therefore

o A
Ae Zo = AT e XO. {18.17
O ' ;
Lat now Ai € iﬂ, 1=1,2,.... and set A minlAL" For a given £ » pick an ¥ such
that
u (AL {t,!A ) ) < /2, (18.18?
éw} o
i, 4 ,
Fbr each 1, 1 = 1,2,..., N pick a finite union of cylinders éa& Bk auch
that
3
ua;a (kj? n" y ) < S/om. (18.13)

W& now have using (18. 11{11}) and {1B.1L{ITTY)

quﬁ(u LJ D) )5

£=l k=l
] N Ny
SM(M(UA>)+ w((uAL)A(u uD) 3
f=1 I3 (w1 k=1 k

€12 + w(&./fﬁé(k_,ﬁ D)) =
g=1 kmi K

ia

€ N n,
. i i
€ /2 +EPw (DY) <«
éﬂl E k”lk »

« 512 4+ WEFIN = ¢ (182
Thevefore
- . o 1
fe et L dml,... S A e 5 810
& ‘,aﬁ PR © *;? é‘"l 13 O (3.,1.[



Py (1817 and (15.21) we s % 4s a g-alpebra and since {1t containg the

v must coinclde with L the g-alpebrs of wmeasurable sets since the

latrey ta the swallsst o-alpebra ﬁﬁntainﬁnﬂ the cylinders.
Ve conelude th&?éfﬁre that any weasursble set can be appywwiéataﬁ ar-
bitrarily well In wmessure by finite unions of cvlinders.

et ¥, G, now be any two measurable sets and A, R be finite uniong of
cylinders which approximate them in meazsure.

Newwe

(NG - TN B

e

= (THELA AT N B
= (TN ) YO %) Wty oy NS
= (T C(F-AY Y GY W (TR Y (G-B) ) . (18.22)

A similar egustion helds with (A,B) and (F,0) interchanged; combining this
with {18“2?}.#a econclude:
(TTNEO ) A (TN B
= (TP M U (T R A-F) N By U

TR Y (e-B) 3V (T T (A) N (5-G) )

& T (aAFY U (GAB). | (18.73)
Therefore,
TN A TR Y <
£ (T P(AAF) Y + y (GAB) =
= yu {AAF} + u {GADY, . {18.24%
and the vight hand side can be made arbitrarily swall. By plckiog & and 3B

appropriately we mee that we can make

T N e - WA B < 2

mvmwwm

% Fxy . B » g 3 €
AY wind ~ uw (F} 'gz(:.,}i e f

b
g

L)

Ly
H

g o
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and, therefore, in wiew of (18,25 we have

Tm o (T HFING = w(P)uld) (18,703

e

—

for all measurahle F and § and hence the transforwation T is mixing. {

Sratvistical Regularity

We now come to 8 series of rasults which aim at ewplaining the “roulette
wheel problem'; thaﬁ iz, how can & mechanical svstew such as a rouiette wheol
which is pr&sumahly;gavarn@d by a deterwministic mechanics pive rise to vandoem
cutcomes? The r@lévance of this question to statistical mechanics iz evident.
The theovems of 3tétisti£a} repularity give a partial answer to this problem,
however, as they are idealized to infinites relaxation times and thereby lead
to the physically too strong result that {f wmining {s present every wmessurabls
set 1s statistically regulap whereas an actual physical system with finite
relazation times will have a smalley nuwher of such sets. Neverthelesz the
idealization is aseful in developing an Insight into the zituation and we
shall pursue 1t.

Ve eonsidey & roulette wheel ideslized as g measuvrable flow; it is started
#t a given point ueX (position-angular veloeity space) and allowed to run
continvously., At a time ¥ one then obserwves whether x_ is in & measurable set

oy t
v

or not (say whether the ball i3 red oy not); this procedure being a substitution

for the actual process of playing roulette in which the ball is allowed to cone
to rest. Suppose the wheel Is spun many times so thst the probablilicy dfs-

tribution of initial = {s given by a pesitive integrable function f satisfying

N
Iow

gfﬁy = 1 (The existence of this f is in fact a stromg macroscopic sssumpiion
Then the probability that the ocutcome & 1z found at time t fs:

§fiw) Xﬁ{xt) pl{dx} \ {18, xoy

where fg the chavacteristic function of the sutcowme A. T ia

Ky

. 2 ¥
|3 i

peadence of this nowber oo F oand © that we wish o study.
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Definition
in event A (i.e. a measurable subset of X) Is statistically repular

retative to a measurable flow if for every positive integrable function

Toden (f, 1)

exists and is independent of £.



‘ Lecture No. 19

.

I we tele the s in the definition of statistical regularity of & set
A yelgtive 10 & nepsurable flow to be the cherscteristic function of & messur-

whis set B of nog-zero finite measure, then the defining stetewent becumes

.00 0

Tim e = L (A) (19.1a)

- u {B) ,

rEA ) | |
u(B) {1g9.1v)

where the second eguelity follows from the invariance of the measwe under
the [low.
Ieoren

e 1m HOLN A

Lobr u{n)
set B of non-zero finite messure, then A is statistically regular with respect

= L (A) bolds for every mess.urable

Lo the flow.

. Pefore we state the proof of the theorem we need a definition.

A simple Tuaction is one of the form f = [ €5 Xg where
Sy .
the sum-is finite and u (540 <= . Te. § is sn integreble

step function.
Proof

if (19.1a) holds then

My (L, Nx) =LA (5D

=
e

A0
L4
[

[N



for stmple fmotions. 1% is s well-konown theorem in anslysis (see Riesz and

Ragy - Pumetionsl Anelysis page 35) that integreble functions can be mfbitfﬁriiy
well approcimated in nors by simple functions. That is, glven an integreble

f ognd & >0 . there exists s sinple function § such that

[ lee - ¢ 0] dutx) e (15.3)

f5_,s XA); L) (£,0] = [ %) - G xy) (e, x,)

¢ -

- L&) (g,1) + L{A) (g-F,1)]

s ld gl DI+ %) - L&) @D
t

+ vt (el

which is ms swall as one likes for z sulitebly chosen & and all sufficiently

large ¥ . So-the proof is complete.

How apply the criterion of the theovem t0 the case in which B is an in-

varisnt m&aﬁur&hlg set of non=zeroe finite measure.

Then
LAY = B“Q%{L"‘”{gg
(19.4)
If in perticuley ¥ (¥} £ oo ; then 3 = ¥ yields
v(A) .5

B in thet case the criterion for statistical regularity reads



(19.6)

whinh ﬁmldﬁlfwr all measurable B slpece 1% is trivi&lly true 1T B bhas messure
gere. Dot bthis ig precisely the eguation that occeurs in the &@fiﬁi%i@m of
the wixing property except that there it must bold for all wmessurable A. In
this commection we have the following theorem whose proof we have just glven.
Iheoren |

A megsurable flww in & Tinite measure space is mixing 1f and only if
every measursgble subset ls statisticelly reguler with vespect to the flow.

In this sense, it is the mixing property thet expleins why sn idesl
roulette vheel works r&g&r&l&ss of the p&wﬁieular ensenble thet the bhouse
upes Lo splo thé wheel. That is, on the aversge, black or red will occur &
Fixed Traction of the time regerdless of the force with which the ball is
sterted sploning.

Added Historicel Hemarks

See N. S Krylov - Works on the Foundations of Statlstical Mechenics - in
ﬁ&%&i%ﬁm This book consists of Krylov's Thesis {about 19h§§ gnd an unfinished
manuseript on the methematicsel foundations of Statistical Mechenics. Krylov
reslized the importance of the wmixing property and emphasized its necessity
for statisticsl mechanics. He iz guite dogmatic in hils spprosch and stsies
thwt there ars ﬁéﬁ@ﬁtﬁ@iiy only two problems In étaﬁis@iaal mechanics.
1. inder vhet clircomstences will mechanical systeme. give rise to laws thet
can be formulated statistlcally? The theorem just stated ahéve ie one

prrtisl answer to thiz gquestion.



wide open. KRow doer one relsbe

of the theory such as Boltzmsnn®s equation?

Krylov furthermore made caloulaticons on o herd sphere gas {which he
s mn ideal gas). He com awrﬁd z sphare anﬁ followed it through a
single collision {gﬁowﬁ time ). Now he pade s small change in the direction

one of the &@h&r&@ gnd asked how big the resultant solid angle would be.

uncertainty - 5@ coneludes thet the ressom that stochastic models work i&
pecause the Plow is mhaing .
I shell now meke some @amﬁant& on various cheracterizations of ergodiclivy.
mixing, wealk mlxing, and their physical sigﬁifiﬁana&,
Fhysical Iﬁtwrpr@%a@i@n of the Individual Ergodﬁc Theorem

We kanow that

iim ;"g—m f‘r £(x,) dt = [}c £ (x) du(x) )
T-fe ® u(x)
Applying thiz to Xy where A is & finite measurable set we get
t4m Time spent in & during glme interval (5,T) _ ey
194
T Gobeo -5 A u(x) (19.7)

5 naturel question to ask now is, "Suppose we know that (19.7) nolds, is the

ity
fnd
-3
E

w ergodic?® In this conmection we get a host of theorems answering questions
o this sort. ALl of these give aiternaie characterizations of ergodicity.
We will state the theoreme Ffor cescades. 1t is a relatively siwmple matier

o modlfy the proofs so thal Cehe shbatementa hold Tor flows.



T % is p pessursepreserving transforeoation of a finlte messure spaoe,

sad for every iptegrsble Tunction

T

i . 4
B, £ (T”‘H} +  ponstant A.e.
=0 ,Q (19.8)
then T i{s ergodic. Furthermore the seme stetement holds if (19.8) is re-
gulred only for gh&r@ct&rﬁshic functions.
Eroof
If A is an invarlant messurable set, the guantity
h an =l . B
L5y ah =y ave. (19.9)
it §=0 A x A :

If, as 15 sssumed in the theorem, this is s constant almost everywhere, then
A hes either measure z2ro or y (X) . That is, T is ergodic. 5o we can
state that, 1T the aversge time of sojourn in a set is egual to the measure
of & set, we have ergodicity. In this case we have an immedlate physical
interpretation.

let T be 2 measwreepreserving trensformstion of a finlte measure space

(% s T s u ) then T is ergodic if and only if for every pair of

messurable zets ¥, & the quantity

-n. L u(® (@ : _
u (TP} 0) e - (19.10)

¢ ; % .
in the sense of Cessarc. Thab is,



L , ~t, {7y w0

T4 i o T e ) s S B f e
ryhan 3»::@

are giving the proof we glve sn unforgettable physical interpretation of

the theorem due to Halmos.
let F dencte the quantity of vermouth in a glass
at time ¢ = 0
Simlliarily let X”F; denote the smount of gin. Then Tﬁ“ Ff} & is
the smount of Varméﬁtb in © after © steps { v stirrings). The interpre-

ration of the statement

1o w@rAo | e
B f i‘."a U ™) v (0) {

is: On the average, the frection of vermouth in G equals the fraction of

vaermouth there originally. Om the other hand, the interpretation of mixing

\ . )
. pT_FAG) p (F)

Tim 3 B e
n-n w (G BoAA

ig: +the limit of the fraction of the voluwe of G whieh is wermouth is the
Praction of the original volume which is vermouth.

We shall see later what is the martini drinker’

oy

s interpretation of wesk




lecture Wo, 20

We now give the proof of the theorem stated last time.

Pronf

G eass.

From the individual ergodic theorem, the characteristic function X

b
hag a btime average which is almost everywhere equal to the constant
2B eca ’
. {K} ECRUSE

f x‘; () dp ()

w | xy,(iz} dps (%)

= p ()

Since for almost all x we have

, u-l b &
i '_“:‘,‘“ ij;o xp (T x)ﬁxaw} = xple X (20.1)

Znﬁégrmﬁiﬁg over x and using the Lﬁbeggu@ dominated convergence theorem

we geb
1 n-1 » 3 n-1 3
e Ly @ FAG) = e = Lol xp(T) xo du )
1 ni-1 4
I = - : N £ ,5 3{’ .
J/ggg_: D \Tx) xﬁ( ) du(x)

*
- [ x (x) %, (x) dubx)
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- PR o S : @ PR fep T wy
So 1f T is erpodlc we have Cesfre convergence. Conversely if u (T F/1 )
- o 7 & 9 ¢
converges in the sense of Cesare {or in any other sense) to  —iori—t
& v \ < p (X}

then take F = G = 8§ where S is any invariant meassursble set. The resulting

WERTO BTG

uw (X}

o w (S =0 or w(5) = oy (R
which is pﬁeeigaly;the condition of erg@&ieiﬁya Here is s%ill another ver«
sion of this criterien of srgodicity.
Theoren ‘ ’
Zf T is 8 megsurs preserving btransformation of a finite meesure spece
(X , L,  #) , then T is ergodic if and only if for each peir f,g of

square integreble functions

Cf fGdduin) . [ g(x) du(x)

ff(Tmz) g (x) dulx) =

u (B) (20.3)
in the sense of Cesaro.
Take § snd g %0 be ¥ and XC s the characteristic functions
¥ ;

of measurable sets. Then the criterion of the theorvem of ergodicity reduces
to that of the preceding theorem and so ergedicity indeed folléwga On the
other hand, to get the converse we must proceed from characteristic functions
to square inbegrable functions. However, if £ 1g square integrable, the

mean ergedic theorem implies that

. n~1 ’
1 - M,‘S . ) L3
PR £ if{‘;z} converges in the mean of order 2 to f (x). Consequently
) 40 . ‘
THI%W.E‘ - ? @
iox E(T ﬁ} g (¥} converges in the mean of order L to £ (x) g(x). That is,

n §=0



tim |

| 5 of () px) - £ () g(x) | dulx) =0 (20.4)
T jmg )

®

i e

aa follows from Schwartz's inequality since

~ - * oy , 1% 3 ¥ 2. %
i1 % %ﬁg £ (zj) g(x) = £ (1) gl | du()slfdulx)| Eéf@“x}*f ) [71
2 ) |
el ] an(x)]
Rut il ronvergence implies that
1 n~1 %
e L 2 s e 6 ) = [ £ () g0 du() (20.5)
Tyehow n ja(}y"‘ x
And from ergodicitf
# :s £ (x) du(=m
£ (%) 5 (0
So ve gel
. n~l (20.6)
4w = ¥ ff(Tj ) glx) dm(x) = ff(x)dﬂ(x) -i gl{x) dulx)
Tiobos n 3=0 ® p (XD

We now proceed to the analopous situation for mixing, that is, we shall give

several criteria for mixing.

Protn

A measurable cascade (or alternatively a flow) on a finite measure space is

niging 1f and only if

a) 1im  (UPf,g) = {£,1) (A.g) in the case of a cascade, or
e u(X) =
lim (U _f,p) = (£.1) 1,e in the case of a flow, for every
e t p(X)

pair of square integrable functions f,g.

Oy¢
o, £ Ry ] )
B tm U0 = P {cascade)
Fe Rl
1dm ﬁﬁ = P (£low}
gm0

where P is the projection

1,8

= w{X) : S - (0.7



20.4

That is, P projects onto the subspace spanned by the function 1, and the con-~
vergence is to be understood as weak operator comvergence.
Proof

As usiual,n if a) is satisfied, take f and g etgualltc))(F andXC, where F
and & are arbitrary measurable sets, and thus get th; definition of wmixing.
Conversely, having the mixing property for any palr F, G of measurable sets,
held G fixed in théfinﬁer product

" Yps xé} and take linear ;cmbinaticns~of XF'S (different F's)

to conclude that

Tk u (X)

for any simple function £. Now pass to an arbitrary squsre~integrable function
f by using

Lex) - 0, xpl < fenl, wen” ~ (20.8)
and the fact that’fof a suitable h, gfmhﬁ is arbitrarily small. DNow keep f

fived and repeat the procedure fﬁr}(c to pet a square Integrable o,

Part b) of the theorem follows because

| LB 1) L (6D e
(Pf,8) p (X) u (X)

and frowm the definition of weak convergence.

~ \ ‘
\ Some elementary statements on Cesaro Convergence. We are leading up to a

theorem on weak wixing, namely.

Theorew
& mesasurable cascade (flow) on a finite measure space is weakly mixing 1f and

only if
n-1
Hn = 3 fas,8) - (£,1)_1,2) = 0 (20.%)
fsos B §ug B (X)

for every palr of square intepgrable funections,

Feeall that T is weskly mizing if

Lyl adrpe - HE0E@ 1 | .
e R (TFAS - =0 5% G B 26,

T,

,;,.u
P
e



This 1is strong Cesaro CONTEY Ren oe of m{?ﬂj?i§ &) rather than &ea@fa LONTE P IET S
ar sven plain @ﬁﬁ?@?géﬂﬁ@ﬁ ?ﬁr&hﬁ%mnreg we pat the following sequence of
fonlications.
mixiﬂg =y weak mining ==» ergodlcity
ginge for sequences
convergence = strong Cesdro converpence -== Cesaro convergence gz we

shall now ghow.

Suppose lim a_ = 2
rdee T

This means that theve is an N such that for & » 0

'av o8 % < forn > N
But
1 n-1 ’ -1
a b aj'm a | ¢ I i&j - al
i=0 - §=0
n-1 o -1
- Loy 3a§ - al 4 = T la, - a]
gm0 o T
oo ] P
< ~§“’ sup  la, - a] + Eygwﬁw
jgi-1 -
< €
1f we take N A
n »{gj sup fa, - al

eN-1 3

a0 conveppence implies strong Cesavo convergence.

Hew mssume strong Cessro convergence. l.e,

1 n-1
3dm Py z %ag - al =0
nwo  C e

1 n~1 ‘
= K fa, ~ a] < efer n»n

11 §,,a j



Bl

0 Fim ), 15'3”‘}
§ s " £ " o e
ey Z mj - a)l & g A P "‘i
b gm) kit -
1 n-l
w | o I za% - al |
' {ea} -
€ g for n » W

s our assertion is proved.

Definition j

A set J of intepers has zero density if

20,131}

s~

[number of interers k & J with k & N1 . 0

Tim
wipHd

3 *
b o

Yimilarly a set of real numbers has zero demsity if

im L(Jf‘s‘gEG,NI} - 0

N o=

Here L is the Lebeagne measure (length) of the interval indicated. Also

[0,N}

15 the closed interval from O to N.
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Cegars to a oFf aod only iF there 18 a

having zero density such at &
Before giving the proof we need a few preliminaries. If F is any set of

positive integers we define for m » nj m, N integers.
vmﬁ (?)Y = nuwber of pe? such that n<pgm
om = V() 21.1)
Thug 1f P has zero éensity pnc (P) » 0 as n + . If P, snd P, are two sets of

vasiti&e integers Qe define P as the gpllce of Pz outo Pl at position n by

P = (Pfﬁ{l,qe.n})\J (?zfﬁn 1, n+ 2,...1) (21.2)
In the partiuqlar case that both Pl and ?Z‘have zero density we have
ﬁN @) = vn(PQ + an (PZ) {‘
° N
€0, ) + 0" (P YN > (21.3)
Lf Eys £, are positive numbers then for all gsufficiently large n:
o 1) < 6y (21.4)
‘ aNO (®,)) < &g, %N » n.
& splice sati#fying (12.4) will be called an {el, ez) - splice.
Proof of Lemma
Let iaﬁ} converge strong Cesaro £o a.
Define for integer p )
' | (21.5)

K = {n] §an ~ al >>;“},

We gssume nob all,K§ are empty since otherwise a =a YW n and thers is nothing

to prove. Note that
(21.6)

po® g =%'%%;C: ﬁy.

-Each Ké is of zero denslity siuce
- (21.7)

,‘(m 4 ¢ ‘ i %113
& o ‘Kﬂ) < P o Xjﬁl



onte mei’ This iz pogsible since by (21.3) splicing any two zero demsity sels
vields sgain a zeyo density set aﬁd.h&ﬁaa by induction Jp@l has zero density.
The sequence of sets ﬁp has a well defined liwmit J since eventually 2ll our
splices are bevond en ﬁrbitrarily large position. J has Zevro density by virtue
of (21.3) and (21.4)., By virtue of (21.6) we see that J contains all but a
finite number of elements of each Kp, but this implies that a =+ aon % ve
have thus proved necessity.

To prove suffi;iaﬂcy assume a_ + g for n € J where J is some set of zero

density. Then

i y T )
s g lamal =g 4T lay -l e
jeJ  3ed©
Coon up |a, - L g - a 21.8
<f OCJ}lz§z‘iaj al + = £jﬂ1 gaj af ( )
jeJc

The first term becomes arbitrarily small as n a-ﬁ since {aﬂ} is bounded and J

hes zero density; the second since a, + a on Jc. 0.EDe

3

Lewma

1f {aﬂ}, ibn}axe bounded sequences such that {a } -+ a. )+ o botn strong
o 1 )

1
Cesaro, then &xﬁ bn} +ab stromg Cesaro.
Proof
By €he previous lemma a, % aon ch and bn +bon d,", where Jl and J?
, ‘ e c . § .
have zero demsity. Therefore a b <+ abon J,”VJ," = (3, v ¥2)» Lut 3100, 1s again

of zero density and applying the lemma once again {anbn} + ab strong Cesarc.

Theorem (Miwing Theorem)
Consider a wmeasurable flow (cascade) on a finite measure space, then tne
following three =ztatewents are equivalent,

1, The flow (cascade) is weakly mixing



2. 1 iz a eimple proper value of the associated unitary opersators
of the flow {cascade), amd thervre are no other proper values,
3. The square of the flow {cascade’ .s ergodic.

Remarks

Given {Xsﬁ,w) we define z r».v measure space (i,g;ﬁ) where % = ¥ w ¥
T is the o -~ algebra genevruted by the rectangles & v B, A, B ¢ Zand ; is the
so~celled produch measure which is uniquely defined by its value on the
rectangies:'ﬁiﬁxﬁ) = u{AYu(B).

1f T is a messﬁre preserving transformation of (X, I,u) then we define §$
the square of T nn'ﬁ B8

T (x, v) = (Tx, Ty), (%,v}€ ¥ (21.9)

In a similar manner any flow or cascade induces a saquavre on the product
space (i,g,u;
Proof

We shall prove the theorem according to the implié&tien dfagram
1y = (3) =2 (2) =» (1); furthermore, we shall prove ié only for the case of
a cascade since for the flow the proof is entirely similar.

Suppose T is & weakly mixing transformation; i.e., u(T “(A) N B) converges
strong Cesaro-ta Eﬁ%%%%ﬁl_ . To prove that its square 1s ergodic it suffices
to show that ﬁ{%uncg)fW é)cenverges Cesaro to Hiélﬁﬁgl , where A, B & I. More-
oveyr, by an slready fawiliar asrgument, since anéuéfg of £ can be éppréximated in

measure srbitrarily well by a rectangle it suffices to prove this convergence

" whenevery g and é are of the form:
A
A= O 2D

A }'Gw D, ¥. Geg £ (21.3107
B .

= F g &

in this case

(TN B = WO N TN o). (21.11)
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il iy . o . .
Eme Way Lo BlLPaZie gn by the second of the preceding lemmas

i ¥{X}
RETR Aoy G HOuEMENQ -
{ulX))
w g(Ayu(B) (21.12)
(ulX))

We have thus proved (1) =2 (3}.
Assume now T is evgodic. 1If f is & proper function of U, the lsometry

corresponding to T, then

uf = ¢f, || =1 (71.13)
Write ’
fxy)=£ ) F @), (21.14)
then ) .
UFa g

) 2 # N )
By ergodicity of T, £ » constant p.e. = § = constant a.e., but then ¢ = 1.

So U has no point spectrum except 1 and since f is necessarily constant a.e. the
wultiplicity 1s alse 1. We have shown (3) = (2).
Suppose finally that U has no point gpectrum except 1 and that this proper

value lg simple. Teo prove T is weakly wixing it suffices to prove

T 1 .
% Zjug fde,g) ~ @ﬁiﬁﬁlsﬁe' (21.15)

for all square integrable £, g. We note that 1f f is comstant the sbove con~
vergence holde trivielly since each term in the sum vanishes; we can therefore

szsume {f, 1) = 0 and it iz enough to show that

1 . ‘
z oy ladee [ o (21.16)

for all £ L 1 ead for 811 g. Equstion (21.16) is implied by

L .n=l Je 12 , : PR
S el eo (21.17)

since (21.17) is eguivalent to the comvergence off a set of density zero of

§{Ljfﬁg}§2 to zero which implies the convergence off the same zero density aset of



¥

Lel 1 te zervo which in turm dmplies (21.168). We now use the spectral

fF,g) = [ w0 (E(ax) £, g) (21.18)
where £ {s the projection-valued spectral megsure of U with the support of B

contained in the wmit cirvele. We haves

i £ W12 1
n Z4=0 o el b jm@ I PydEn £,e) El@y) fag)
= ?.g‘ ?{t Ryj (E(dx) £,g) (E(dy)fsg) A {21.19}
Let ¥ be the measuré of the set {x = y} in the product of unit circles taken-

with respect %o th@ pradm@t measure (BE(dx}f, ) (E(dy)f, £
e hawve

M= {[ (E(am)f, gf} (E(dy)£,8) v (21.20)
{xmy}
By the Tubini theorem we evaluate this by itersted integration by integrating
ower x first:

-

¥e [ (EUyDE, g) (E(dy)f,g) (21.21)
€§y§w’1_

But U has no proper value other then 1, therefovre E(%y}) = for y # 1, therefore

e (E({1} )f, g) (B({1} J£,5) = 0 (21.22)
sinee £ 1 1 and E{E1)) is the projection onto the constants. The integrand of
{21.14) 15 bounded in wodulus by 1 zad for x ¥ v converges to 0 ag n + =, Using
Lﬁ!ﬂﬁgmﬁ s dominated comvergence theovem snd (21.23) the integral must also con-
vergs Lo 2ero.

We have thus shown (2} =2 (1} and the theorem is proved. Q.E.D.

donlication of Some Ideas of Informetion Theory

Sutropy
Given 2 set of metually exclusive possibilities Al,ngggén with respective
vrobabilities BysecesPys informetion theory attributes an Information - log P

to the shservation of A, in an experiment. The avevage information associated with

hj



B

‘éﬁ{ﬂk e §%h v P, }@g B i:}fi@.f,j*}
ot
and is ealled the entropy. The base of the logarithm Is usually teken to be 2

in informetion rtheory since then information is given in bige, l.e. one unit of

informscion is pglven ¢o the ocecursnce of zither one of two equally probably murug
exclusive events. For our purposes the base is drrelevant and its cholce amounts
to & cholce of an overall comstent factor. In (21.23) if O log O occcurs it is by

eouvention taken to be U; this is consistent with the continuity of H.
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f50-45B ) be amother set of mutually exclusive possibilities
£ 143 )
having the correspondlung probabilicias Gyseeosl e We denote by A x B the ex-
periment in which the possibilities are Aiﬁk?

both Aé and Ek’ If &4 and B are independent experiments the probability of

that is the joint occurence of

A B is P Ty and
oF

1k
H(A x B) = - % ? p,q, Llog p.q, =
' jul k=1 4K Ik
= - I z Psd, log p, + p,q, log g =
§ ; H 1
= - L p; logp, - I g loga =
jmi 41 gy K k
= H(A) + H(B) . (22.1)

in analopgous expression holds when the experiment$ are not independent. Let

PLAB Y
Pik P(Ajin) 3(Bj)k (22.2)
. P (B, | .
be the econditional prebability that Aj occur given that Bk has occured. We have
n
b3
=1 Py "l
(22.3)
Ly . Pyl ™ P
k=1 F4kk 3
In this case
. ) m
H (A xB) =~ Enz Py P(AjBk) log ?(Ajﬁk) =
now
=7 Zap Eaz Py 9k 198 Py 9
il Th m
=~ 1 gl Py, logp, - I q loggq
kslkﬁai 1k Ji k=1 k k
= H(A|B) + H(B). . (22.43
We slso define the
H(ajs ) =~ L By tog mgy - (22.5)



w 3“5 = H 5:;‘:; % ff;;‘ we b fhfzf,:}\j 4 i *\f’\,@ gZﬁ Oy
When A znd b oare indevendent we have ﬁ{ééﬁ} = H {A).
Since all terms in (22.4) avre positive we deduce some useful inequalities:

3o(AlBY g H(A x B)

(22,

e
oyt

B (A} ¢ H(A x B).
the second of these has the intuitive weaning that a refined experiment proeduces
move information, Again intuitively it should be true in general that

HCAIB) < H (A) (22.8)

on the gfound that knowing B reduces what can be learned from A. The proof uses the

convexity of x log X.

Digression on convexity (see Hardy, Littlewood and Polva, Inequalities, Cambridge
University Press).

A real valued function om an interval I of the real numbers is called convex

X, + X £x.) + £(x,) )
(oAb ¢ — 2 x el (22.9)
2 ‘ 2 ‘

Applving this twice:

. X, 4% %, + X
%y + %, Ky 4 x, ) £ ( 12 2 ) + £ ( 3 . 4 ) .
2 + 2 ~ =
£ 7 2
&
T f
o Bger FOR) |
& (22.10%
4
This is a special case of
g " zzﬁ x,) ¢ 2 ® z?‘n £(x,), . x.el (22.11)
j=1 3 j=1 3 b )

which is proved by induction:



F

l.\" ¥k e 5 .
={f{2 7 % ®,0 + flx 3} &
2 jv.u:i j J"ﬂ@.l
e ndl .
¢ 27t g2 Fix.) .
1=1 .

Inequalicy (22.11) is {itself a special case of

¥
= g'r‘

j =] j n 3=l

Te show that this holds for a8ll n it is sufficient

£(x,J, x,el

4 ( 5 3

it holds for n-l since by (22.11) we can work down

We have:
1 fi—1 1 -1 1
FORT %1 %) " BG hay ®y* 33
iettiﬁg b4 A go-l

0 " el Fyer %y
side of (22.14) is then less than or equal to
-1

1
= [z} ey £l + F (n 1 Fyey x,)]

7 g Y
ﬁz¢&1a)

to show that if it bolde for n,

13
from a number of the form 2.

I b (22,143

jmi

x, and applying the assumption we see that the left-hand

{22.15)

Taking the second term to the left-hand side to cowbime with the left-hand

side of {(22.14) we obtain the required inequality.

Inequality (22.13) in turn implies that for all non-negative rationals

ey 3% Lyeee,m, oo, # O
J

i

(22.16]



ing this devewminator in the ratios appesring in

(22,16} the Ineguality reduces te {22.13) 1if we intevpret & variable with

integer coefficient as 2 puw of identical wariablesz with unit coefficlient.

If §f ie a continuvous convex function then for all sets of n non-negative

reeal o, with T w, ¢ 0.
i 3

P
P2
ek
”
froct
o]
S

I a.x% /
' —3 DR |
£ { 3 o & 7 “j T aj £ ij)‘

Eroof
1f (22.17) was violated for some set aj then by continuity it would be

violated by some set of rationals approximating «, which would contradict (22,316}

3
Theorem
£ is a convex function with two continuous derivatives defined on {a, b)
if and only if
£ (x) >0, a<zx<hb, , 4 (22.18)
Proof

Assume f is convex and rewrite the defining inequaliry of convexity as

E{e+h) + fle-h)
2 &

f{c) =

(22.19}
%, + % ® b4
£ = 3 2 h o=

1"
=, .

2

Suppose £'{r} < 0, £ ¢ {a,b), then there is a positive § and h such that
£ (e+ u) - £ {e~u) € ~8u, 0 €< u € h. (22.203

Inteprate this inequalitv with respect to u from O to hi

¥
§h
i

\

Fle+h)y ~ £(c) + fle-h)} - £(r) < -

{22.21)
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}
Fat

Conversely ssswrne £7 p 0 on {a,b) and let ays Oy be real non-nesative
spunbers with Gy * o0, = 1. Define % = ayEy Foay%, where Kyp X, € {a,b). Ve
have by Taylors formula
2
g%i”« x} .
F(x,) = £(x) 4+ (x, = %) £'(x) 4 ——bope——  §7(E,) (22.22)
k| ! 21 i
where § = 1, 2 and Ej is in the intevval between xj and x. Multiply (22.22)
by qj and sum te get
» (% =%}
Ta, flzx,) = flx) +Ia - £ (£.). {22.23)
3 3 ‘ k| 53 h
The second term is non-negative since £f" 3 0 and therefore
(27.243%

f(x) = f(z:iqjxj) €2aq, f{xj)

thereby proving convexity. 0.E.D.

Feferences _

P. Billingsly Ergodic Theory and Information, John Wiley & Sons, 1965.

Acecording to the experts the best discussion of the convergence of

entropy is found in A. Ionescu Tuleea. Arkiv for Math. (1963)
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Applyineg our conwvewnity criterion to the function n log

P
8]
nd
5
e
et

2

e log ®Oow
éxz

we find iz to be convex for m » 0. We return to our two experiments A = (Alk**agﬁ 3

» O Foyr w » 0,

T

and b o= (Biﬁ.‘ggﬁm) with probabilizies (piagﬁo,pn} and (ql""°’qm} and conditional

probabiliities Pi%'
We haves

(23.2
Py ™ zkﬁil pjk 4 (2 )
By convexity we £ind

log = 7 . log (%, ,
Py lo Py = Dy Py 9 108 By Piily

s
4% ]
Lo
L
43
T

which when summed over i implies
H(AIB) « R(AY
thereby proving our intuitive conjecture (22.8). of the previous lecture.

H{4} 18 a continuous function of n real variables Pyeresb defined on the
i , n

i wy | |
i B " . 8
0, % pj = 1. This function vanishes whenever any B o 1. By convexity
we have
1 1 i 1
EXL P 1 £ ¢ loe =
o toE e = n i p§ log = E ?ﬁ £
)
£~ Lp, logry
1] pj g pj =5
{23‘&4;‘3‘
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this being in fevs the

information therefore

3

in which s¢i the possibilicdies ave equally Aikeiv

G

Let ﬁn bae a seguence of resl continucus functious; each %ﬂ being defined

-

pj # 0, Lp, w 1, = 1,..,n, and satisfying
af

{1} ﬁn Qpiﬁfuwﬁﬁ ?ﬁ} takes its lavgest value at

spd symmetric in the avguments

2

Ly
Py ¥

L

{23 Hﬁ%é 951%,”3F%5 0) = ﬁﬁ (pi,.g.,ph). in other words if we‘aﬁd 8 poggd.

bility with oo probability of occurrence we do not change the experiment.

G) Hp - ol P 98 Py # g ¥ 0
- afbe ; = w ¥ ol : u
Fﬂ‘i«: 20 ij 1 E(gk, "jME. Pja‘. :lv’
then . .

S . Pu Iyeee =ng‘3‘3€*“““an " o
= % : 5 e : ' ;

H @yw?ﬁ) = o~k L Py log Pys

where A 1s some reel positive number independent of n.

Proogf (Khinchin.)

Let
5\ : L 1. ' . ’
:{J{ﬁv; = Hﬁ"i {?:3 » & &g;;} @ E {23 aé}
By (1} and (2}
“'?/ P f .;‘m - S
Hiny ﬁﬁ%i Saeeest s ﬁ}g%ﬁ#%%i,.b,,‘n*l) ‘ L(§+1) {23@?}A
uﬁmw@ﬁg that Li{n)} is non-decreasing. Let naw'pj é_%», 9y i} pjk w'%

and waing (3) deduce

£
2
fad
@
o
S

Linm) = Lin) 4 Lim).



L i .
e & & g
@
. I g i)
o i} <& L3 & i)
o
I S o Pl e TN e L P .
258 and £23.7) we deduce

Lin®) = ¢vLin} < &{mﬁ} = gL {m} < L{mw+§} e {p+l) L (u) =
r o Lim) 41
iy, o e e
=t & L.{n} &
g €23.9) and (23.310G):

[Lim)
{L{n)

and zinece s can be arbltrarily large we contlude

L@m}'# L log w

] %
LR |

wheye A » 0 by (23.7). Porm= 1 (23.8) implies L{m) = O which iz consistent

with {23.12).

Let now Gypeoeady be sny set of ratignai‘mumbers Egk = 1, BExpress 4 in the form

= 9
d
whare ﬁk are integers and I dk = d,

KN
Define

3 € dyteatdy

(1 oo :
dk s dyFe +dk~1 £ 1
0 ; otherwise

E&ﬁh'pj%qk is either 0 or %/d, and using (2) and (3) we conclude
i )
L (&) =8 (0 ,0ee,q ) + I L (d)

whereupon using (23.12) we get
4 A
g3 om o} F s 3
, Hm(qigagawqmﬁ A 3 log 3
= ~}% I og q,
) Y gy log e

ot
fred

Since Hm was assumed continuous (23.16) must in fact hold for &

{23.13)

{23.14)

(23.15)

(23.16)
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¥ % s %, wl is a ¥ioite wmeasure space a measureble pavtition mod o iz a

K3

subsety (R w {ﬁiw i 2 T} such that

We sliow the tyivial partition {X ~ a set of measure‘zem}” If the set I of
indices i@ fiwzité t}iﬁ partition is called a finfite partition. We associaste
Cwith each A, ¢ (& ‘s.& probabilicy wu €Ai) /v {X). Normalizing the measure
u (£} » 1 we defiune the entyopy of & as

(@) =- I ulh) log u(h) (23.17)
Civen two finite partitions (I = {Ai’ 1e I} and@= %B:;}je J} we can define a

conditional entropy

wC &, 7~ B,) . ula, OB
. i )
wB) Liq W’”‘L log - u(E.)

. u(s,) 1

it

H{A |[B) = - zjw

ulh, 7V B
Sy (23.18)
3
The family of finite particions admitts a partial ovder & called mfinemnt)

== Tger, qeq WA N Byllos

and an operation V:

ave =1{s Nz {u &iﬁgﬁ} $0, eI, §eJ},

3

<@ <& each set of (B is a union of sets of (5 with a poseible
excention of a set of measurs zevo.

There is a partition T4 such that TL & @, YL ; M being in fact the trivial

partition {X} .

It is immediste from the definitions that
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bt

a ol BeE6 = avbc

We have already shown but

Hav@) = v (@) + v (@)

Fyom which ﬁwméﬁiatéiy~f@liﬁW$

BE(@) <H(AY®B),
and as in eqn. 23.4 we alsc have
BE(Al®)Y ¢ u Q)

hence

ﬂ(ﬂ?@ﬂﬁ?@}@ﬁ{@}%ﬂ(@h
By (23.19) »
H(A VB Y vC ) =i {@vavd.

xpanding both sides sccording to (23.20) we get
24 8 B

Blave ¢y s (Glave)+ua (aicy,

and using (23.1%9) we deduce

a2 & @B

H{R{C)ysn (& [C).
The conditional entropy H{

s
g

vavigblie (J

Tes ghow that i 1

ol

® o » B@i@ s n(all)

Details are to be supplied in the next lecture.

8 & decressing fonction in the second variable,

in a different notation that

# 3} 1s thus &u inereasing function of the first

i
{
{
i
i
i
3

., _ .

f {23,149
§
|
H
i

{23,303

£23.21%
{23.22%
(23,23}
{23 .24
{25%.25%
{23,283
3.

(23.27)

must again make use of the convexity of % log z and procesd as in the proof



We shall now prove some of the relations stated last time

MalC) < ma By =2 A (26.1)
Proof
Since 73 < &
(o if @B
L0, fl(Bjﬁ c‘c) = ;g ck I j
| e 1t G S8,
. Hence

SOUERE E w1 6) g (] )
u(®,) L u(G) n(B)
€

Now apply convexity on x log x .

Then
ua; ) 3) g u%iﬁ B,) szmﬁ‘ﬁ B) u(A;n c.) og uea, (e (26.2)
- U-(Ej} | u€3j3 u(Bj) u(c) n(c)

Now mumltiply {24.2) by M(Bj) and sum over 1 and j .

}41“@-1@ By) 1og [ u(B,) }5 Z uiag (e tog { BG |
ie |

iel
jeJ kek

which reads
wa 18 zua]é)
The similaricy of this proof to that of eqn. 23.22 is apparent. Here is another

relation

@ vB|C)suale)r +ud| & | (24.3)

Proofs

we BV BIE) =m|C) +uhlave) TS



ecture 4 : 2
Then the decreasing property (relation (24.1)) implies (24.3). We now relate this
notion of entropy to that of a measurcepreserving transformation. The idea in its

essence goes back to Shanmon.

Definition:
If (1, is a finite algebra of measurable séfs (finite measurable partitiom},
then so is T-kgz,(kﬁl, 2, 3,....) where T is a measureepreserving transformation.
Furthermore, (1 V ‘f-l Q,"N‘I”“V 1:"(“‘1’ (. 1is also a finite measurable partition
and W(Q | T) , the entropy of T relative to 2 is defined by
W] T) = lim sup -f;n( avrigv.. @ a,  (24.5)

- o

\

Comment:

h({Z,T) is usuélly defined as the ordimary limit which fs then shown to exist;
the lim sup , however,; always exists and we will prove thgt it equaflg the 1lim .
Hence in the final analysis we obtain the same thing as in the more conventional

treatment.

Definition® (Kolmogorov=Sinai):

k{T), the enﬁ:opy of T itself is defined by

h(T) = sup h{(x,T) ' (24.6)
s

where the sup Is taken over all finite snbalgebras.
We shall now try to outline a motivation for Shamnon's definition of H{<Z,T)-
The original article can be found in a book Shannon and Weaver published by the

University of Illinois Press. Shannon started with the followings



ciurs 24 3
Measure the informatiom put out by a sender which sends forever letters

chosen from a fixed fimnite alphabet one after the other.

Solution:

Introduce the space X of all messages, i.e., the space of bilateral sequences
with elements in the alphabet. In order to specify the sender, you give the pro-
bability of the cylinder sets which consist of those messages for which the jlo.njn“th

letters sent are aj co ol respectively. Then by a general theorem (Kolmogorov,

1 Jn
1932) you get 2 unique probability measure on X . Then from what we have seen

before, the average information conveyed by the j'th letter is

-Z u( gxng = a} ) log u(‘{ xﬁxj = O3 ) (24.7)
¢ ¢ alphabet

This is a useful numbef but includes no "information" about correlations between

letters. The quantity

«Z u{gxﬁxj = x:j-%l = a“}} log u({xpxj = (O, xjA_H = a“} ) . (24.8)
@,0" ¢ alphabet

on the other hand contains "information" about correlations between the j'th and
j+1l%th letters. In fact, it is the average information comveyed in the sending of
th j°th and j+l%th letters. If we want the information per letter sent, we must

divide by 2. Por n successive letters sent, beginning with the j'th, the average

information conveyed per letter sent is

- -)-:-Z u(ixﬁxj = al"'xj-ﬁﬂnﬂ = aﬁ}) log u({xjxj al”'xj-hn-l = ang)_(za.,e)

alo o Oan

We can rewrite this more compactly by introducing

'.(TX}jl = X (24.10)
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The claim is that then the expression (24.9) can be written as

L nav vl ... D gy

Here is an example {actually it is more of an analogue). Consider the phase space
for a set of particles whose motion is described by a system of differential
équatiomsa Partition the phase space into sets. In this case T is no longer
the ehz.ft:ing operator (24 10) but serves effectively to push these sets around so
that we will tend to geg refinements of the partition. The sup then assures us
of getting the "best" partition under this operatiom. Actually it is ﬁot obvious
why we want the "best" partition in statistical mechanics; it may even be argued
that we want the "worst" partition and should therefore take the inf. The big
problem, however, is how to get out relaxation times for a finite time of pushing
the éets around. |

At this point we-liét two more pertinent references.
A. H. Rolmogorov - A New Imvariant for Transitive Dynamical Systems, DAN 119,
{1958} .
A H¥. Kolmogorov 4, - 'Entropy per Second as a Metric Invariant of Autoworphisms,

DAN 124, 754=755 (1959).

Properties of h{fL.T)

Tn the definition of h{&,T) lim sup = lim.

Eroof:

861-864

| b ) ‘
acalf 7™%a) = 5w e - agl'r"‘a;) : | (24.11)

kel k=0



5

= (Y T @) - sy 1 5a) (26.12)
fees0 T w0 |

since the weasure and entropy are imvarisat under T . Now sum (24.12) over £ 3

the right side will telescope and leave omly two terms.

?{ﬂ(@“ Ty - E?Vl‘r a) - Ka) (24.13)
o1
i1
. n-1 a-1 | n-1
%Z BV T 5@ - "'HW«’)'!'" nmév T°a) (24.14)
1 =0 owl | :

y/ i
Bow B{A[V T kél) is ﬁonotouically decreasing in £ and since all terms are
keml

positive, the sequence in £ has a limit that equals the limit of the Ces@ro mean
occurring on the right side of (24.14). So we have found that
-l

ha,m = M2 L’y gkgy o lm

0
® JHal v Ta) €24.15)
n =3 n 10 b Yot Tl

This last equation msy be imterpreted in the comtext of information theory to means
Take all the information available in =n steps backwards leéding up to the ~1%st
term in & message snd ask for the imcrease in information thst cam be gotten im the

step leading to the 0%th term.



cr stews forward from O .
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Phers is also an aquatiom of

Thus, we alsc have

n=1

Un pw™a) v T o) (25.1)
10 |

oo

h{&Z,T) =

This equatiom tells us to start at O end to refime the partitiom by T to the
n=1*th step and ask for the increase in imformation im the n'th step. The validity

of (25.1) follows from the followings

Proofs
C L oy Bk
, 5" B VT @ = BV T Q) - KA - {24.13)
Ly kel 0 _
e
ey L g =l .
Ym:alv Ty = B(V T @) - B -
Ly k=l ke
I
Subtracting, we get
o ' oo s=l : o b=l -k
Ml v TRy = MV T ~KYV T = KT VI A)
Tl Tes0 Yo=0 o)

If T is imvertible we can get still another form. I.ey

N n
g, = T Bl v ) (25.2)

Fhis follows from spplying ¥  to both the variables T end T’icx, in (25.1).
As regards takiﬁg the inf rather tham the sup, for strictly positive entropy

systems we get irreversibility and the conjecture i§ that such systems are always

E-systems (a comcept ths® will be definegaiglfhe near future). In fact; the com-

B
jecture is that if h(g ,T) >0 for all,{i, we get a E-system.



fauation (25.1) implies fwmedistely that

M&,T) < hi(#,T) if @ {25;33‘

bacause this relationm holds for the comditiomal emtropies‘which were E(éz.§€33
and ﬁ(ﬁi @), snd taking an appropriate @ and passing to the limit we get {25.3).
However, a still sharper statement holds and contains ¢25.3) as a special case. We

shall give the proof in detail.

h{(L,T) < WHZ,D + WA]D) | (25.4)
Proofs
n-1 o=l a-1 _ a-1 _, a=l _, a=1 _,
(v T sedv thafviv 18) = mvTIig ey TR v
K0 | B0 =0 30 om0 =0

4

How use the subadditivity of H im the first argumeant, i.e.,

nel @l n-1 ST N -l . . ‘
BV T asﬁv%jﬁ)gZﬁ(r al v ‘rjﬁ)syMrkairj,ﬁ) v,
kes0 =0 j=0 o S

ke
since the second argument of B is decreasing. Pickihg je=k we get.

p-1

el “k ok nel -
BV T ,@uf;Zum al T8y +8( v T B
Tess0 1= j=0

4
@

® @

n-1 - o=l ,
Lacv ) sualB) +Eu v D)
Ym0 j=0

J }

h{..T) : h{4,T)
so we obtein (25.4) in rhe limit. One more idemtitys

et r,s be imtegers with mn<s amd if T hss no inverse let r >0 .



RS L x -1
¥ T AV Ty = T v T

g0 jer {=0
AL I S obs=r , 1 . mkssrel =i
o e g‘aiizﬁ T éjzﬁ T = o o) K( 'i§o T "a)
b (25.5)
= na ,T)

Any refiﬁement resulting from a finite number of operations being takem separately
or together yields no new informatiom. Thus, im the contéxt of informatiom theory,
the information obtained per letter semt does not change if we take fimite groups of

letters rather then individual letters as the basie unit.

Sgecial cases of (25.5)

g & ¢

hr e, = h@,T)

8 .
Vv Tig,® = n(q,D)
j=0

One last consequeﬁge.of this line of argument. We start with the identity

=1 k-1 nk-1

%a(vgwl‘) (v Ay = k@-») K v T
{0 j=0 )] .
(25.6)
kel
v T4, - k h(2,T)
=0 :

If T is a measure—preserving transformation of a measure space (x, £, u)} and

(L is a finite algebra of measurable sets such that the



5 3% w 2 & =T 7 % ~ o T
generated by the fawmily T fuwsl, 1,...) {18 Z, thea

h{ct,T) = B(T)
If T is imvertible as wall, the same conclusion holds umder the weaker
hypothesis that
o
v TP = I
nEs=
Discussion
This theorem is very useful because it permits us to calculate entropies im
an easy manner. Thus w§ can pick L to be the same as in the previous example in
information theory. In these simple cases when we write h(&,T) as the liﬁit
of conditional entropies, all events are statistically independent and we get in

the case of the shift (24.10)

N n
h{a;T) = = p, logp
=0 1

However, this statistical independence does not hold in the standard examples of

statistical mechanics.



|
Before proving the Sinal theorem we need the following

Tenma,

et o be a finits alg:‘é’bra of sets such that each element of ¢ differs by
& set of messure zero from some element of the g-algebra \ generated by an
&lgebrazo. Let P be a probability measure defined on ). Then for each € >0

there is a finite subalgebra B oﬁ‘z guch that H(OQ i) < e.
4]

Proof

Let the minimal elements of Q. be Ajyeesh, 0< p(Ai). Since -x log X
is continuousenigl] and vanishes on the ends we can find a BO’ o< ‘do <1
such that -x log x < g¢/r if 0 <x < 80 or l_—60 < xs 1. If we can find a sub-

-
algebra B of L whose minimal elements B,... ,B,, satisfy

| P(AilBi) > 1-8y, i=1,...,T (26.1)
then sincezdvi P(Aii Bj) = 1 ve also have
P(a;]B,) >0, 14 o (26.2)
and = I = 10
‘H(a | 3) - -ngl P(Bj)zizl P{A, | Bj) log P(AilBj ) <
' amry
2 L P(B.) € < e  (26.3)
j:-sl J .

The problem therefore reduces to finding a (B satisfying (26.1)
Suppose we can find a @ satisfying

P(A;)
o 2 7’

P4, o Bi) <Bd=min B (26.4)

1gi<r

then we have
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+ B
Pla)< P(Bi} + 5 <P(B,) + 5 P

P(‘(Ai)

» —z— <P(B) ¥

Y 9 o

- P(Bi) - (a0 Bi) <8< oOP(Bi) >

5 P(A,[B;) < 1-3,. (26.5)
We are therefore reduced to finding a (B satisfying (26.4).

Since by the hypo’éhesis of the lemma each Ai differs by a set of measure

zeroe from an element of Zand this element in turn can be approximated in measure

axrbitrarily well by an elementzl we have for each A > 0 a collection of sets
- 0

B, €Z ,i=1,..., such that
* Lo
P(A.BI) <}, 1= 1,...,7 (26.6)

¥ow P(A; /) Aj) = 0, 1 # J and making use of properties (18.11) of the symmetric

difference we get for i # J
(Byoa,) U(B;]A a,) = (8;°4 4,%) © (33% Ag)‘b
T PN c
' B, UB,)A(AS - . D B, ) A(A; . =
. (‘ ; BJ) (a; UAJ) = (B; BJ) (Al()AJ)

» @in Bj)A(AiO AJ.) =

i3

> (Binsj) C(s; & Ai) 9 (Bj A A;,) mod O. - (26.7)
Therefore
| P(B, 0 Bj) <P(3; 2 4) + P(Bj AAJ) <2\ N (26.8)
ir
Ne U (8]0 B;) (26.9)



[ecture 26 continued | rage 3

e P DA A

then
Pu) < r{xr-1) 2 {26.10}
Define
By - N, 1= 1,..., 7-1
B, = (26.11)

X-UB, i= 1,
JQ‘ ta

then § Byseses Brg generates a finite subalgebra'ofz and for i < r-1
’,‘ 0 g
B v 1
P(a0 Bi} = P{Ai AB; AB; o Bi) <
) t | S
< P(A; & By } o+ P(Bi N Bi) <
< P(Aiﬁﬁ;) + P(N) <

- < a+ r(r-1) (26.12)
Also using (18.11) égain

P(a o3 )=P( U A)A(U B.)%) =
i<r Jor J

- P AT 5 ) S P(ola By)) <

R Z " P(a08)) = (r-1)(Mr(r-1)2). (26.13)
i<y

1f A is small enough (26.4) is satisfied and the lemma is proved. Q.E.D.

Proof of S:Lnai's Theoren

It suffices to prove that if B is any finite subalgebra ofz'that

n{@,T) < h{C,T) -  (26.14)
since then | ‘
B(T) > eyp [n (B, HI<H (O-,T) <B(T). (26.15)

et
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n .
( v 779 8-, T not invertible
o o g 90 | | (26.16)

1

n .
v 7Y A, T invertible
js-l’l

then by (2 5.5 )

RO ,T) = b( &, m | (26.17)

Also by (.25?‘()
o(@3,m) <nl 0,1y +w(B|0- )

- n( Q) + 2CBIA) (26.18)

therefore it suffices to prove H({3 l& ) ~»0 a5 n ~> o
Smce@—- is an increasing femily of aJ.gebras,Zo = U CL is an algebra
By hypothesis of the ‘bheorem the g-algebra it generates is . There if €>0

there is by the lemma just proved a finite subalgebra of Z such that
o | o

B B| € ) <& . Since £ lies in some @.N-we neve by (2%7) \ann.

B(RIQ,) <8 VA {) <831 L)< € (26.19)
O € r(B\Q ) = o. | (26.20)
u=% o n .

Q.E.D.

Sinai also proved the following:
(i) If n is a positive integer
n(T") = nh(T) | |  (26.21)

(i1) If T is invertible
we) = nrYy., | (26.22)
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1f 7 ie juvertible then combining (i) and (ii) we get for all integers
h(T™) = |alh(T) (26.23)

Proof
By (25 3) and (25.6) we get
n }c o=l -4, \ :
87, ™ SnEv TOA, TH =ok@,D P
J=0

> b(r™ = sup B(G, T S0 sup h( 1) = mh(D) (26.24)
& '

On the other hand
-1 _ '
RO 2> Y T O, ™ = oh(@ ,T)
J=0
" on™™ 2 nsup hig ,T) = nh(T) (26.25)
up b .

Combining (26.24) and (26.25) we get {26.21) .
If T ¢ invertible then

-1 n-1

1k _ .
H( V (T1> ) ,uH('r“lv le)'-
k=0 : k0
=1 &
“HT TG) » G, TTH = bg.D P
» BT =nm (26.26)

This proves (26.22) Q.E.D.
" Another result is:

Theorem (Sinai)

If T 4s au invertible measure-preserving transformation of (X,E,u) and 24

. is a finite algebra such that
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vV T =z (26.27)

then h{(T) = h(j ,T) = 0.

Intuitively this theorem says that in the invertible case if knowledge of
the future (the left band side of 26.27) determines everything (fi.e. I) including
the past them the system has no entropy; intuitively not "random" or has infinite

relazation timg .

Proof :
e
Stnce dei = T = V I we can apply the lemma to get that the algebra
n=] ‘

a 2} .
U Vv T30 contains for all €50 a finite subalgebra (R such that H( | B) <e.
n=l je=l
Por sufficiently large n we have
n_ no_
Re v 170 » waa|v Ty sEe |B)=e (26.28)
3=l : j=1
by (24.13) and Sinai's theorem we conclude since ¢ is arbitrary that

R{T) = k(G ,T) = O. -Q.E.D,

For a flow Tt we have immediately for ratiomel t that

R(T,) = le[n(Ty) (26.29)
since writing ¢t = n/d, n,d integers we have
lalnez ) = BC @Y = ner) = B (1™ =
= faln(r)) @ wr ) = |3l BTy, (26.30)

To prove (26.29) for all t it is neecessary to nrove the continuity of h(‘l‘t) in &,
for which a deep theorem on the representation of flows is required. By (26.29)
if ¢ is messured in seconds the charscteristic time asscciated with the flow is

)}

h(T 3

lsec



Let ¥ be the space of all bilatersl seguences,,., X 2,3{ l’KG Xl’x?“ ‘e
. hed had ¥ -

=
where the x, belong fo the finite set gal, s ,@r\g . Le‘the the g-algebra

2

generated by the cylinder sets:

{xlog =@y g =0y sovokn =0y (27.2)
e L n :
vhere -» <k <® and n > 0. The shift transformation T is defired as before.

(‘E’x)j = X541 R ' (27.2)

Let P be a probability measure on I such that the coordinate functions define a
stationary random prbcess_ ; that is, T is measure~preserving. We fix a coordinate

j and define the finite algebra (X to be the one generated by the finite partition

ggxij = as% ; S=l,...,1 } o, (27.3)

then

gz ~00

E%; T a I (27.4)

and Sinai's theorem applies. We have therefore by Sinaits theorem and (242 )

‘ n . '
n(T) = W{(@T) = Ln B(Q| v TF a). (27.5)
k=1
nboo -
Wow ‘ ' ‘ r
n k - . )
x| h = P(X, =@, ,...,X =0, 4
e T o 2-' 1 (ogorr®iyy ree ey ) X
ll,ﬂ.slnm z
i=1 e '
0 .
Sa. | . .6
% log P(xj aio ;xj%laail,.. ,,xj%«ain) (27.6)

Usjing the fact that P is a probability measure and { 23.5) we get the bound
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() < log = . (21.7)

4 Bernoulli shift is defined by a probsbility digtribution pi,ial,,..r

on the g's and the probability measure

Pixf@ig’ﬁ%fail“ P S qin) = PiePi1 . .Pin | (27.8)

en X. In this case we have

Plx.st, |X,. o =@ s.. oX,, =0, ) =P, »
J i, AEDR iy J4n i i,

n -n —_ T !
285 | v T )ﬁ-ZJ p,logp,
>ELC kel w1 Pt

. A—r .
pu(m) e - ) By loe g (27.8)

Notice that the entropies of the Bernoulli shifts (1/2, 1/2) end{1/3,1/3,1/3)
are log 2 and log 3 respectively. The +two shifts are therefore not isomorphic
although all Bernoulli shifts have the same spectral invariants (see Billingsley
. 73-TT). ,Theaques%ion of the isomorphism of the above two shifts was an open
problem for a long time until it was solved by Kolmogorov by the introduction
of entr@py. 

. The Maxkov shift is defined b, the set of numbers PyoP i,5=l,...,T
having the properties

(1) p;20 Zp. = 1

- 1
(11) by, 20 L?ij -1 | (21.9)
- .

and)éhe probability measure : 3_
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Plx = @, ;% %0, seesX o0 )= Py Py g Pyg L .LP 20
k i, "l i | Fgan i o T A

(27.10)
Plagay) = 2y
’E‘h@ P are intuitivew‘ thought of as transition prababilities for the transition
w ‘"%g and the P, by v:.r'i;ua of (2’7 9({iii)) as a stationary probability dlstrlbutmn

in the Markov case one has by (279, (27.10) a,nd (22 )y

P(X = . ’X. ;ﬂ. "nu-,}\'.. =¥ . ) = P; s S?
J iy J-1 i, J-n 71 *110
r
H(CL kam.% Z P.P., P, , P, Y
% ; i =l n *n*n-1 1n-lln-2 1211 X
l’nl. ‘

_ .

s-z‘ le Pij log PJ =

o (27.11)
>n(T) = Z PP, log Py, |
1,3

Iin order +o deal with more complicated examples we need a theorem which
sllows us to disregard certain sete of measure zero. (see Billingsley pp. 87-»90).

Tf‘xéz and /@ are subfamilies onwe shall Wi‘t&.’/b = {3 mod O to mean
that each set in v/? differs from some set in }3 by a set of measure zero
with respect to a given meassure on z.)_. .
Theorem

Let {-ﬁ’ Sn=l,2,... g be a nondecreasing seyuence of algebras of measureble

setz, If T is a measurespreserving transformation end if



e @y

v v lim § g§{ m@do | (27.13)
el  i= e

then -
h(T) = lim sup n { C.,T) o , (27.14)

neeon G.L

3

where (. runs over finite subalgebras.

Proof

It is clear that ‘;tihe limit on the right hand side of (27.14) exists;
sance h{ Q,T) is néndeéréasing as . function of G. and é?in is a nondecreasing
family ve are lead to s limit of a nondecreasing sequence of numbers which
always exists.

We shsll prove the theorem in the case (27.13) holds, the other case being
completely similar, |

ir &  is the algebre genera‘ted by, U T ,&, and is the algebra.
n i=0 . n
0

generated by u &. then every set ofldlffers by a set of measure zero from
N=l
a set in the g-algebra generated byZJ . By the lemms of Lectrue 26 if % is

— o :
- any finite subalgebra sz‘ and € any positive number there is a finite sub-
. 3
algebra & on, such thet H{(3 | £ ) < . Since € is arbitrary
0

R(MD,T) < B(£,T) + B(BIC) =

 h(T)=sup n(£F ,T). (27.15)

f(LO

FKov since & QZ , L€ ¥ for some n, and since £ is a finite algebra it
n
has some minimallelements B

1o
, J S : , |
B o= U M\ 7 Gy s Uls e ee K (27.26)

u
=l i=0

Bk of the form
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where . @?% . 1f O is the algebra genersted by the @, then (. is
2 t‘%mv*’“ pe - 1s alg 8 g y @mv ()

A

Y

. n .
finite, G €@ and £ <y 1 (.. We then have
x im0

.. n N
n{€ ,F) <h{ Vv T O T) =n{Q,F)<
i=0 '

< suwp  b{ Q,7T). . (e1.17)
mtan

The last term is increaéing in n, therefore

h&(f,@)snm sup h{Q.,T) (21.18)
. D% @ ‘ Q(}%ﬂ

“and by (27.15)

n{?) < im sup  K{ Q,T) {(27.19)
n-bog (&

n

Fne opposite inequality is obvitusly true eince h{ Q,T) < h(K”)VQ. .  Q.E.D.

Remarks
, ) 1 .
1) It may happen that the 2 , oTe themselves g-algebras and T Y ¢ x n
Then if sen and f”n are the respective restrictions of T and //L to ’2{11 we get au
alternative St»&'ﬁém&n‘ﬁ of the theoyem:

Iz ‘Q{n is a nondecreasing sequence of g-slgebras of measureable sets and
[=-] . .

v @ nsZm@d 0 then
Tl

h(?) = Lim n(P ) o - (21.20)
n-;-’.».m

2) 1If Vg = (. a fimed finite algebra then the theorem reduces to Sinai's
( n : o . , v
theorem with a slightly vesker hypothesis in that V. ‘I‘,"tf)fn is required to be
1 i=0
Z' only modulo sets of measure zero. '



o T ;
va, SZ mod O {27.21)

then

n(?) « lm b( G 7). (27.22)
%o

2) 1+Bc ¥ TLQ or if T is invertible and B¢ ¥ T OL then
i=0 ) i~

b(®,1) <B(Q,T) | -~ (27.23)

Proof

Let T o be the transformation T considered as a transformation of the space
(x, Z' > M ) wherez is igo T’ia,,v or ¥ ‘E'iG.L as 1s appropriate and
- =0 o il o] imwoo

o 1o the restriction of /u.mzo, men n{ @,7) = B(B,T,) end (A, Th BT,)

and the corellery follows.
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Lecture 28

o O AT RN

S @,Lla; m@

B

3) 1£ S\ is sn algebrs apd if either ¥ T"ﬁ{szmad 0 or if T is

iy V' i=L
imvertible ¥ = }i = Z med O then - :
. i —

n(®) = sup h{d,T) (28.1)
a.¢ ¥
Yy HZ is an alg@hra which generatesz'then
-0
h(ﬁ‘) = sup - h(QR,T)
(Y,
, O
where Q. runs mrer finite algebras,
Theoren |
Let T, and T, be measure preserving transformetions acting on (Xl, Z s
“414),and (X Z ) respectively. Then
Ha 27/, .7 My
{=8.2)

h(“l‘l;g T,) = b(T;) + n(T,). s

Proof
Let &.i, i=1l,2 be a finite subalgebra of 2_’
i

algebra { ¢ ,Xié . We hesve

n-i

We denote by 2, the trivial

vo(r X)) e XAy -
=0 ' .
B -1 !
= MT @.lxa v v (2, X T, @2}.—‘. (28.3)
=0 1 |l

The two members of the right hand side are independent algebras in the scnse
that if M belongs to one and N to the other then /u (MAE) = /u(m) /A(K) This

fact implies
(

o 2 "‘i =
T (2, 5 ) (@»12{&2))
nel n-1 -
= B( V(“ﬁ' cz,l 22)}4&3( v (2, % 2@2)%

: -t !
= H( “‘Vﬁ?l@i} * HW’ "i‘? ) (28.%)



Dividing by n arnd passing to the limit we get
n( o, K e, P, XT,) = b{o,, T, ) + B(0, T,) (28.5)

By corollary 4) and the fact that the algebra generated by the family

g &22 Q, ZJ ,Q c Z g generates the o-algebra genex “4ed by
Z we copclude
h(wl k4 Tg) = Sup_f — h( alx Q} =
: @, CZ_ , Qﬁ_CZ‘
1 3
= h(i’l) + m(ml} . Q.E.D. {28.6)

Example. Cascades and Flows on the n-torus T

Since the n-torus is the direct product of n circles it is sufficient to

consider the case n = 1. Iet T bé the transformation x —> x + @ mod 1.
Let Q. be the algebra gensrated by th. partition {lo,1/2), [1./2,1% , then
7% O contains two intervals of length 1/2 snd beginning at -ng end -ng + 1/2.
IfT g is irrational we knowv thet rg mod 1 is arbitrarily close to any presasssigned
real number in E'G,l) for a suitable choice of n. Thus by intersecting

"2 [0,1/2) exd T [0,1/2) ve can get an interval which spproximstes arbitrarily
clesely any subinterval of [0,1) of length less than 1/2. The g-algebra
generated by ¥, T @ is all Borel sets and since T is invertible h(T) = O.
If @ is rationsl then T = I, the idez;tity, for some integer n, In this

case oh(T) = h(T") = h(I) = O and therefore h(T) = O for all a.

Example: Two hard discs on the two-torus T 2

Consider two hard discs of radius R moving freely and with elastic eollisions
on the torus 7~ %. The positions of the centers will be denoted by""ﬁl and ’51!’2

Pa. . .
wh.ere'@l = (qll.’q}ﬁ)’qﬁ = '{qﬂ’qgg) and each coordinate is taken mod 1. The
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e - . " < -
velocities will be denoted by ¥y and Vs whose coordinates are of eourse

unrestricted. There are three integrals of motion!

pe 2[723%,7] (28.7)

- - >
Pa=am K_V‘!l 4 Vij.

The equations of motion vhen not under collision are

; 3
omtameres G 3 b sl -3
‘= w N , (28.8)
» >
dvl ﬂxi

=9 —x=0

ard the collisions sre elastic.

-

. < =
As ?{”l and ?2 vary over the torus the quantities _cfl % Z 1 and ql-qe also

3‘%"‘ @.; *—32) a“\?l *‘;2 & constant of the motion.
The configuration space thorefore factors into the torus of ?{l + '?;2 and th

vary over a torus. Now

torus of q, - ng and in the Biz #'q’; space the motion is identical to the toroidal
flow of the preceding example with the correspending entropy zerc. In the

‘Si“l :qz torus there is a restriction since interpemetration is forbidden:
—-p - )
3y - 3l* > Ur" (28.9)

where the left hand side is interpreted as the toroidal length squared; that
is, the square of the.shortest toroidal distance from the origin to ”C?l ~'<§§T
We have the felloving picture of the gtTl - '3’;2 factor of configuration space,

which we shall cell the reduced cgnfigura.ti@nvspace.

(28.10)
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e motion of the discs induces a motien of the configuration point which is

seen to satisfy periedic boundary conditions at the "edges" and elastic reflections

from the forbidden region., By a change of origin we get another useful picture

of the reduced configuratien space:

(28.11)

where the induced motion again satisfies periodic boundary cenditions and elastic
reflections from the céntrally placed forbidden region. The magnitude of the

velocity of the configurstion peint is & constant of the motion:

}'{r‘é’l«‘if‘éjaa’%m-i”?

(28.1.2)

At each point of the reduced configuration space we therefore have only the
direction of the velocity at our disposal. The phase spéce on which we shall
consider our flow is therefore the direct product of the reduced configuration

space and the uﬁit ecirele representing the direction of the velocity.
Reference:

Y]
F

‘5. Sinai Vestnik Moskow University 1963 pp. 6-12



Femark

A R

Coneerning c@miiticn I of the definition of K-systems one may ask if it is

T,
pessible that WM\ ‘1 = THh® for t, > t,. This hovever contradiéts the other two
conditions and the n@ni;mvmlﬁ;y of L accor&ing to the following argmnent
’min,ce T M\@ My ‘1 “W\ 7T a\’Y‘f? but because\'wk

for t' » t we muet have T \T\{{J “m f@r0<t<t1 - t2 By the group
property of the flaw ve must therefore have Tt‘W{) "H\ \q’ t, hence K"\'Y\as“h\
and by condition II "h\ {(}! }E} mod O. %This however contradicts condition
III since \/ Vyy\ a\'\'\(\ > mod O but le presumed nontrivial.
K - flows and K—-cascades bave the following three fundamentai properties.
A) The o’ corresponding to the T® has denumersbly multiple homogeneous
LEbes?ue spectrum (to be defined later) on the complement of the constants.
B) ’i‘he entropy of & K-eystem is strictly positive. '
¢) Every K-system is mixing of all orders.
The original pro6f of these properties is found in Ya. G. Sinai, Dynamical

Systems with Denumerably Mul’k:iﬁle Lebesgu‘e Spectrum I, Iz¥est. Akad,Nauk 25

899-924 (1961) and which has been translated by the A.M.S. in Translation Series

2 Vol. 39 pp. §3-110 (1964}.. In the sbove paper Sinai uses Lebesgue spaces for

the measure space X and refers to an article of Rohlin Selected Topics in the

Metric Theory of Dynemicel Systems (V.A. Rohlin, Uspekhi. Mat. Nauk, (1949))

A.M.S. Pranslations No. 49+1966) for their properties.
‘Definitions

A measure ,w""" cn the messure space (X 24, /LL) is said to be complete if vhen-
ever S¢GeT, S TQZ and j,ﬂ.f 8) = = (®) then ¢ € ZJ If - 18 not complete one
can always extend it to a complete measure by adgolning the above sets ¢ to
Zand detintng fa (3) by (@) = pu(8) = (D).

A counteble family g_Bi; ie I 73 of measureble sets is called a basis for
Z ifs
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{(a) The o-slgebra generated by EB_}} isz' mod O.
(v) for any x, y € X there is & Ej such thet one but not both of these
points belong te it.

K Lebesgue space is a finite measure space with a complete measure and a

countable basis end in which the basis satisfies the additionsl property that
every intersection of the form ﬂ ie IEi’ where each Ei is either a Bi or
an XwBi, is not empty.
Pheoren
il . : _
Let T  be a measurasble flow in a Lebesgue space (X, Z s /,JL }. If there exists

—

g-subalgebra 0. ofz such that
t t

t, <t,a TrAlT?O, (32.1)
(Fm? the purposes of this theorem ( shall denote strict inclusion even when
sete of measure zerc can be disregarded) then the flow has strictly positive
entropy.
Before giving the proof of the theorem we must first prove the

Lemms,

If (X,ZJ , f,a- ) T and Q are as in the hypothesis of the theorem then

there is a finite subalgebra 'O of OL such that

r Y

vV 7R ¢ V T
rYH T

K for t, < t, (32.2)

Proof of Lemma

The proof is by reductio ad asbsurdum. Assume that for every finite subalge-

bra 1O of Q. there exists a pair of real numbers ty, t5, B, < t, such that

v 7@ = v 273, (32.3)

TEY Tt

which implies



g
@
ia)

vV T3y = T VL B N (32.4)

But for t* = + we have

'y ¥ v T @a> v s v L XN (32.5)

e T <t <t py<o

and combining this with:(Ba.h.} we see that v @?‘rﬁ must be invariant under

T< o0
’l’t for ot < *2 - t, and by the group property of the flow it must therefore

1
be invariant under T (?t)
Sincez is generated by a countable family of sets we can find an increasina@

sequence "Gl_c; ‘132 g ... of finite subalgebras such that

\id M3, = Quuod. 0 : (32.6)

n=l

Since by hypothesis each B setisfies (32. 3) we have that V TTT% is
invariant under 7¢. Also by condition (32.1) Q= ° @.‘) T Q /n

T <030 = ¥ ¢36. . We now have
S T

g et v Fa=. v F F3, -

T<o T<o0

ety ¥ o27g =0 2t v Ty .
<o D=l n=l T<e

= ¥ v - ¥ 'ﬁl‘?ﬂ =7 M Q =Q (32.7)
ey 7<0 z(an T%C', ‘=l ‘ n'}’ﬁ"

which contradicts condition (32.1). Q.E.D.

Proof of Theorem

Let {3 be the finite subalgebra whose existence is asserted by the previous

lemma, We then have
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k=0

SEEF R v Tug) >0 (32.8)
rse

The last inequelity follows since by the strict increasing property of “‘Q
under T the algebra . €3 is net obtainable from  V w'? {3 by sdjunction
o T<LoO

of sets of measure zero. . Q.E.D.

That the theorem p&oves property B) is clear since \'N\o can play the
role of Q-



Flows Under o Puncltion: the Anbrose-fakutani Reovresentation Theoren

The construction iz & generslization to general messure spaces of oOne
.. &
geoureing An the work of Polncare and Birkhoff in the theory of differentiable
flows. In & special case it oceurs in the wvork of von Neumsnn; the general theorem

is due in the ergodic case To Aubrose and in the general case to Ambrose and

Kakubanl.
. D. Birkoff, Dynamical Systems Pp. 4314k, 150-158
J. von Neumaun, Ann. of Math. 33 (1932) ser-gh2
W. Ambrose, Anna'gf Math. 42 {1441) T23-73k
W. Ambrose and Kakutsni, Duke Math. Jynl. 9 (1942) 2542

¥. 4. Rohlin, Uspekhi Mat. Nauk & (1949} 57-178 last section.
The intultive idea can be illustrated by considering a differantiable‘flow

with a periodic orbit.

At = p@&nﬁiP of the periodic orbit constyruct z hypersurface element U vhich

is neot tengent to the flow, By continulty of the flow the orbits starting from

a point ¥ on Tw and sufficiently close to P will again intersect ?w, Call

%' the first such intersection after the orbit leaves x. The map 8: X ~—p Sx = AV
is called the Painaarégmap and cémpléﬁely describes the behaviour of the flow

near the pericdic arbit. We clesrly have SP=P and all other perisdic orbits lying

. — : . . » , . k ;
clese Lo the given one are given by points x on U satlisfying 8 x = x for sonme



integsr §. This point of ylev ensbles one Lo prove the exlstence pf periodic

1

orbits for s large veriety of general dynamical systems. The generalization

of the sbove comcepts 18 thet to & flov under a function.

Let &(’AZ\) y /m._} be & finite measure space with a complete measure ’/‘;& izt
avenid . =
& be aninvertible measursepreserving transformetion of X into itself and f e real

sitive integrable funetion on X  We assume Vx

£(8 P (x)) = 4. (33.1)

3 o

el
s sl

Consider the product space of X wiﬁ:hmi’ {equipped with Lebesgue meagure) and the

complete product measure p on X x }2&3", Let ¥ be the portion of X xml under f

(33.2)

b

. X = ?j(x,‘t) o<t < f(x)‘i .
~an&‘> the set of all measursble subsets of X. Then ( X, Z‘ ,/‘j’i) is a measure
nd .

space and we define the flow %t by
{x,uét) if -u < &t € -u + £{x),

(8%, ust - £(x) - - - 28" H{(x))) if

we) ) g e g we)  nE),

k=0 k=0

T
gy ‘@‘53 ’31} =

(8%, wetes(s x)) ¢ -+ 2(8 Pix))) if

\{“1 ¥i k 1 Yiee L -k
\ ) oesEEy gt ) #E ) (33.3)
3 ) A Yo L £ k=0

S

Phis complicated definition is pictorielly very simple!



|
The flew continues uniformly upward until it reeches the graph of f vhereupon it

jumpe to {8x,0) if it reached the graph at (x,£(x}}, there it sgain resumes uni-
form upward translation. This ’&‘?t is called the flow built under the function ¥
by 8.

If ¥ is not a finite weasure space the same construétion can be carried
through but one assumes in addition that ﬁ(ﬁ’} = ff(x} ffﬁdx} < w The
object is then called a generalized flow built unde% a function.
Theorem (Aubrose-Kakutani)

Every measursble flow on a Lebesgue space is isomorphic to a2 flow built under
a function £ with £(x) > ¥ > 0 a.e.

The sdvantage of this the@rem is that it reduces the study of the flmz‘ T%' o

that of the cascede S.

Y

- & T
£ 37x) X s (‘K



A continucus one parameler unibary group { U, == <t < m} defined on a
Bilbert space A is said to have a gimple Lebessue gpectrum if there is am iso-

. g 1
morphism Vi 8% — If{ﬁ“‘, dx) such that if h ¢ A%

WUt n) () = (VhB) (x-t£) = (U VB X (34.1)
where U° is the unitar}? tranzlation group on Lz(@l)a In other words, 1% has
gimple ILebesgue spectrum‘if it is unitarily equivalent to the group of tramnslations
of {@%”l in its action om ing’ﬁl),

Dnder the Fourier :ﬁransfazmatiom o the translatiom operation U*  goes over

ikt

into multiplication by e , that is if F e Ez(gﬁl)

(& 7 (&} = %Jf oM px) ax | (34.2)

and

(pUH @ = g [N @a = HEHD® G0

which is the traditional form of an operation with simple Lebesgue spectrum.

One of course has Parseval's theorem:

Jicem @ P [ireol? e (34.6)

Definiltions

’ . £ e

The countinuous oune parsweter group U acting oo P has homogeneous Lebesgue
spa;g,;mm’@f multiplicity K {a‘ finite integer or an infinite cardinal) if Wl can

be decow int irect : K 8 '
e decomposed iuto a direct sum of K suwmands, 79 = % ?&g" such that
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From this definition we see that 1if U~ has howogeneous Lebesgue spectrum of

some multiplicity & then there is a subspace "Mé of B* such that
[ L
1’y T = ﬁ#”’z for t, <t, where 2t = g* 3%4’0

. @ t ‘
iy § ¥ =p (34.5)
[
1) R = {o}
. ‘ -1 .2 2
in fact one cen take for Af  the subspace &V, L where L° 1is the subspace
A 3 j o (¢)

of LZMER]“} consisting of functions vanishing for x > 0 and Vj is the isomor-

phism in the defimit:ion‘af simple Lebesgue spectrum.

Definition:

Let iEt, =00 € ¢ < w§ be a family of projection operators in a Hilbert space

P satisfying

-F1  E2
a} E " <E for L, £t
b) lim E° = I (34.6)
£~
£
lim E° = 0
£ ~» =mw

then the family is called a gpectral family of projections.

Definitions

& spectral family has hamogeneous Igbesgue spectrum of wultiplicity Kk om a
Borel set B of %’Rl if % is isomorphic to a direct sum of K copies of LZ(B,dx}
and in each of which Et acts as the projection onto the subspace of functions
defined on B and vanishing for =x >t |

Theorems
E———— —

If £ is an element of the Hilbert space 3£ such that (f; Utf) = Oﬁ’Wﬂgt §>TD
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&

DR u BEE gomple mbwgm gpactrun fn the oyolic subspace of £ -

/.a

Proof:

Recall that the eyelic subspace of £ is the subspace spanmed by vectors of

‘ Ty
the form Z e U £ .

k
By the spectral theorem

(£, 0" £) = f M (s, @D . (36.7)
Since the left hand side is continuvous and has compact support
=ith t
e (£, U~ £} dt (34.8)

ie an entire function of A . This can be seen by substituting XA +in for A in
{34.8), sesing that the integral still converges by the compactness of the support
of {f, Ht £} and then showing that the resulting function of the complex variable

A 4+ in has a derivative with respect to it. We can now ganclude that
(£, E@NE) = v, ) A | (34.9)
where rfih} is an entire function. The equality
@ o Ext’if £, 5 d e = z 3, 4, f o1 {EemtidA z (V) aA (34.10)

establishes a corvespondence

k ei?\tk

T
Loy U"f & ¥} = = € (34.11)
gnd the laner product
[2+3
@ 0 = [ o0 vo 5,0 o : |  (312)

under this correspondence .



" ' t
thus the unitary operator Eft is trmnsf_ormaﬁ into multiplication by em . Let

¥ e Lz({@}’} and ¢ =% ¢ . Define V by

P

=l  { .
ooy = % | (34.14)

Fven though v fO\) may vanish at some points if the inner product {346.12) is used,

integrability is still preserved, in fact
oo o v o = [[F ol o - [ @l e (36.15)

and U 1is an isometry. Moreover

o o - eﬁ";-/;“é%% = @ v m
(34.16)

e vt Uty = ot
and U therefore has simple Lebesgue spectrum. QED.

Thaorems
Let gﬂt g =0 < t < w} be a continuous unitary group on a Hilbert space ‘}5@’,
A necessary and sufficient condition that it have a homogeneous Lebesgue spectrum

fs that there exist a spectral family gEt} such that

& ~t e
gt ET 0" = " ' (34.17)

Moreover, g Et% also has howmogeneous Iebesgue spectrum with the same multiplicity

as g@% -



LECTURE 35 ke
Before proving the @%@@W@m gtated last time, we shell prove the Uniqueness
Theeren of won Neumsnn which shell wmake the proof of the necessity trivial.
vonr Neumann - Die Eindectigkeit der Schrdingerschen Operatoren - Mathematische
Annalen 104 570-578 (1931).
Theorem:

Every r@preaemtati@ﬁ‘af the Weyl relations

€ [ 4 ty 4+ €

prtyplagl 2 (35.12)
[ 4 & £, 4+ &

glgz, 1t R (35.18)
& & it t & : ‘

Ulvieeg 12y F2 vl (35.1¢)

is a divect sum of irredueible representations, and each irredncihla representation

iz egquivelent to the Scbrﬁﬁinger representation

Wty (x) = £(z-t) (35.2a)
(VEE) (x) = eIt% g(x) {35.2b)
on 17 @Y. |
Proof: o
et SET gy uee) L (35.3)

Define 8(t,T) = » u{t) V{T) -
Then the @qu&ti@m@ (35 1) can be ﬁ@mhimeé into the equation

S(ty, Ty) Sy, T, ) = %iitlT “Tytg? S(ey + £y, T, + TZ) ',f£3$'4)
Consequently ~$(09@} w 4 ‘ .‘d.v :
snd hence C8(-t, =T) = ﬁétof}“ilf éig,é)*
We now consider iiu@ar @@mhiaati@n&'%f;ﬁﬁeae 8's. These are‘&éfiﬁgﬁ?a#'fallaw&°

Let a(¢,T) ba en zbsclutely imtggxable Funuti@m over the whole &, T plane thea
by Schwars's inequality '

L s, seamg) 1< el Necenall = Nel -l s il

znd bense

T e (et (8, sqa ?}g} ded? - j fa ¢e, 1] dedT . §gf&§. E g |
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thet there exists for sach fized g, some g* such thLat
[f ate,y (£, S(e,Tg)de,aT = (£,8") (35.5)

angd
He' s fF1ace, lacat gl

. ‘
g is determined linearly in terms of g and hence we can define a linear

operator A by

hg =g | | (35.6)

We write symbalically;

A= [ a(t,T) S(t,T)ded? (35.7a)
vhich means
(£,48) = [ a(r,T) (£, S(t,T)g)dedT (35.7b)

We call alt,T) the kernel of A.
To solve our uniqueness problem we consider the kermel

a(e,T) = e 4 t? 4 2 | | (35.8)

which will give us the projection onte the ground séate for the simple
haymonic osecillator. It is easily verified that A is self-sdjoint and
different from zerc. Furthermore with this kernel we ga£ by direct com-
putation that

A S(e,T) A= 20 e % K ™, (35.9)
getting t = T = @ we get:

A = 21 A (35.10)

How conesidexr the solutions of the equation‘
Af = 20E {35.11)

gince A {8 linear and bounded, these span a closéd linear subspace f2%7.
Also sach :
£ @’77 is of the form Ag

cmore the fntegrel is livear inm g aod sntilicear in F. Thus, we know
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where g = «ﬁ% £ and conversely each Ag &/ :"7(7 since Alfg) = &gg = 2T(4g)

I£
f.g e "‘-7'{
Then 1
(8(ey, ) £, Sy, T8 = ERD (8(ey,T AL, (e, TyAg)
1, 6Ty - €Tyl
@&

1 .
m ek (AF, S8(-t_, ~T_ ) S(t_, T Jag} =
i { { 1 }‘ 1} { 2 2} g) mz

(;c)‘?,g,AS(&g -ti’ Tz - ’l)Ag)

; 2 2
. ;ﬁiﬁ‘ltz - tng ) "';5(3:2 - t}'} “‘%(TZ -Tl) (f,g)

Now Jet @1 N be & comﬂete orthonormal set f.n/f’?f {If the under-
iying Bilbert space is separable, this set 4s necessarily cmmtable, furthermore
the exfistence of such a set follows from Zorm's Lemma even if the Eilbert space

is m@ﬁwseu&mﬂmi}‘ E
%@m(@m, b} = Gm,n

e e (T e, - £, B ke, -t.F %1, -1.)°
{g,als Tiﬁﬁm, 8(t,, Tz) @n; - a 1-2 1°2 2 1 2 1

{35.12)

Lat ::;Dm be the closed linear subspace spsumed by S(t,T)é, for fixed n, and with

t, T varying.
From (35.12) we géﬁ? 0w J;% if v F m. aan f = @ ?n (finite, countable

or uncountsble sum)



v

is imvariant mfxd@r

{\
4

It 48 elesr that sach !“ 7 and a«mmqu&miyj sad

(8(e, 7). Simce. " tneludes amf n, that 1877 7, it follows that f Za
= e

\/ f = J

Af = 0

But all eur congiderations for A are tme in f because the S{t,T) can be

b -
eongidered ae operators im f since J is izwariant under S{t,T). Since

>

:&mf A= 0 it is imposzsible for any f € jﬂ te be different from zero.

That iﬁ ( Z M

snd hence | ) }span the whole Hilbert space. If in?n we call

sczyy oy = ft»T | (35.13)

:

Then we get {restricted to 7& n) !

s ‘ w @ 25{E,T « Tot '
$(t0Ty) feyr e 'AET - T,t) fedee; , Ty

£ . L woe ~H(t-t)? N(T-11)? + Wi(e,T -Tyt
ey vy, o) =@ P° =TTy (2T -Tyt)

for which on returning to Ut, vt we get:

f1 £, = @gﬁiﬁ'?

u &, T V Eq 4 £37

&

Tap
S . g~hitT
MR ft, T4+ Ty

We have now shown that every {rreducible representation of the Weyl relations
is unitary equivalent te onz of the form



S g 7,
%ﬁ%éf ¢ @%ﬁ'g !
B

(e fe .7 v

it follows that the %s&mmm@r representation, being firreducible, is equivalent
to & vepresentation form. Henece, any representation of the Weyl relatioms is
equivalent to a divect sum of Schridinger representations.

This completes the proof of von Neumaun's theorem. We shall now give the proof

of the theorem giving a eriterion for homogeneous Lebes?ue spectrum
Proof:

1. Sufficiensy:

civen Ut B Ut = gEF T (25.14a)
with EY1 < E'L for HEE
‘ £ -~ (35.14b)

and 1im E* =0 1dm E® = 1 (35.14e)

Then we wvrite
. dat L. A i . : :

v = f,_ " dE _ (35.15a)
which mesns

(¢, vV ¥ = | e d ¢ &, E° ¥y {35.15b)

it v ) 5. t

From these equations it is & simple matter to verify that U amiAVt satisfy the
Werl velations snd that they therefore have, by von Neumsnn's theorem, homogen~—
ons %&E@@%a&@ spectrum with the seme multiplicity. 7

2. Hecessity:

Thus, given 0% has homogeneous L@b@ague spectrum, then Ut is defined om &

direct sum of ceples of LZ(RTS and restricted to ény one of these spaces IHt
acts ag fellows
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By ooy o SEE o oo
£ (=) = & £ {u)

S0 ¥¢ {& clesrly unitery snd bas simple Lebéég,m@ spectrum. So if we write -
CEEE TR
vt e [, BT et

which 1z possible since vt 48 unitary, then equations {35.14) will hold on
eash Lzeikl}
Ferming the direct sum of all these copies of Lz to get back to the full space
for t:f"ﬁ, the squations v.-rﬁ.m gtill remsin valid end furthermore V& will now have
the saue sultiplicity &8 H ° .
We now epply this as a theorem for Ka-aystems.
Theoren: ’

Let T {»«w €< t « ») be a measurable flow in a Lebee}ue space (X L, A ).
Seppose there exists & sub o ~ algebre 2 © of T such that

) & & & )
L. '?7{1&*1'10?( Cﬁjng@rt%e;

1 2
Here & ﬁigniﬁ.w proper imeclusism as contrasted with .
& - 3 g %

i, mmwﬁ b 3c X /744 = és X

a&&ﬁ be the subspace @f E’., Z,u) composed of those functions which
are measurzble relative to 77/* / Let

@ 7T
-/ A~ I

t . “ 2 ot - // ,’/
gnd ¥ has homopenecsus Eeeb@@?mﬁ gpectrum on //Z - ,,/—'/ whereﬁ = Lz @}m)



by & subsusve le & conseguence of fhe wmost basls propertles of

messurable fopetions.

Alue

T T ST

s LA Ry . {35a16}

Define ﬁT te be the projection wnéé{T
Then (3

t
B

~16) implies

L

< B 24f £, < T,

Furthermere from the definition we get

i3 = Ao
HxLE?Ut@Eﬁ "f‘

and from conditiom 2. 1im Et = §

g @

Also lim E = E ilw projection operator omto éégf Sc on ;Zéi Jéégthe E's

£ om
are @ spectral family satisfying the conditions of von Neumann's uniqueness

theorem and hence UY has homogeneous E@besg&e spectruﬁ on:;f?- ;ZZZ
Corellary:

For a E~flow U has homogeneous Lebeg;né spectrum in the complement of
the subspace of constant functions.

Prooft :
3. @ays ;z /7?7 £ 2 j{jﬂé 3%/}2

which implies that ‘47 consists of conetant functioms. To complete the proof
of property A for K-systems we must show that the spectrum of U* has denumersble
multiplicity. We now proceed to outline the proof for this as given by Sinai.

Outline:

Simai looks for sufficient conditions thet a flow built under a function
have a portion of Lte spectrum &ebegg&e with infinite miltiplicity. Then he »
usee the Ambross Kehotani Theorem to realize the K-flow as a flqw built under
& function znd he shows the funetion cam be go chosen that the sufficiency
erviterion is in fact sstisfied. Im this comnection he makes use of the follow-

ing twe theovems which we quote wﬁt&au&lproofe



;w‘a/ué’
the function f by the m@&auf&a@ﬁ@garv ing transformation 8§ of (X, DN }

there exists & ¢ ~ subaigﬁhra ézi@f £ such that

ot es D U : (35.17)
and that f ie measurable with respect to Cz Thea in L2 (i;)ﬁ) there is a
subspace invariant under y® in which U* has homogeneous Lebessae spectrun of
denumerable multiplieity.

The proof of this th@ur@m_pr@ceeds in two stages:
1. Given { we ggnstrust'an éz with property (35.17)
2. Then we usatf? to construct & family of orthogonal invariant subspaces of
L2 @Z /J‘) on each of which gt has simple Lebesgue spectrum.
Theorem: ;

Let TX (-® < t < =) be a measurable flow on a measure space {x, L, M Y.

Suppose there exists ac -gubalgebra of I such that

1 4% gt < "2

- .
ir ¥ @ =

. G

By %

Then sccording to a previous Lemma there exists a finite subalgebra-éfgy
ef £?§su¢h that

‘Wﬁ’ T ? < vid" g, <ty
: Ts e
g 5 2

/\gv - , ‘
Then T , the quotient flow imduced in X/ /-4  is isomorphic to a flow built
under & function which satiefies the hypotheses of preceding theorem.
Outiine of Proof '

We first introduce the notion of a regul&r partition of {X, £ //M ) with

respect to a flow.



B

Tee sets consist of segments of orbits
under the flow, closed at the earlier end
and open at the later _end, such that the
function t(x) (which is the time taken

to flow from the g&tlier end of the seg-
ment on which x lies to x) is a measurable

function of x=.
We wuet show first that such a partition exists.

The @@mpiete pr@@fs can all be found in Ja. G. Sinaf - Dynamical Systems
with C@un@gbﬁy - Mmltiyle Lebesque Spectrum. I AM. MATH. SOC. TRANSL. 2 39
83110,



zfinition:

ar

exmreined the nature of gecdesics on a surface of constant
pegative curvaiure.
gave the firvst exawple of "regionmal (topological) tramsitivity.”

e

T.e., one dense orbit.

A flow has togomecfic ttansitivitz 1f the umion of all dense'orbite-has a

comp lement of measure zero.

Y
F

able subsets of

measire Z8ve or

Binsi
dnosov
: A58
Ei, ™
=11
Byn ™

1963

o
F ]
L
. =
¢ L
2
.
ds

< A flow has metric'transitivitz (defined before in Lecture 8) if the only measur-

the whole measure space X invariant under the flow are either of

differ from X by sets of measure zeto. T.e., ergodic.

"

3

-proved metric transitivity for the above systems (constant negative
curvaburel | a

extended the proof to u dimensions with comstant negative curvature
prév&ﬁ that compact geodesic flows with vaviable curvatures are |
E-systens . -
%Htéﬂﬁ@% this ton ﬁim&ﬂsimﬁs'g&é varying curvature. Proved that

every U asystem i3 a E system.

nafder the unit disce D mvg zgg zl {Ew,a = % »%iixég equipped with the metric

SRR

£ &
Li-jz}

O

o5

gs.%z

&

gy e At @ | ,
% i A : ® o
v - s {36.1)



Y iz
i 2 -
[ i 2 & dy " oy
e = Jdetz dy 4y o= mwmﬁ%w% = PR
¢ 1o mf “3° £36.2%
{i=pmf ™}

This metvic avises in a feirvly neatural fashion 1f one considers the M¥bius transfor-

mation.”

SR B (36.3)

which meps the unit dise im the 2 plsse onto the unit disc im the w plane in a
sonformsl and one~to-one menper with the point ¢ goimg into the poimt B. It is

guily verified that circles snd straight lines go lmto circles and straight lines.

o]

if we mow let @ -e& , that iz we let

gz *v@:gg

2 3 9 9
= oha? ¢ 6Pt 0
thoen
) éw - ﬁgz w {wiwﬁl} e {wzwﬁz}ﬁ -3 0

gnd we get

y 1.2 2 i ] "y
@ s @B | Ve o e’y
‘ ¢ 12 12
.‘gn A %aé j.. e EWE

&8

&

vhat this m@i{riﬁia ig pres2yved pnder the MBbius traneformation.

To get the geodesics we firet show thet the geodesic between any point end
tha centey %5 a straight line. PFor covsider any
other path and 2 copcentyic oiveles with radidi

differing by an infinitesimal smount. %The de-

i
&

nominator 1= 2 ig sssentially copstant
hetween these circles epd so we get the ovdinary
Euclidean metric with RS < R'S%.

How consider any 2 poluts P, Q. Then we mep F  into the origin using &

* The discussion in the followisg section was pointed out by L. Schulman.



will then be 2 straight lime which intersects

che unit circle porwslly. After wepping back this can omnly become & cirele or
straight lime passing through P and Q and intersectimg the unit civele normally
{gince the mmpyi&g i conformal}.

There 18 8 pevticular family of great lmportamce for the theory of geodesics,

4 heroeyele comsists of cireles tamgent to the umit eirele and lying imside it.

T in this case if P is the point at which
f( \“ %, :

asymptotie orbits comverge, the horocycle
tangent at P intersects the orbits

noruslly.

Consider the transformation ¥ ¢ GL(2,e¢} where GL{2,c) is the group of momsimgulaxr

Zu? metvices. Let T act om & by
amih
z o Tu m e ad - be & O (36.4)
T " is sgeim of this form.

Bafinl

Sonelider anmy subgroup T %hﬁeﬁ>£§
1Y properly discontimucus--that is, {%5 Te I‘§ is pot demse for amy .
2% Any  Tel’ meps D oute iteelf.
Such a ? is enll a Puchsian group.
We mow introduce the following equivalemce relstiom. Two peints sre equivalent

1f they ave wapped into ome enother by I . (in elementary sccount of this is given



»

I snd 4T of L. R. Ford's Autemorphic Punctions.)

Befioltions

& gﬁﬁgﬁgggggi demsin O for P is a commected subset of D , comtaining mo
two sguivalent points, such that g 0 gmafg‘ covers D with the possible excep-~
tion of a set of measure zeroc.

O purms out to be b@unﬁ&ﬁ by geodesice with some boundsry points idemtified
Lo geb vaxi@u& ﬁiemawmé&n mendfolds because the metric (36.1) f& fmvariamt under
s The fundamentsl démaias fall into 2 classes.

1. He segments of Ob (the unit civele) form & portiom of the boundary
of 0. |

I%¥. Segments of 3D form portioms of the boundary of 0 .

We shall now drew some typical examples.

P

Fig. 1 ¥ig. 2 Pig. 3

Pigures 1 snd 2 belomg to clasa I, figure 3 belomgs to class II. Hote that
via this process we obtaim omly surfaces of comstant megative curvature. As a
matter of fect, in this vennmer ome obtaiams all surfaces of comstant megative

curvalure.



g the exspple ssed by drvim. However, he worked im the uppev
half 4 of on the weit disc snd so he hads
ab
modular {ﬁ d)
e,

ad » be = 1

a, b, ¢, d Iimtegers.

Artin®s procedures

Tabel a geodesic by its base points

(6,1} £>n  Identify (¢,n) with (n,E).

Artin asked whether this is physically realizable. He modified the model slightly
and consideved also 2 -+~ , reflection in the imeginmary axis. This then vialds
g flow that is equivalent to the flow nfﬁa free particle collidimg elastically

with the boundary of a triamgle lying on the surface of revolution of the trastrix,



T the last lecture we described a geodesic flow om & disc and indicated
how vis Puthsian groups this leads to other geodesic flows. We shall now give a
more gquantitative example.

We intwoduce the coordinstes {zzl s Ty s) to replace the coordinastes (2,0} =

fﬂwwammemwﬂ {xi, Ky ¢) &8s coordimates in phase space.
f/fﬁ/ ' ‘W\\ This cen be done since we always have the
{ ' f‘ \\ epergy imtegral and therefore cam pick
{ | § unite such that the comstant velocity .

¢ o
i& ,{g © ;
2R /f”ggggmm&waﬁﬁkjy. iz 1. Then we need only specify the
\“\N \5 % ‘ J{}.a ﬁ “&
# ww"" .

4

direction ©@ of the velocity at the point
{xl, xz). |
We now indicate the derivation of the relstion between the 2 sets of coordinmstes

as given in Hopf.

* ' . (mg -2z, - 2))
(295 2y, 245 241 = (2, ~ z2,)(z, = %) (37.1)
the cross vatio betwess the 4 pointe, then
s = geodesic distance from z, to zwm 1og€{x1, Ty s 3,-301) {37.2)

Here 2, is the midpoint of the oriented geodesic comnecting Ty and Ty o It is

clear that E%I g w8 §ﬁ5§ m L.

&lmo
W, P .
1 ) .

y om e {37.3)

o 2 % {ﬁg ﬁz}
Lnd ;

_ ‘ {= wﬂl}ﬁmwﬂzi ‘
@ @ arg é' {37.4)
My = W

Then in the sz, Ty s 8} coordinetes (36.4) becomss

L |
T (g 7y 83 = 5y %y, ths) (37.5



G o= = Sy ds (376}
gﬁi :ﬁz
whare
w, = 161 and Ry @iag

fote that the transformatiom from (2,p) to {xl,»ﬁz, g} is single~valued.

Theorems
A geodesic flow with Pucheian group [ having & finite basis and /;u < o for
the fundamental domain 1s metrically tramsitive (ergodic) if and only if every set

A own the {ﬂi; ﬂgﬁatewue with positive Lorus measure

in //; do; @6, > 0 (37.7)

snd inverisat under [ is of measure eguel to that of the torus.
Progfs (Hopf)

It iz omly necessary to prove ergodicity simce the comverse is clear. HNow

consider & messurable set B im the phase space that is inverisnt under the flow

Er]

snd of positive messure. To this set there corresponds a cylinder set

- o
o e gn&ﬁlﬁ Tys s} é Ty and %y ﬁixed§ in the (ﬁl, oy 8) space.
This set is measuresble snd inwarisnt under the flow {37.5). The projectiom A4

af this set onto the %,y f.i~torus has pesitive measure
L 4

r
jy é@i é@z m
A - gﬁ
Eﬁi» g
and hence of positive torus megsure {37.7}. Ahceording to the assumptions of the
theorem, the complement of A on the torus has measure 2zero. Hemce we get that

the couplement of B om the phﬁsa,s@aaﬂ is of messure zero.



sie flow in the above cese in which B has

VU SO SO SR - MU ¥
oL vans L Uivily Lo mhe g

;,- b

s fimite hasis zod the total [ du <= for the fundamental domain was Ifirst
established in special cases by Hedlund using Sywmbolic Dynemics (see G. Hedlund--

Tovologiecal Ryﬁam cay and then ?m gensral by Bopf.

fader the assumptions of the preceding theorem, metric transitivity of the
geodesic flow is @quivaiaﬁt to the following statement.

A bounded funmction in the product D ﬁ D of the unit disc with itself and
harmonic in each variable

fe2oy _
&2 Uz,w) =& 0 = A Uz ,w) {37.8)

15 a counstent if it is invariamt under ¥.

Fogoy , ‘
BCPz, Tw) = Uz, V rer ~ (37.9)

Proofs (Hopf)

Again we need only prove ergodicity or show that the assgmpticas of this theorem
lead ko those of the previous theovem. To this effect let U(xi, ﬁz) be the char=
acteristic fum@ticﬁ of the set A of the previous theorem. U is measuresble on

;
the torus and ¥ TeF we have

%{Tﬁw ”f:zz} e ﬁﬁ»‘y “Egk . (37.10}
‘%@ have to show that U= 0 on a set of torus measure Zero. k

Wow the Poisson integral

Uz} = ?}:ﬁ f ot ,7) =t 52 e » (37.11)
Lt ¢ -

representfa harmonic function in = for slmost all 7 with éyﬂ = 1. This fumction
is bounded above by 1 and is a m&aaﬂr&&bla fa&eticn of ¥ omn gyt = 1 for all z .

Furtherpore



K

&
-

&3

H

f
s ey !
SER P !
i

(Fwl

H
is separately harmonic im ‘2z snd w end bounded for %zg < 1 Bwé <1.
The invariance {37.10} then implies (37.9) and hence according to the assumptions
of the theovem {f U w 0 then the theorem is proved. MNote that the function on the

torus U{L ¥} 1is specified by the harmomnic function U(z,w) in the following sense

14 :
¢ !i 1 f f {*‘férﬂmﬂ - E(Q,?% 2 idcg Iﬁrﬁ = 0 ¢37.13)
o b 1 gmmi‘gﬂml

In pounipg, note the work of W. Seidel, "On A Metric Property of Puchsian Groupa "
Proc. Mst. Acad. of 8ci. 21, 475 (1935} , in which he gives an ¥ with an infinite
number of gemerators so that the flow is regiomally tramsitive but pot metrically
tramsitive. This proves the insufficiency of the “quasi-ergodic™ hypothesis for
getting time sverages egqual to phase spsce averages.

Hopf later found s proof whose idess were the imspiration of Simai®s and Anocsov’s
progfss E. HBopf, $§¢Esisch& Akad. der Wissemshaft (Leipzig), 9L 261»304v€1939)o

The ides counsists of finding a quantitative formulatiom of the nstiom that two

geodesics sre asymptotic to the sawe point.

Lemme (Hopf®s Priuciple}
et v and r* be two points of the phase space whose orbits are ssymptotic
gt 4w, %Then there exists & real mumber g such that
Ho o, 5 = 0 (37.14}

where p is the distsace {n phese space messured im the metric

inf of this integrated alomg 2lil
curves between the two points.

L2, . 2.20
LD LBT S gyt %
(a-j=l9"

An snalogous statement holds with a possibly different a for geodesics



ssvupiobic sk we

f (asymptotic at dejs

Map the disc ipko the upper half plame with the asymptotic point at «=. Then

1/2
o o Lahia®
' 2
S ¢ . X
A e =y A o
y ) The geodesic distance alomg & vertiesl
el
! & geer 5 \\ 2 2 ~
/ fg’ iige from £ to "é ~is given bys
‘ th \ |
x | 2 52
f e = log (3)

2

¥ &

Take a = log %ﬁm where x:z and 1 2 are the 2 coordimates of r and r° , respece

tively. Then 'E%&x“ and PEr® will have the seme 2 coordimates. 8o the distanmce
. layel

o) {’ftwm"fz*) is bounded by some comstant jj‘-—%—-g' for sufficlently large t. And

x .

hence, in the limit a8 t -»®, o -» 0. The same statement holds on the msnifold

abteined by identifying points using ¥ .



Leipzig Bericr
Tf the phase space X bhas finite volume, 1{Ry <€ w, then the geodesic flow
enent holds: If f is a uniformly continuous and

¢ space and 1f m is a peint of the fundamental domain

o e ‘? ;"\ .
tim 1 1 ..
AUk F dﬁf = ,_‘,,,.m‘, & E& “dy 891
4
for through w .
Eroofs
Ta prove ergodicity it is sufficient to show that the fellowing limitse
S - e L et g
i ol S 00 yﬁ(%.!ﬁ '
{38.2)
t;,‘s dt
wh ‘Tecture 15) are comstant a.e.,
{38.3})

u{s .} = U - or uis

fwe drop the o« Ffor brevityl.

if P and PV are asymptotic at e then



v @ By al
T 4. Ao e #
i iﬁ{ﬁ i ] " L o PO Y
o = ] f{PT) de e £, (®) . £38.5%
T ows T 7. e
e ;:'}

vimuley of © we get

& %, %’ 2 o N
£, () = £ (B") (38.6)
2% N
P oand B° are asymptotic at fe. Let Si be the projection of 8i onto

‘?rgn
or
o
Ed
@

ki
o
i
-~
b
pa
i
e

ined by %&ﬁ coovdinates fﬁlg ﬁz} Tf P and P* are asymptotic at fm
then from (38,6} 1t follows that

%‘ .
%:' 19 }72} g%, @i} g‘ﬁ*i P 3’12} [ §1ﬁm

(38.7)

ﬁp- £ § Li? 4 e iy By § °
nps mp) & S_ @ {nyy mp") €5,
The sets §, are therefore cylinders

e

£38.0)

where the ¢, are the uaif circles determined by the coordinates LI How by Birkheff

1;4 a8 éf @. &, Thevefore using the lemma that an invariant set R has zero meassure
1 and only if itﬁ projection 8 has zerc toroidal measure we comclude that §%} §”
snd thelr dntersection A = Ay, differ by sets of messure zero. Im particular if

by u and '% we denote the toroldal and respeclively the eirun& 1T measures we have

& 5y .
E A, F =
7 éwg 3]
) {3@' © ?}
o s I o p s q 5“‘. ;
afa_ = g%z..«g(} = 2(4_} @{ﬁ%} e 8,

Therefore in each product at lesst one of the circular seasures must vanish, aud we
deduce

MQ}w@ﬁﬁa}m%@%MEMQ@@%QMEV@%S)M(SDMﬁﬁ
| (38.10)
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St 8 L BT
LTEED L S L &

s trus for almost 21} polists {xzx x?) {relative to the measure dxl dxgﬁiwﬁzgz}%

[

enists for alwmost all @ {relative to the measure dp). Now look at

in the varisbles ﬁﬁlﬁ ., 8} We konow that if (38.1} holds for ome

i

t alse holds for all with the seme w, and varying =, aad s . Now

1F {38.1) holds for = poimt {y,, Loy PF with Kys %o fizxed for almost all @, it
& o .

all {ﬁiﬁ %, &) with the exception of & set of points whose Ty conrdinetes

forw 8 set of measure zero. This implies thet for any Xys Koo {38.1) holds for

K s o it o L] py,
aimost ail Qo e

For fundsmental domains of infinite volume there is a result due to Hadamard:

puints there iz a szet of positive measure of directions about the point

she geodesics in these divections go to e (i.e., eventually leave evexry

indng the given point) then the geodesics go to « for almost all

divections, furthermore Lf the sbove situation holds about any peint it holds about

Ginad (Sinai, DAN, 131, 752755 (1960, tvenslated im SOVMAT. DOK. 1, 335££ (1960})
e # ca?

geodesic flows on twoedimensional manifolds of comstant

~‘agpraa¢h presented im the last three lectures can be extended to the higher

o o I n
nafonel esse; here one introduces the open unit ball in ﬁ% g



which intersect the unit &phﬁ?ﬁgmﬁﬁg &

& &

iy {in the Buciidian sense). Practically everything is generalizable to this

including & group of isometric transformations {Rugelverwsndschaften) under

 figations can be made. It is however not known whether all higher

witl ok

dimensions] manifolds of comstant negative curvature can be obtained in this fashion.

. peper mentionsd in the pravious paragraph Sinal proved the following:

1 T~ is the geodesic flow of speed w on an p~dimensional compact Riemsnnian

manifold of negative constant sectiomal curvature -k and volmae ¥V then

By e B 1"32 ¢ ‘ O (38.14)

Wi
. b k=

w . is the surface volume of the wnit a-1 sphere.

3 ¥

Ewtonaion to Variable Curvatures

*

s
P

Y B . . LY
1939 Hopf extended his vesults to the case in which the curvature of a two=-

menslonal menifold satisfiss the conditions

ST SE AR I {38.15}
fgles
oy bounded along geodenics - 0 ¢,

make extensive use of differential geometry. (See A, Grant, Duke Math. J., 3, 202~

229 €1939%) Hopf proved ergodicity snd Sinal (SUVMAT. DOX. 2, 106=109 {19613}



a wumber of ewponentisl grow

g% » g

21 zase of the well known gguation of geodesic

first order how the ssparation betwsen

£38.17) and (38.10) thevefore insist thet

case Hopf was able to ghow that the flow is

entdial.

St B

g 2%
be expa

4
i

4, 1153-1156 (1963}) gemeralized the situation and

& g o
A b 20T 8 5

e . , i 1
mandifold, Pe, and n ;700

2.3
¥

L)
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il
&
e

ot




e

fyen & In-digensional differentisble

oo, ® ) are local coordinates in s

. o 2R
E7yeeey &

¥ be local coordinates for the
is called the tengent bundle of M

. is a differentiable map X3 - T(HY

¥ 4i¢ said to be gomplete if there is a diffar=

thar

;*m,,% gf{ﬁtQE - £(p¥] = X £ {38,203

£ o O 2]

o %%i all differentishle function £ . & vector field on a cowpact manifold

s pateral induced m&& Fo TOMY - T(SY - ¥ takes T€p) inte T(F(p)} and if

i 0, . . i m .
,ere, % ¢ ave local coordinstss at peffl and {y ,0ccy, ¥ ) are local coordinates

at
st Flp) e’ then the action of ¥ can be defined bys

- 5 % x{wg [ o 1313 )
O ey S 1) = ) O E) 3nle)) & (38.21)
q

in :wms is;pé‘ ri{.m Faml

‘{”r B R i . {Wf . . 7 . o
) E4{p3 e f5Y  are the components of F X at PFlp} .
Los4 vt ;‘i‘gm * |4

2

We are now in position to defipe U-systems.

o



pointe {i.e., does not vanish anywhere

)
%
g
‘:;
gaf;
ko
2
22
3
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8
e
%
e
e
g;e
o
2
&
el
&
i
%

(38,283

Ty

sl 2l e s t20
£38.23%3
% How =t g @t
1] v% f} ﬁ & b h g}
b o ot .
allglle , £g0 _
(38.24)
g, o n@t‘l @ Y ‘
Y oe , E20

are taken with respect to the Riemannian wetric and 8, b, ¢

ad ¥ we take an "infinitesimal displacement vector™ Lo

then neighboring orbits lying in a dirvectionm taken from Ti

t ~s0 gud those lying in a direction

ong zaymptoticelly for £ - ~e, The similarity
38.18) should glso he poted.
rhant theoren zbout U-systems: every Ursystem 18 &

result is schedulad to appear in the 1966 Proceedings



R «
. o PTogdet u% Aw o o ? O .
e . H A S 4 [N % s 2
Tim ¢ g T . i wyple £ . )
TR ER - < xl owm oy e / du , {39.1}

paw BO{% 2 ety = NETEN
b

Poe ] £(x) uldx) 4 (39.2)

o

b e ¥ .
R (5 = | [ 2@ w) @l ulan) (39.3)
b (v d

x

The physical significance of the statemwent is that in the limit of long time

the fluctuations in the time averasge of £ about the phase average is

distributed with a variance squared equal to the phase avefaga of the

66 (1960) translated in SOVMAYT. DOK. 1, 983~987 (1960))

tions for a functiom £ to chey the central limit theorem Whea

&
L
g
£
23
f]
v

e geodesic flow opn Riemsnnian menifolds of constant negative curvature.

nditions constinute the fiz&t rigorous resultes in fluctuationm theory.

second Igzvestia paper {Jzv. 1966, p. 15F£) Sinai uses the concept of Lrauns~

ems. An example of a transverse flow 1s the
g §2 2

- , Y 2 .
Flow on the wnit disc with the metric ds = 45&%@ f{i= . The orbits

w are the fawmily of horooyveles all tangent to the sawme point on the unit

The veloclity along each orbit can be taken to be comstant {(in the under-

ic} and such a6 to map the orthogonal fawlly of geodesics {all mutually

totlic at 4 or = w) into itself. Given a differentiable flow om 2 manifold a

transverse flow iz ﬂﬁ%f&f%ra one which is generated by a vector field nowhere tangent
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the oxisien
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onclusion

FFELENE .

o and 4

lom {1

oy
[ ¥

the mechanics of
shall use & finite bow, 1

5
g R

gactor Fields on ﬁkemauaxaa manifolds with

In the csse whevre there is & boundary one

v wherae the vector field is pointing "out" omto
in order to hav& an uninterrupted flow.

thase lecbures we V@ﬁmr% to some computations in simple

les im a8 box as studied inm Lecture 6.

K partic
e —p N “p
.8 Ve, .o, % 3 = 5, . Vix where 3
or VG, By B V) where V()
. - .
poreaching de whwaevar #* approzches ths

5
Lo

e interior of the box} in ﬁ%gﬁ

N 3 =3 ng 4
) LA CARE S VX, ) (39 .43
fot ~'§ fe o o Lot jmi 4
Vi, that the epergy surface H{x,p) = E exists and
= > e -\ oy
P,y = 7,8 = v, TE, () - ?; ix (th - = (rd}
¥ § LI b 5/, ik &
{3%.5}
° . 4 Pg!' .
?’ & ] _o.—,«Lm
P | (®) W



' B(E - B(x,p)) o €39.8)

Bawiltonian 48 symmetric under the intevchange

end therefore so iz (39.6) and we

average fand therefore the space

o

is the same for esach of a set of indistinguishable

squipartition laws see Huang, Statistical Mechanics,

BLE - H{x,pl) {39.9)

1. €39.10)
£39.11)




. By the boundedness of

7.0 - B {-T)
,,,,, i i {}
” 7% -

;;;j

4
i

£ »ﬁ{%”g&.‘, (:g%;j}‘e mué%g &{E - E{E’,; ..“§§

& gravitational potential, i.e.,

E% on the

13

{39.15)

Vet

(39.16

#y
L
3
S
Bt
£

Bt



oad by forces from the walls.

the “bottom”™ of the box asnd the particles

{me mear the botbtow, f.e., we have 8 "settling®

e ro soend

[ et
&

We haves

AT TRE 2KE

Fny
Lad
W
*
Po?
ot
s

on the energy surface the first term on the
limit ¢ ~sw. 7The second term by (39.5} and

-fme sveraze of the kinetiec emergy, i.e.,

w =2 {E E}g {39.22)

agusl to




stationary (bat not
weasured by observing the fores on
when the other one is rotated at

¢
the apace in between. This number

Pty

mey be guite different physically such asg in the
can get exact formmlas forv vie-

physical situation at hand. For

in & square with the following

comditions between the right and left hand edge

Golligion
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o a gas and to caleulate wiscosity

»

menbum Crsnspert. With Binsis

la, however g mobte of warglog

5 evarything {in hydvodynsmice; including

theds for separating out the desired




