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These notes follow the lectures except for a smell number of modifications,
especially in §6,9,10,

Although no new results are given (except for a few technicalities), the
notes should prove helpful as a guide to what has been, and what currently
is being done in the subject., Consequently, the treatment is more complete for
the well established aspects of the subject (ch. I,IL), and is sketchy for
the remeinder (ch. ITI). ‘The emphasis is on the mathematical foundations of
the subject, aﬁd a precise treatment of theorems.

A certain amount of mathematical maturity on the part of the reader is
helpful, as well as a nodding acquaintance with statistical mechanics. For
background and further discussion, we refer the reader to Huang [1], Arnold-
Avez [1] and Abraham [1], (Bibliographies are at the end of each chapter).

There are & number of errors in these notes although most of them are mere
oversights. TFor example on page 46, the figure is incorrect. We would

appreciate knowing of errors, however minor,

J. . Marsden

A, 8. Wightman

July, 1967
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Remark added in proof. Lemma 9.16 is incorrect. The counter example

is provided by sin(nx). (Riemann-Lebesque lemma). The correct
conclusion is: if 8, -—> g 1in the sense of distributions and € > 0,

A is a set of positive measure, fgnug[ < ¢ for some x e A,

Thus wherever 9.16 1is applied to give convergence a.e., use 9,15

if it applies, or else conclude convergence 1ln the sense of distributions.

(e.g. in 9.17).
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CHAPTER I ERGODIC THECRY OF DYNAMICAL SYSTEMS,

This chapter is a condensation and review of some of last year's
lectures, with a few modifications and additions. The basic reference here
is Arnold-Avez [1]. Only some of the proofs are given (the easy ones) so that

the serious student should supplement the treatment heré.

The bulk of the chapter is devoted to asystematic study of flows,
or dynamical systems and their ergodic properties of relevance in statistical
mechanics. The most recent work of Sinai, Anosov and others is described in
§5. In $6 we prove the virial theorem in a modern, slightly generalized form,
and briefly discuss the unsolved problems assoclated with transport properties

(viscosity etc.)e



§1. Dynamical Systems.

This section summarizes the basic facts about dynamical systems, or
flows. Proofs are omitted except where they are trivial, but most defi-
nitions are included, so the exposition is essentially self contained.
References for this section are Arnold-Avez [1], Halmos [1] and Billingsly
[1]. 4

Intuitively, we think of a flow as the time development of the points
of a set X , which represent the states of a physical system.

Systems possess a variety of smoothness conditions, so there is a
number of conditions we shall impose on the flow. For example, the motion

of a particle in a box has a discontinuous flow on its phase space as

follows:

A
4N




On the other hand, a classical mechanical system with a smooth
Hamiltonian has a smooth flow. (The configuration space in this example

is a circle, the phase space a cylinder.)

The states at a time t are obtained from those at a time s by

a mapplng

T(t,s): X —>X

which, if the process is deterministic should obey

T(t,8)°T(s,r) = T(t,r)

and T(t,t) is the identity map (T(t,t)x=x) .
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These notions are made precise as follows.

1.1 Definition. ILet X be a set. A flow (or dynamical system)

on X 1s a mapping
T: RXRXX—>X

(vhere R denotes the reals and Y X2 = {(y,z): y € Y and z e %}
denotes the Cartesian product) such that T(t,s): X —>> X defined by

T(t,s)(x) = T(t,s,x) satisfies
(1) T(t,s)eT(s,r) = T(t,r) and

(i1) T(t,t) is the identity;for all t, s, r € R , where ©

denotes composition.

Let R+ ={t eR: t > 0} and Z denote the integers. A mapping

T: R+ X R+ XX —= X 1is called a one sided flow iff T satisfies (i)

and (ii) above. Similarly, replacing R by Z defines a cascade, and

replacing R X R by {(t,s): t >s) gives an irreversible flow

(or cascade).



U I

A flow is called stationary iff
T(t+u, s+u) = T(t,s)

for all t, s, u € R - Similarly for irreversible and cascades.

The orbit of x ¢ X under a flow (or cascade) T is the set
{T(t,0)ex: t e R}

and the positive orbit is the set

(r(t,0)x: teR} .

We now make a few obvious remarks. First, if T is a flow (or
cascade) then for each t,s , T(t,s) is a bijection (that is, is one
one and onto X) . In fact, from 1.1l we have T(t,s)eT(s,t) and
T(s,t)°T(t,s) are the identities, so T(t,s) is a bijection with
inverse T(s,t) »

Secondly suppose T is stationary (flow or cascade or eny group G
replacing R) and define Tt: X —> X by Tt = T(t,0) » Then we

check that

(1) T°° = 7(t,s) .

1]

(i1) 78 < plops |

the identity.

(9]

(iii) T 4

Sometimes T'b is called the flow. Observe that for a stationary cascade

= (7h)" .
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Next, if Tt is a stationary flow on X , then X is the disjoint

union of the orbits. (Same for cascedes or any group.) To see this,

tl t2 % t+t2-tl
suppose T Xl =17 X, which implies T Xl =T x2 s0 the orbit
of Xy lies in that of Xy e By symmetry they are equal, proving the
assertion.

Thus in a stationary flow the orbits never intersect themselves or
other orbits. For non-stationary flows this is not true as may be seen
by considering a time dependent Hamiltonian system.

Before introducing more structure we mention some important examples

of flows. (Some of the mathematical ideas will be Further explained below. )

1.2 Ixamples: 1. Classical mechanical systems. A symplectic
manifold (phase space) is a manifold equipped with a two form corresponds-
ing to the occurrence of variables in canonically conjugate pairs. Given‘
this structure, each smooth function H determines in a natural way a
stationary flow Tt (Hamilton's equations). This flow conserves energy
(H°Tt = H) and preserves the phase volume element (Liouvilles theorem)
or is measure preserving (see below). For a detailed account of +hese
systems, see Abraham [1] and Arnold-Avez [1]. 1In general, smooth flows
on manifolds are obtained by integrating a system of ordinary differential

equations.

2, Quantum Mechanical Systems. A quantum mechanical system consists

of a self adjoint operator on a Hilbert space }4 o By Stone's theorem,

o+
U

-
there is a uniquely determined stationary flow Tt on Jk/ such that T

is unitary for all t e R . (See, for example, Yosida [1, p. 253].)
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3. Heat Flow. The heat equation, %% = Af , determines a flow on
a space of functions (or distributions) on Rn o« This flow is irrevers-
ible and stationary. For example, the delta function & is propagated

only for positive times.

Notice a fundamental difference between Example 1 and 2, 3. In 1
the flow is on a set X and induces one on the functions over that set.
However in 2, 3 the flow is intrinsically on a function space and does
not arise from a flow on the underlying set. For example, measure pre-
serving does not make sense for 2 and 3.
It was one of the important realizations of the 1930's that for
many of the fundamental theorems (see §2 especially), only the structure
of a measure space is required, and for the flow to preserve this structure.
We now recall some of the basic facts of measure theory. Good

references are Halmos [2] and Berberian [1].

1.3 Definition. Let X %be a set. A measurc (or outer measure)

on X is a map w from the collection of all subsets of X , denoted

2X s to the reals with o adjoined such that

(1) for each AC X, w(a) >0,

(11) w(g) =0
o0
(iii) if By sByyees are subsets of X and AC u B, ‘then
i=1
co
i=1

A set A(: X is called pe-measurable iff for all B<: X,



K(B) = u(A N B) + w(B\A) where B = {x: x € B, x £ A} .

For example, on R , Lebesgue measure is defined by

foe) [ee]
p(A) = inf{ = £(I.): TI. are intervals, A.C: U I.}
i=1 1 1 - di=1 *

where z(zi) is the length of Ii 5 and inf denotes infimum or greatest
lower hound.

The basic property of measures is:

1.4 Theorem. Let W be a measure on X and X denote the meas-

urable subsets of X . Then

(1) £ is a o-algebra; that is if A € £ then A =x\A e =

o0
and B,,B ;... € & implies U B, € £ . (Clearly Z # ¢ ,
172 . i
i=1
(00}
pe,Xxe,and N B, € z) .
i=1

(ii) irf Apshyseee € 2 and A, N AJ. =¢ ,1i# 3§, (disjoint)

© o]
then p( U Ai) = = p(A.) .
i=1 i=1

The proof is standard. See Halmos [2], for example. Note that if
m(A) =0 then A e & . Also note that if {%x} is any collection of
o-algebras then ﬂ{Z%) is also a o-algebra.

"almost everywhere" is very useful. A proposition is

The concept of
said to hold a.e. (almost everywhere) iff the set of points on which it
fails has measure zero., For example if f: X —=> R we might say

f =0 a.e,
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We now require that a flow on a measure space respect the measure

structure. First we consider mappings in general.

1.5 Definition. A measure space is a triple (X, Z, i) where X
is a set, W a measure and X the measurable subsets. For measure

spaces (X, Z, u) , (X', &', p') amap T: X —> X' is called
-1
(

m

measurable iff for each A' € &' , T (A') = {x e X: T(x) e A') ¢ Z .

If, in addition, u(T’l(A')) = u(A') we say T is measure preserving.
=L
T

We say T is an isomorphism iff T i1s a bijection and T and

are measure preserving. If X = X' we call an isomorphism an gutomorphism.

Of course if T 1is a bijection and T, T_l are measurable, T is

. . -1 .
measure preserving iff T is.

1.6 Definition. ILet X and X' be sets with measures p and W'

respectively. Then the product measure K X u' on

XXX = {(x,x'): xeX and x'eX') is defined by

BoX p'(A) =

[e0] [0}
2 1 1 ° 4 ? 1
3.nf{i§l u(Ai)M (Ai), Ay Cx, A} Cx',aC 4.51 By X Ai} .

For example the product measure on Euclidean n-space
n
R =R XR X a:cc XR 1is again called Lebesgue measure. Consult a book
on measure theory for the basic properties of product measure.

A measurable flow is defined as follows. (Note abuse of language. )

1.7 Definition. ILet (X, Z, M) be a measure space and

T: R XX —> X be a flow. We say that the flow is measurable ifT



-9 -

T 1is a measurable mapping, using Lebesgue measure on R2 and the product

2 . ‘s . .
measure on R~ X X . If, in addition, T(t,s) is measure preserving for

each t, s € R we say the flow is measure preserving.

Since T(t,s)-l = T(s,t) , measure preserving means T(t,s) is an
automorphism.

If T is a stationary flow with T(t-s, x) = T(t,s,x) then
(i) T is measurable iff T is measurable

and
(ii) the flow is measure preserving iff I% is measure pre=-

gserving for all %t € R .

For the proof, we have that T = T°p where »p(t,x) = (t,0,x) and
the compogsition of measurable maps is measurable. Similarly T = Tos
where s(t,s,x) = (t-s, x) . Finally (ii) is obvious.

We leave 1t to the reader to make the necessary changes for cascades,
irreversible flows, etc.

Next we consider the extra topological structure wvhich we might wish

to impose:

o
1.8 Definition. A topological space is a pair (X,,N/) where X

is a set and :7 is a collection of subsets, called open sets such that

~
(1) d,xed
(ii) if A,Bei] ‘then AﬂBeJ

(iii) if {Aa] is any family of open sets then U(%x} € wf
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Often a topology arises from a metric d on X ; that is a mapping

d: X XX ——= R such that

(i) a(x,y) >0 and a(x,y) =0 iff x =1y .
(i1) a(x,y) = aly,x) .

(111) d(x,y) < a(x,z) + d(z,y) .

7

The open sets are then defined by: A ¢ 1ff for each x € A there
is en € >0 such that {y e X: d(x,y) <&} (C A . This is used on

R" s for example.

Ir (X,(J ) is a topological space we say AC X 1is closed iff
X\A = AC € ij . A subset CC X is called compact iff for every family
{qy} of open sets with C C:U{qz} , there is a finite number of the

n
U, say Uysee-,U, such that C Cu Uy (cover C) . The topology
i=1

1s called Hausdorff iff for each X, y € X , x # y , there are disjoint
open sets U, V with x € U, y € V (neighborhoods of X) . We shall

asgsume Hausdorff unless otherwise stated.

Note that closed sets obey the axioms dual to those for open sets.
I C C:X is compact then it is closed. Also, in a metric space, C Cx
is compact iff for each sequence {xi](: C there is a convergent
subsequence. (xn ——= x 1ff for all neighborhoods U of x , there is
an N so0 n >N implies X € U) « In Rn 5 a set is compact iff it

is closed and bounded.

’a —
Let (X,&] ) and (X', \J') be topological spaces and T: X —> X'
a map. We call T continuous iff for each U e J' , T_l(U) € Cj .
(In the case of metric spaces this is equivalent to the usual €, 9

definition).
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The Borel sets on a topological space is the smallest o-algebra

containing :7 . That is,

kﬁffz n (= 57(: L, % is a o-algebral} .
(Clearly ;:7 may be replaced by iﬁ , the closed sets).
For two topological spaces (X,:7) and (X7, ij') the product
space (X X X',)Jy) is defined as the set X X X' with topology
r~

/4
,‘-‘-ty
}ﬁf= (AC X XX': for each (x,y) ¢ A there is Ue  , V e J'oso

xeU,yeV and UXV(CA} .

/-
1.9 Definition. A topological measure space (X, Z, u,\/) consists

of a measure space (X, Z, B) and a topology C7 on X such that
1

w/
v C=z (and hence the Borel sets ﬁ:; are measurable), if C Cx is
compact then u(C) <o and if U # ¢ is open, w(U) >0 . (Often one

also requires other properties of | such as regularity.)

A continuous flow on a topological (measure) space is a flow

T: R2 X X ——=> X wvhich is continuous using the product topology. Simi-

larly, T i1is a continuous measure preserving flow if in addition T is

measure preserving (see 1.7).

As before, if T is stationary it is enough to check
T: R XX —>X 1is continuous. Cascades are similar, using the discrete
topology (2, 2Z) .

The third level of specialization is to replace continuous by smooth.

We now briefly sketch the main ideas. For details, see Abraham [1].
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1.10 Definition. ILet X be a set. An atlas on X 1s a collection
7T —_ 2 . 7—n .
{(Ud, @a)} where Ud(: X, U{ua} =X, 9, U, —> Va(: R~ is a

bijection onto an open set Va with the property that if Ud n Uﬁ % ¢ s

the map @60@&1 , restricted to @a(Ua N UB) is smooth. (All derivatives
. . n I 19 . cor 2 ’ s
exist in R) . Two atlases LAl, LAQ are equivalent 1iff A U i,g2

is an atlas. An equivalence class of atlases is called a differentiable

-

structure '4* on X , and X becomes a differentiable manifold. Elements

’/’
(Uu,0) of (Qf are called local charts.

For a manifold X we are given free a topology on X . Namely ACX
is open iff for each a € A there is a chart (U,p) with a € vCa.

Quite often we are also gilven free the structure of a measure space.
For example for a mechanical system (a classical Hemiltonian system) there

is given a canonical measure W , called the phase volume. Then X 1is a

topological measure space. In general R(X) = .

If X and X' are differentiable manifolds, a mapping T: X —> X'
is smooth iff for every chart (U',9') on X' +there is one on X , (U,®)
so T(u)Cu' and @’oTo¢-l is smooth.

Product manifolds are defined analogously to the product of topological

spaces.

1.1l Definition. ILet X be a differentiable manifold. Then a

smooth flow on X is a flow T: R2 X X ——= X which is a smooth mapping

of manifolds. Similarly we may define a smooth measure preserving flov.

For example if we are given a smooth Hamiltonian on the phase space
of a mechanical system we get a smooth measure preserving flow.
We now return to the general measure space setting. To illustrate the

gtrong consequences of measure preserving, we state the following:
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1.12 Poincaréd's recurrence theorem. Let (X, &, 1) be a finite

measure space (p(X) <®) and T: X —> X a measure preserving trans-
formstion (1.5). Then for each S € I , the following property holds for

almost all x € S ; Tn x € 3 for infinitely many integers n .

This holds for bounded mechanical systems for example. Note that
each point need recur only in S and not in other sets. For example,

for a classical system energy surfaces partition the space.

Translation on R shows that 1.12 is false if W(X) = o . The

proof of 1.12 is simple. See Halmos [1, p. 10].

The founders of statistical mechanics argued that constants of the
motion define surfaces on which the motion takes place and that in the
remaining degrees of freedom the motion should be "ergodic" or at least
"quasi-ergodic" the first meaning that there is an orbit (or positive
orbit) filling the entire space and the second that every orbit is dense.
The situation is, in fact much more complicated. It is possible to have
an orbit filling the space (a flow with one orbit) although this a priori
excludes continuous flows. The more modern definition of ergodic is given

below.
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Recall that if (X,ﬁ?y) is a topological space and A (C X , the

closure of A is defined by
A=n{cCx: ¢ 1is closed and A C C}

and is a closed set. A is called dense iff A = X .

1.13 Definition. Let (X,éjf) be a topological space and

T: R2 XX ——>X a flow. We gay T 1is topologically transitive 1fT

T has a dense positive orbit. If, in addition X 1is a measure space

and almost every positive orbit is dense we say T 1s minimal.

et (X, Z, 1) be a measure space and T: R2 X X —> X a measur-

able flow. We say T is ergodic (or irreducible or metrically transitive)

iff Ae Z, T(t,s)'l(A) = A for all t > s dimplies either u(A) =0
or u(a%) =o0.
Iet (X, £, #) be a finite measure space and T: R XX —>X a

stationary flow. We say T is mixing (or strongly mixing) iff for all

A, Be X,

limit [u(Tt(A) N B) - ua) pE)/wX)l =0 .
t - too

Also, T is called weakly mixing iff for all A, B e 2,

%
limit% [t nB) - u(a) w(B)/ux)lds =0 .
t — 4o 0

(similar definitions hold for cascades.)

Recall now the definition of integral on a measure space (X, I, W) .
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Here measurability is essential. For f: X —> R measurable, define
x) = max(f(x), 0) and f = (uf)+ . A step function is a measurable

function assuming only a finite number of values. There arec step functions

+ e -, " - t oA = 5 of
so f tf pointwise and f_ tf pointwise. / fodp =Z fn(Aj) M(Aj)

where A. are the sets on which f; is constant. We define

[ fap = limit [ £ dp = limit [ f; dpu  if both numbers are not +4e , and
n —ow n —o

call f integrable if [ fdu is finite.
In particular, on Z with the discrete measure the integral is just

summation.

One of the most useful theorems is:

1l.1h4 Lebesgue's dominated convergence theorem. Suppose fn,f: X —-—> R

are measurable on a measure space X and there is an integrable function
g so Ifn(x)[_f |g(x)| for all n , and almost all x . Then if

fn(x) —> f(x) for almost all x ,
limit [ £ odp = J limit £odu = [ fau .
n —aow n —>co
We now return to 1.13 and discuss the basic relationship between the
notions defined.

. . . . A, . €
First, mixing implies weak mixing, for given € > O choose T SO

t > t_ implies ]u(Tt(A) N B) - u(a) u(B)/u(Ex)| <e/2 « Choose T, S0

t
T > T implies % JE [u(Tt(A) N B) - u(a) w(B)/u(x)|at <e/2 . Then

0]

we have



1L
7 fo [u(T"(4) N B) - p(a) w(B)/u(x)|at
t
<2 ) N B) - u(a) u(E)/u(x)]at
0
* T
+ 2 [ lrt(a) 0 8) - u(a) w(E)/u(x)lat < e .
e

Secondly, weak mixing implies ergodicity, for if w(X\A) # ¢ , and

T't(A) = A , choose B = X\ , so that

L7 Jue®
5/ w(T7(2) N B) - u(a) u(B)/m(x)las

= u(a) u(B)/u(x)

since Tt(A) NB=g@g . Hence p(A) =0 .

Next, if T 1is an ergodic stationary flow [resp. cascade] on a
topological measure space which is second countable (there is a countable
collection of open sets {Uh} such that every open set contains some
U ) , then T is minimal.

For the proof, x € X has non dense positive orbit iff there is a

= - -t _ c
U, s0 xeA = . Q . X\0(U) - Now T (a) = A, and A :)Uh s

u(u, ) #0 so u(An) = 0 by ergodicity. Thus all points with non dense
orbits lie in U A~ vhich has measure zero (1.4 (ii)). TFor further

discussion along these lines for cascades, see Halmos [1, pp. 25-301.

mixing — weak mixing — ergodicity — minimality —>

topologically transitive.
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The name irreducibility arises as T 1is not ergodic iff there are
two disjoint measurable sets A, Be Z with A U B =X and both invari-
ant under the flow (obvious).

In general, ergodicity is not at all obvious, but seems an essential
property for statistical mechanics.

Classical Hamiltonian systems are never ergodic. In fact for a given
energy e , the two sets {x: H(x) >e} and {x: H(x) <e} are invariant
with positive measure in general (unless H is constant, whence the flow
is stationary and every set is invariant).

Thus we have a chance for ergodicity only on the energy surfaces

H-l(e) . In fact it is known that for almost all e , Hfl(e) is a mani-
fold (Sard's theorem) on which the flow is defined, and that this manifold
Possesses a measure invariant under the flow. For the proof, see Abraham
(1, %151,

For the intuitive difference between ergodic and mixing we consider
two examples (Arnold-Avez [1, pp. 4, 8].) Note that, roughly speaking
ergodic means that every mass visits every other mass, while mixing means
that after long times any mass becomes uniformly spread over X .

The first example is group translation on the torus T through an
irrational slope. (Explicitly, Tt(x) = x + tec where c¢ 1is irrational

on the covering space.) The flow is smooth measure preserving, ergodic

but not mixing.
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Note that a small region retains its identity under the flow.
The second example is represented on R2 by

t

(

T (x,y) = (x+ty, tx + (1+t2)y)

and is a measure preserving mixing flow. After long times t>0, a
small mass is shredded and spread uniformly. (See Arnold Avez (1, p. 8]

for details.)

It is the property of mixing, or stronger a K-system (see below)
which is responsible for the "irreversibility'" phenomena in finite

systems.
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§2. Koopmanism

Koopman's idea was to transfer the flow on a measure space to a flow
on & space of functlons and to relate spectral properties of the new flow
with ergodicity properties of the original flow.

To do this, we first set up some familiar machinery.

2.1 Definition. Iet (X, Z, i) be a measure space and p € R ,

1 <p<ow. Let

P(x,0) = (f: X —>R : |£]|® 1is integrable)

/p <o,

aa el = (f 2l aw)’

For measure spaces (X, Z, p) and (X', Z', p') , and T: X —> X'

measurable, define the measure T*u on X' Dby

T n(a) = u(17(4))

for A e 2X .

o)
In this definition we may replace R by @ , the complex numbers.
The integral extends linearly to maps f: X —> GZ o

The basic change of variables theorem is as follows.

2.2 Theorem., Suppose T: X —> X' 1is measurable and

f e Ll(X‘, T,4) . Then £oT ¢ Ll(X;H) and

Jofa(r,p) = [ (£o1) au .

The proof is a simple exercise. See Halmos [2, p. 163]. The next

theorem is not so simple, but is standard.
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2.3 Theorem. If (X, I, p) is a measure space and 1<p<w

then IP(X,u) is a Banach gpace. That is, IP(X,M) is a real (or

complex) vector space and || Hp satisfies:
. . H e
(i) Hcf“p = beHp for ceR (or { ).

(i1) Hf+gl!p

AN

”f”p + “g”p (Minkowski's inequality).

(iii) ”f”p =0 iff f =0 a.e. and as a metric space with

d(f,g)

£ € IP(X,u) is a Cauchy sequence (for all € > O there

Hf—ng , IP(X,n) 1is complete; that is if

is an integer N so0 n, m > N implies a(f ,f ) <eg)

then there is an f e IP(X,u) so £ o—>1f.

In particular, L2(X,u) is a Hilbert space; that is, there ig a

bilinear map < ,> LE(X,M) —>1R s0 “fug = <f,f> . 1In fact,
< f,g >= / fg du or, in the complex case, < f,g > = / fg dy  where

denotes complex conjugation.
A flow on a measure space induces one on EP(X,M) in a natural way.

2.4 Definition. ILet (X, Z, u) be a measure space and
2
T: R XX —=> X a measure preserving flow on X . Then for l<p<ow,

define
Ur ®° x I (x,1) — 1°(X, 1)
by
[U(t,s)fl(x) = £(T(s,t)x)
)1

or U(t,s)f = foT(t,s

o
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The map U is called the propagator of the flow T .
The basic properties of U are easily deduced from 2.2 as follows.

2.5 Theorem. In 2.4 we have
(i) U is well defined.

(ii) U is a flow on IF(X,u) and is stationary if T is a
stationary flow.

2 ; U(s,t) is an isomorphism. That is,

(1ii) for each (s,t) ¢ R
U(s,t) [and U(s,t)™t = U(t,s) by (ii)) satisfies
Ilu(s,t)fl!P = iifHP for each f e IP(X,u) . In particular,

if p =2, U(s,t) is unitary, or

<U(s,t)f, U(s,t)g> = <f,g8> .

Proof. As T 1s measure preserving, T(t,s),i = u so that if
1£1P e 2 (x,n) , then |r]|Per(t,s)t = [£oT(t,8) 1T ¢ LMx%,u) by 2.2,
so (i) holds. Also from 2.2, [ [f|¥ ap =/ lfoT"l(t,s)lP dp so that

(iii) is clear. Finally, (ii) follows at once from the definitions. [
The following is sometimes a convenient criterion for ergodicity.

2.6 Theorem. ITet T be a measurable flow on a measure space
(X, Z, u) » Then T is ergodic iff for each f: X —>1R (or )
measurable, with £ = feT(t,s) a.e. for all t, s € R (i.e.: f is a

constant of the motion) implies f is constant a.e.

Proof. If T 1is not ergodic there are two sets A, B invariant

under T and WA) A0, w(B) #0 and ANB=¢ ,AUB=X. Obviously
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f=1 on A, 0 on B is a constant of the motion. Conversely, suppose
T is ergodic and f is a constant of the motion. If f dis not constant
there is a mmber a ¢ R so A = {x: f£<a}, B={x: f>a} have
positive measure. Clearly A, B are invariént, implying T 1is not

ergodic. [J

For further discussion along these lines see Halmos (1, p. 251,
Wightman [1] and Abraham [1, §16, 29].

Recall that a measure space is called o-finite iff there are
5; € £, 1=1,2,3,... such that X =US; &nd “(Si) <o , (This
condition is almost always satisfied in practice.)

As a Hilbert space is a topological space, it makes sense to talk
about continuous flows U: R2 X ?4 -~—>-;5J . (See 1.9). In the case
of a unitary flow, as in 2.5 this is equivalent to continuity of either

of the following maps

(1) (t,s) J—> <f, U(t,s)g> for each f, g ¢ ,éJ .

(i1) (t,s) p—> <f, U(t,s)f> for f ¢ ;J .

(More generally when U(t,s) is a bounded linear transformetion.)

2.7 Theorem (Koopman). Let T be a measure preserving flow on
a o-finite measure space (X, Z, #) . Then the propagator U of T

defines a continuous flow on LE(X,M) .

For the proof see Wightman [1, lecture 7] and Dunford-Schwartz
(1, pt I, p. 616].

About the time Koopman proved this theorem, the analysis in Hilbert
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spaces was being strongly advanced (1930's). In particular, Stone's

theorem (see Yosida [1]) give the following corollary of 2.7.

2.8 Theorem. In 2,7, suppose T 1is stationary. Then there is
a unique self adjoint operator H on LQ(X,u) such that .iH is the
infinitesimal generator of U and we write U, = exp(iHt) . (That
LQ(X,M) be the complex L2 space is essential.)

To explain what this means, we recall a few definitions:

2.9 Definitions. Iet 74 be a Hilbert space, D(T) C /Q,/ and

T: D(T7) —> _7@/ a linear map. We say T is self adjoint iff

(i) »(T) is dense in7o/ (1.8).
(ii) for f, g € D(T) , <Tf,g> = <£,Tg> .

(iii) +there are no g € ‘24 \D(T) with the property that there
isa g ¢ Al so  <Tr,eg> = <f,g,> forall f ¢ p(T) .

(Maximality of domain.)

/ A {
If U: R X 2# — ﬁJ is a continuous stationary flow on ;% N

the infinitesimal generator of U , say A 1s defined on the set

D(A) = {f ¢ H : limit (Utf - £)/t exists)
t -0

and on D(A) , A is defined as this limit. (The derivative with respect

to t) .

In case the flow T arises from a smooth Hamiltonian system we can

say exactly what iH of 2.8 is, in terms of the original Hamiltonian.
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It is the (generalized) Lie derivative iLXH on
{f e fg/ t L, fe ;L4 } = D(LX )
H H

where XH is the operator canonically associated with the classical
Hemiltonian H . For details, see Abraham [1, Chapter III].
To be able to understand Koopmen's spectral condition, we state

one version of the spectral theorems. For details see Yosida [11.

2,10 Spectral Theorem for Self Adjoint Operators. Iet }L/ be a

Hilbert space and A: D(A) ———é-w}J a self-adjoint operator on )“j .
Suppose for some f € D(A) , A ¢ D(A) and :LJO denotes the space
spanned by (f, Af, A?f,...) . Then there is a measure o on R such

that ‘7A/O is isomorphic to I?(R,c) and if ¢ denotes this isomorphism,
o(Af)(x) = xf(x) ,

or A corresponds to multiplication by x . Here, ¢ is called the

spectrum of A , or spectral measure.

In general, A need not have any (non zero) eigenfunctions in
f;éjo . Eigenvalues correspond to singular, isolated points of the
spectrum o .

(One can replace :E/O by ZJ if ;LJ is decomposed into a direct
integral).

Similarly, for unitary operators we have: (since U is uniformly

i
continuous if U is unitary, its domain may be taken all of FJ ) .

2.11 Spectral Theorem for Unitary Operators. ILet U be a unitary

& L P H
operator on a Hilbert space ?L} and for some £ € }4 let 7k40 e
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—lf, Ugf,...} . Then there is a measure ¢ on

generated by (f, Uf, U
the unit circle Sl and an lsomorphism @: )QJO —— LE(Sl,G) such

that o@(Ug)(A) = Ag(N) » Again, o is called the spectrum of U .

To recover completeness theorems (as is often "postulated" in
elementary quantum mechanics) one must pass to generalized functions
(distributions).

Koopman's connection between the spectrum of the propagator Ut P
(or the generator iH) is given as follows. (An eigenvalue is simple

iff the space of eigenfunctions corresponding is one dimensional).

2.12 Theorem. ILet (X, &, p) be a finite measure space, T a

measure preserving stationary flow on X and U its propagator. Then

(1) T 4is ergodic iff 1 is a simple eigenvalue of U, for

all t eR .

If (i) holds and 0 <@ <2r , and My 1is

My = (£ ¢ L2(%,1): UL = ot

(or Hf = 6f)}
then either M8 = {0} or Me is one dimensional.

(ii) T is weakly mixing iff 1 is a simple eigenvalue of U,

and there are no other eigenvalues. (See 2.11).

For the proof, see Wightman [1, lecture 16].

It can be shown (using distribution theory) that if T arises from
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a smooth (Hamiltonian) flow then T is uniquely determined by the spectrum

of the propagator U, (or H) .

In general, spectral invariants are not enough to get properties of

the flow, such as the Kolmogorov-Sinai entropy. (See §5).
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§3 Brgodic Theorems

In this section we state the ergodic theorems of Von Neumann
and Birkhoff. These theorems deal with time and phase averages of
functions and their equality under ergodicity.

First, recall that if #{ is a Hilbert space and C(C 7/ is a
closed subspace every x € //f can be uniquely written x = X + %5
where X, € C and <x2,y> =0 for all y € C. The map X —> Xy is
called the projection onto C.

We begin with Von Neumann's theorem dealing with mean convergence.

3.1. Theorem (Mean Ergodic Theorem). Let %f be a Hilbert space

and Ut a stationary unitary flow on . Let "//o = {f ¢ %f: Utf = f

for all t € R} and P: ff > j(o the prcjection onto ﬁ/ o Then

for each f ¢ }{ we have

.
(using the topology of #1.)

In case 7 = L2(X,u), we define

P t
( \ u°s ds)(x) = S U°f(x) ds
o )

In general the integral is defined similarly to the Lebesque integral, by
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step function approximation. For details, see Yosida [1, p. 132].
For the proof of 3.1 in the discrete case, see Halmos (1, p. 13-17]
and in general, see Wightman [1].

From 3.1 we may deduce the following useful corollary:

3.2. Corollary. Suppose (X,Z,u) is a finite measure space and
v
Tt is a stationary measure preserving flow with propagator U (2.4).

Then T is ergodic ifffor each f € L2(X,u) we have

-+t
limit % \ ubs at = ( [fap)/p(x).
T—>00 o

Proof. If T° is ergodic, then by 2.6, ﬁfo of 3.1 is one

dimensional, and writing
£ = (ffap) / p(X) + [£ - ( [fap) / p(x)]

we see that Pf = ( [fdu) / p(X). (Note that fOTt = f if U'F = f)
Conversely, if Pf is ([ fdp) / u(X) then ur = ¢ implies

f 1is constant. Hence by the proof of 2.6, Tt is ergodic. O

In the case of a classical system, f square integrable on the

phase space (or energy surface) is often called a classical "observable".

Next we consider Birkhoff's theorem dwaling with convergence

almost everywhere.
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3.3 Theorem (Individual Ergodic Theorem). Let Tt be a stationary

measure preserving flow on a measure space (X,Z,u) and f € Ll(X,u). Then

&
£(x) = limit % \'w‘sf(x) ds
00 J

t

N A A 1
exists for almost all x € X, f=f o T and f el (Xp)e If X is a

finite measure space, we have further,

LA
Jfap = ffap

Again, see Halmos [1, p. 18-21] ang Wightman [1]

for the proof.

3.k, Corollary. If, in 3.3, p(X) < », then T is ergodic iff
for all f ¢ Ll(X,u), ? is constant almost everywhere. If this is the

case, then

F(x) = Jrap / w(x) a.e.

Proof. If Tt is ergodic then % is constant almost everywhere
by 2.6. Conversely if f ¢ L2(X,u) has f =fo Tt then 7T = f, so

o~
f constant implies Tt is ergodic. The last part is clear from 3.3. O
. . 2
In contrast to 3.1, 3.3 gives convergence in L (X,u).

B UPf ds converges to f in Ll(X,u).
°

ot

3.5. Corollary. In 3.3,
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1
Proof. We may suppose f > 0. ILet f = sup{f, U f,"',Unf} and

g = lim f . Now £ g and ffndu = [fdp. Hence g is integrable.

In 3.3 we have %'fg Usf ds converging pointwise to % and wach is

bounded by g, so by 1.1k, it converges to ? in Ll(X,u). Since any
T

sequence t —> © has L fon U°f ds converging, % IZ v°f ds

t
n

converges. [

1 2 ~ o s
If f e L (X,u) and L°(X,u), then f of 3.1 coincides with
R .
f of 3.3, for the above argument shows we have convergence in

L2(X,u) as well.

The ergodic theorems above show that the problem of showing time
averages equal phase averages is equivalent to showing that the flow
is ergodic. In genemal this is not obvious. As we have seen, ergodicity
means that there are no more constants of the motion. In fact, sometimes
completely unsuspected constants of the motion have been found for some
systems.

However, there is hope, for Sinai has anounced that the system
consisting of hard spheres in a box is indeed ergodic (Sinai [2]). (The
proof has yet to appear.) This theorem goes a long way toward justifying
the basic ideas of statistical mechanics, even though a great deal
remains to be done.

For further discussion of Sinai's theorem, see Wightman [17.

Birkoff's theorem (3.3,3.4) determines the measure u uniquely,

up to a constant as follows., Recall that a Borel measure is a measure for
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which open sets are measurable.

3.6. Theorem. Let M be the phase space of a Hamiltonian system,
H:M —> R the energy and H'l(e) an energy surface (submanifold). There

is at most one (regular) Borel measure g on H—l(e) such that

. -1
(1) p(E " (e)) = 1,
(ii) the flow on H'l(e) is ergodic and measure
preserving.
Furthermore, if W has any point x € H'l(e) with positive

measure, then p is concentrated at a single point.

Proof, ILet UC H-l(e) be an open set and XU its characteristic

function (XU =1lon U, zero on U%). Then by 3.4 we have

vt
’ e s 1 s
pu(u) = SXUdu=llm1t I 3 U f dt
i L

- so that P 1is uniquely determined.
For the last part, suppose m € M and p(m) > 0. ILet m,  Dbe the
orbit through m. As TJc is measure preserving u(mt) = u(m) > 0. But

by (i) this means m, = 1. Then m is an invariant set, so by ergodicity,

w(X N {m}) =0.0

If there is a measure p satisfying these condition, it is called

the microcanonical ensemble.
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§L Statictical Regularity

Here we discuss statistical regularity intvoduced by Hopf [1].
It is important for the intuition it provides about mixing, in terms of
probability. It is the key to understanding how deterministic classical
laws (i.e. a flow) lead to non-deterministic, that is, probabilistic laws.

To see how probability enters consider on ergodic flow Tt on a
finite measure space (X,Z,n). We interpret, for BeZ, p(B)/n(X)’ as the
probability of the event B; that is, the probability that a point
x€X will lie in B. This is the usual formulation of probability theory.
On the other hand, it is reasonable since % f: XB(xt)dt converges to
w(B)/1(X) (3.4) and represents the fraction of time that a point x lies
in B.

In other words, the probability that x 1lies in B equals the
fraction of time x spends in B.

As we observed in 3.6, this property forces us to adopt only one

messure W for a probabilistic interpretation (misrocanonical ensemble ).

It was in terms of a probabilistic description of this kind that
Boltzman reinterpreted his H-theorem after the attacks of Poincare,
Loschmit and Zermelo on his conceptual foundations. At least, this seems
to be the correct interpretation according to the decoding of the

Ehrenfest's in their highly recommended little book (Ehrenfest P. and

Ehrenfest T. [1]).

The above desceiption indicates the physical significance of
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ergodicity. For mixing we owe the interpretation to Gibbs [1, p. 1hk]
for his water-dye analogy but even more to Hopf [1] for his sucessful
explanation of the 'roulette wheel problem'. That is, how can a
deterministic system give rist to probabilistic laws?

The main idea is that in playing roulette the initial conditions
are properly described by a probability distribution rather than a
specific point. For feLl(X,u) with [fdu = 1, and AC X, the probability

of the event A after a time + is
t 5
IAU fdp = fAf(x_t) dp(x) = [£(x) X, (x )du(=)

(by 2.2). We think of the probability distribution f evolving in time
according to Ut.

Our intuition tells us that if the process is random, the probability
of obtaining the event A should depend only on the system and not on

the initial distribution. This is emactly the definition adopted by Hopf.

4,1 Definition. Let Tt be a stationary measure preserving flow

on a measure space (¥,Z,u). An (event) Aef is called statistically regular

if there is a number P(A) such that for every feLl(X,u),

Limit (f UPrap)/(fzap) = P(A)
L0 A

Then we have:

k.2 Theorem (Hopf). Let Tt be a stationary measure preserving
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flow on a finite measure space. Then Tt is mixing (1.13) iff every
measursble set is statistically regular. In this case P(A) = p(A)/u(X)

(taking £ = 1),

Proof. If AeX is statistically regular and BeZ, let f = XB 50

that

) ubs dp = u(TtA N B)
A

and

- t
limit p(T°A N B) = pu(B)u(a)/u(X).
T
v s
Hence T is mixing.

Conversely suppose 'I‘t is mixing. For Ae€X we must show A is
statistically regular. The condition holds for f = XB and by addition
for any step function. Suppose £ > O, feLl(X,p) and fnﬂf where fﬁ is
a step function. Now limit f, v’ du = I U’f du and the limit is

D500
uniform in t by l.lh. Hence

limit [ U%fdy = limit limit [U°f du

t—>0 A >0 fe>00
.. p(a)
= limit [f dp
: w(X) n
n(a)
= Y fd °
es) Jfap

(The interchange of limits is justified by Apostol [1, p. 394] for emample.)O

For an alternative proof, see Wightman [1].
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As a corollary, if a roulette wheel is mixing then there is no way
possible to beat the wheel.

The work of Hopf went virtually unnoticed by physicists with the
exception of N.S. Krylov [1]. He attempted to relate it to relaxation
phenomena in a hard sphere gas. Rigorizing his notions (following Sinai)
will probably require that the Flow is at least mixing. Properties
stronger than the mixing property motivated by these studies are defined

in the next section.
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§5. Entropy, K-Systems and C-Systems

For statistical mechanics, the notion of a K-system may be even
more fundemental and far reaching than ergodicity or mixing. This section
gives the definitions and basic properties (without proofs), which are
largely due to Kolmogorov and Sinai.

We begin with the entropy of a partition:

5.1 Definition. A probability space is a measure space (X, Z, M)

with w(X) = 1 (normalization). A finite partition (¢ of X is a

finite collection {Al,...,Ah} of measurable sets which are disjoint and
n
cover X . (Ai n Aj =¢ if i #j end U A, = X) o+ The entropy of (¢
i=1
is defined ag the real number

n
B(C0) =~ £ u(Ay) bnowuay)
=1

(4n meaning logarithm) with O fn O =0 .

A countable partition with its entropy is defined similarly.

For two partitions {:2 s Q? the conditional entropy is defined by

27| A ) =2 (wan3B) fnpanBs)/uB): Aell ,Bel)

so that if = {x} , 5 < | A) =8I ) .

Notice that O <H( ¢/ ) <‘nn if /¢ has n elements. Shannon
[1] introduced the concept of entropy to measure the 'information' or
'randommess' of a partition C? . (More specifically for letters of the

alphabet being the partition of a message). Kolmogorov [1,2] introduced



- 37 -

the general concept for dynamical systems with considersble improvement
by Sinai [3]. Some intuition behind the definition is given in Billingsly

(11.

5.2 Definition. Suppose <« and 47 are Tinite partitions of a

probability space X o The common refinement is defined to be the finite

partition

/:‘3 "y -y s
L Vg ={ANB: Ae (l ,Bels])
More generally for a countable family of finite or countable partitions

. {/jn} we define

VA Qn} ={na: A e ).
n

If (/ and /- are (finite) partitions of X , we say o S
iff for each B e 7~ there isan Ae(; so B(CA,or /5 is a

P

refinement of ¢ .
For a partition ¢/ 1let Z ((() denote the o-algebra generated
by ¢ (if (\ is finite, = (/) consists of finite unions of members

of /;

7 ) -
A {ZT; /,Z v
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Clearly (7 < /2 iff (& )Cz(#) so < is a partial

L

ordering and (7 =;s iff Z ((7 ) =2 (/5 ) . Also,

S

S(GvdZ )=2 (7 udy ) and 7vH =sup(dd, 7 ) (that is,

o - o o el S T . . s N
Vo= > (4, 7 and C, >4 575 dmplies (> /vy ) - (One can

similarly define A g0 the (finite) partitions form a lattice. This is

the reason for the notation Vv , ~ .)

Some of the basic properties of entropy are as follows:

’

5.3 Theorem. Let LA?, ﬁ?, ( be finite partitions of a probabil-

ity space X . Then

1) ava | C)=w7|F)+uie | TvE ).
(11) ®Ws ) <u( @ 2) e g9 <7 -
(111) 5G| Oy <su(@ls) 2 =24/ .

) B(Gvod] @) <u(G] )+ u(A T E) (1), (1i1) = (iv))

(v) if T: X —>X is measure preserving then
-1 =1 ) . .. s
f4 ={T A Ae ¢} is a finite partition and

-1

T

B =mal5) .

H(T‘l (7 T

The proof is quite easy. See Billingsly [1, p. T81.

Next we consider the entropy of a transformation:

5.4 Definition. ILet T: X —> X be a measure preserving trans-

formation on a probability space. Let gf? be a finite partition and

! 1 ) - ’f - - 9
h( /¢ ,T) = limit = H (7 v T l(f V eas vV T (n l){,.z: )

n —-w
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and
n(T) = sup{n( (< ,T): {( is a finite partition)

called the Xolmogorov~Sinal entropy of T .

From 5.3 it follows that the above limit exists and is finite (in
fact the sequence is decreasing) although h(T) may be infinite. See
Billingsly [1, p. 81-2].

Intuitively we think of h( (/ ,T) as a measure of the randommess
(or information) given to C}, per application of T . In other words,
it measures the mixing power of T . Taking the supremum optimizes the
choice of (¢ .

As was the case with mixing and ergodicity, reversing time has no

effect., That is, if T is an isomorphism, h(T) = h(T’l) . In fact,

we have
® x
¥ )
5.5 Theorem. (i) If Cz is a finite partition and /T (/

generates X then h(T) = h((/,T) . (See the definition of a K-system,

5.7)-

(1) 1f 7’ is a stationary, measure preserving flow on X

then

n(rt) = [+| n(tt) .

Here h(Tl) is called the entropy per second of the flow.

For the proofs and further properties, see Billingsly [l, p. 81-7]

and Wightman [1].
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The next aim is to examine briefly the notion of a K-system
(Kolmogorov system). These are of basic importance and possess all the
nice properties of the preceding sections. Before doing this we recall

the proper way to ignore sets of measure zero.

5.5 Definition. Let (X, Z, 1) be a measure space. For A, BCX )

let A+B = (ANB) U (BM) , called the symmetric difference. ILet R denote

the equivalence relation ARB iff W(A+B) =0 , and (4 = I/R the

collection of equivalence classes, called the measure algebra.

By abuse of language we often write a representative for the class,

and write 'mod O' +to indicate this.

The measure algebra inherits most of the structure of X . For example
we can form A U B (mod 0) , extend u to Qﬁ etc. See Halmos
[1, p. k2-45]. For a penetrating discussion of measure algebras see

Halmos-von Neumann [1].

5.7 Definition. ILet ‘]L‘JC be a stationary, measure preserving flow
on a finite measure space (X, &, 4) . Then Tt is called a K-system

(X-flow) iff there is a o-algebra 7 CZ (sub o-algebra) such that

(1) 2 CT% ir ¢ >0 (mod 0) .

(11) 0 (T80 ) = (40) (mod o)

I

w=CO
0
(iii) \"\_'/(T—tfji) = % (mod 0) .
~CO
-t % *
Here T /7 ={T " A: Ae 2} and \MfT—tf} is the o-algebra
=0

generated by all T—?fﬁ .

The definition of K-cascades is similar.
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For an equivalent definition in terms of partitions see Sinai [1, p.85].
Note that from (i) we have 7t Cr %7 irf t < s since
7 TS T e PCoYS ) so that TS = \f{T’t{E :t < sl
Also, from this and (iii), T't{Z increases to I as t —> o (equiva-
lent to (iii)).
Roughly, (i) says that (¢ is being scrambled, (ii) that there was
no information at -« (H{@,X} = 0) and (iii) that the information, or
randomness is maximel at t = 4w .

The key theorem of K-systems is:

5.8 Theorem. (Sinai-Kolmogorov). Iet Tt be a K-system on the
probability space (X, £, p) with propagator u® on L2(X,u). (2.4).

Then we have

(1) n(Th) >0 (5.4).
(i) ot is ergodic and mixing of a2ll orders (see 5.9 below).

(iii) ‘the spectrum of y* consists of the simple eigenvalue 1
corresponding to constants), together with an infinite
( ding t tants), togeth ith infinit

number of copies of Lebesgue measure on the circle (see 2.11).

For the proof, see Sinai [1, p. 104-8]. Actually, the proof that
Tt is ergodic is trivial. In fact, if T"t A=A for all t , we have
A e T—tﬁl for some t , and hence all t , (by (iii)). Hence, by (ii),
H(A) =0 or p(a) =1, so Tt is ergodic., The mixing properties seem

a little more subtle. (However, using Halmos [1, p. 39] we get weak mixing.)

5.9 Definition. ILet Tt be a measure preserving flow on a proba-

bility space (X, Z, M) . Tt is called mixing of order n iff for all

Al;-ol)An € Z )
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-tl -t
limit (T AN e NT

]
inf|t,=t,| —o
i

) = uAy) e u(ay)

Mixing of order one is measure preserving and of order two is usual
mixing. Taking An =X , we see mixing of order n implies mixing of
order h-l o

As with ergodicity and mixing, the notion of a Ke-system is insensitive

to the direction of time.

5.10 Theorem. Suppose Tt is a K-system and St = T_t o Then St

is also a K-system.

Proof. If (( is the o-algebra associated with Tt , let /5 be
the o-algebra generated by Z\ (¢ . But T't(z\\if YyC =N U so

t

that T° 4 C g7, or 8 A D B . To check (ii) of 5.7,

g Tt(Z\\{I ) = 2\ C}Ttif = ) from which the result follows, (iii) being
z;milar. O -

We turn next to the notion of a C-system (C-flow) (sometimes called
a U-system)., The history of C-systems is a long and involved one, begin-
ning with special examples of Hadamard and Hopf on flows on (compact) two
dimensional manifolds with negative curvature. Geodesic flows in these
cases are ergodic, mixing and even K-systems. (See Anosov [1]). The
key geometrical properties were isolated by Anosov.

To prepare the definition we recall a few more facts from differential

geometry.

5.11 Definition. Iet M be a manifold and me M . A curve at m

is a smooth map c: (-a,a) —> M with c¢(0) =m , a >0 . Two curves
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¢» ¢, at m are called equivalent iff in some (and hence every) local

chart, Dcl(o) = ch(o) (are tangent at the origin). The equivalence

classes of curves at m form the tangent space at m , denoted TmM o

The tangent space of M is defined by TM = U{TmM: m e M} , and the

canonical projection T: TM —3> M by T(TmM) =m .

If M has dimension n , it ig easy to see that :mM has the natural
structure of an n-dimensional vector space and TM that of a
2n-dimensional manifold.

If f: M—> N is a map of manifolds, its tangent is Tf: TM —> TN ,
given by Tf(c) = foc (equivalence class at f(c(0))). In local coordi-
nates Tf 1is just the derivative of £ .

The chain rule of calculus becomes T(feg) = TfoTg .

For proofs of these facts, see Abraham [1].

5.12 Definition. A vector field on a manifold M is a smooth map
X: M—>1TM such that 7T°X is the identity on M (attaches a vector

to each point). A curve c: (-a,a) —> M is called an integral curve

of X iff g—% (t) = X(c(t)) where g% (t) is the usual derivative

(Te(t)+l in terms of T) . A flow Tt on M is called the integral

of X 4iff each orbit of the flow is an integral curve. We sometimes

speak of X as possessing the flow.

The basic existence and uniqueness theorem for ordinary differ-

ential equations yields:

5.13 Theorem. Iet M be a compact manifold and X a (smooth)

vector field on M . Then X possesses a unique smooth flow.
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See Abraham [1, §7]. If M is not compact we obtain in general

only a lccal flow.

5.14 Definition. A Riemannian manifold is a manifold M together

2 2
with a smooth map g: M —> TO(M) with TOOg the identity, where

Tgm(M) consists of all real bilinear maps

) )
b Tm(M) XTM-—>R and TO(M) = U{TOm(M). m e M}

(which can be given the structure of a manifold), and again

72: Tg(M)-——> M is the projection, and moreover, for each m ¢ M we

0

require g to obey:
(i) g(m)(v,v) >0 and =0 iff v =0 for all Vv ¢ TM .

(ii) g(m)(v,w) = (w,v) for all v, w € T,M -
If (i) is replaced by the weaker condition
(i)' g(m)(v,w) = 0 for all w ¢ T M implies v =0

then g 1is called a pseudo-Riemannian metric.

Roughly speaking, g is the smooth assignment of an inner product

to each tangent cpace of M . Fach tangent space then has a norm

)1/2 ]

Ivll, = gw)(v,v

We are now ready to define C-systems.

5.15 Definition. ILet M be a compact Riemannian manifold and X

a (smooth) vector field on M with flow ot (by 5.13). ILet

,'it t):

= T(T ™ —> TM (which is a flow on TM by the chain rule)
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(in fact, 7% is the flow of TX: TM —> T(TM) , a "second order equation";
see Abrsham [1, $171). We say that X (or' Tt) is a C-system (or C-flow)

iff the following conditions hold:

(1) X has no critical points; that is, X(m) # 0 for all

meMo.

(ii) for each m € M we can write

TmM = TlmM G’T2mM @9T3mM
where
a) T, M is the subspace generated by X(m) € T M , which by (i)
3m m

is therefore one dimensional.

(v) T)M 1is at least one dimensional, and for each v € T, M , we
have
ol <alvl e™® for >0
T"(m)
H%tvﬂ b 2 b”v”m e % for t <0
T"(m)

where a, b, ¢ are positive constants independent of v .

(c) T, M 1is at least one dimensional, and for each v ¢ T, M we

2m
have
”Etv“ " < a“v”w eCt for £t >0
77 (m *
T, > olvl e for t<o.
T (m)

It follows easily that the subspaces in (ii) are uniquely determimed
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and depend continuously on m . See Avez [2, p. 51.

Roughly speaking, the situation is as follows: in one subspace T2 P
we have orbits of tangent vectors expanding exponentially along the base
orbit Tt(m) while in the other, they are decaying.

Notice that if a vector field possesses a closed orbit (an orbit for
which TT+t(m) = Tt(m) for some T > 0) +then it cannot be a C-system,
for this would imply that Hvllm =0 or «.

Also note that the direction T3 is essential since vectors here
are always constant multiples of X under the flow (%tX =X) .

Sometimes TUv is written T:v 5 (in Abraham [1]1).

The notion of a C-system clearly makes no sense for cascades since
we do not have any corresponding vector field in general. For the modi-

fication in case of a C-cascade, see Arnold-Avez [1, p. 47].

It is difficult to picture the situation globally since the manifold

is compact and three dimensional (one requires at least RI1L in which to

3 H

embed it), so we pretend we are looking locally at R
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The two basic theorems of Anosov on C-systems are as follows.

5.16 Theorem. Every C-system is either a K-system or has a non

constant elgenfunction.
5.17 Theorem, C-systems are structurally stable.

The proof of the first theorem has yet to appear. However, see
Avez [2, p. 85] for the proof that C-systems are ergodic. For the
precise meaning of the second see Abraham [1]. Roughly it means that
the property of being a C-system is retained under small perturbstions
of X , which is a great comfort to physicists for it means that small
effects not considered will not crush the theory (which can happenl).

The proof of 5.17 (also due to Anosov) has recently been simplified
by J. Moser and streamlined by J. Mather and R. Abraham (see appendix in
Smale [1]). The proof is also outlined in Arnold-Avez [1, p. 55-60].

Unfortunately, C-systems are not generic, (a property is generic,
roughly if almost every vector field possesses it), as shown by an example
of Smale. (Appendix 24 of Arnold-Avez [11).

Sinai's procedure for dealing with hard spheres in a box is related
to the ideas for a Cesystem, but of course can't use them since the flow
is discontinuous (see §1). One possible procedure is to approximate the
flow by C-flows and show that they are "uniformly mixing" or "uniformly
K-systems" so that in the limit these properties are not destroyed.

There is a useful criterion for a flow to be a C-flow in terms of

curvature:

5.18 Theorem (Hadamard-Cartan). ILet M be a compact connected

Riemannian manifold with negative curvature. Then the geodesic flow on
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the unitary tangent bundle of M is a C-=flow, and a K-flow.

This is proven in Arnold-Avez [1, app. 21). ILet us explain the
terms in 5.18. First, a topologicai space X is connected iff no
subset other than @, X is both open end closed. In the case of mani-
folds this is equivalent to: any two points can be joined by & contine
uous curve. (See Abraham [1, app. Al). Compact was explained in 1.8.
For the definition of curvature of a Riemannian manifold,; see Helgason
[1, Ch. I, 88, 9, 13]. The geodesic flow may be thought of as the motion
of a free particle with kinetic energy given by g . This is explained
in detail in Abraham [1, $18]. By conservation of energy the length of
the tangent vectors is preserved under the flow so it makes sense to
talk about the unitary tangent bundle; that is the submanifold consisting
of tangent vectors of length one.

For further intuition we consider two examples (Arnold-Avez [1, p.65-6T)).
First, congider playing billiards on an elliptical table. The flow of a

typical point is shown below.
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This can be thought of as geodesic motion on a flattened ellipsoid
(which has positive curvature). The flow is not ergodic, principally

because of the 'focusing property' of the ellipse,
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Next consider a torus with an obstruction.
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Here the motion can be thought of as geodesic motion on a surface of
negative curvature which has been flattened, although for visualization
we require two sheets of a torus. The negative curvature is all concen-
trated around the obstruction. Here the flow is a limiting C-system and
s0 is ergodic. The reason is the defocusing effect (scattering) of the
obstruction.

For a rigorous description of these examples one uses generalized
tensor analysis (distributions) and generalized Hamiltonian systems
(generalized geodesic flows).

For further discussion along these lines, see Wightman [1] and

Arnold-Avez [1].
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§6. The Virial Theorem and Transport Properties.

In this section we prove scme theorems in statistical mechanics to
illustrate the gpplication of the ergodic theorems.

We shall temporarily suspend the procedure of including all the
background material, for here some proofs (6.2, 6.4, 6.5) require a
good knowledge of mechanics. We shall summarize the notations, however.
That assumed is Abraham [1, Ch. I-III]. The treatment is global and is
valid in general relativity, for example.

It is useful to illustrate and interpret the results by a standard
Hamiltonian in flat space R6N , given by

2

™M=
Lo}
M=

Vj(xj) + = ij(xj~xk)

1 i<k

J

]

H(XJP)""‘. "2'1%‘."“
J=1 J

where X, p € R3N s X Pj € R3 being the ‘'components'. Here Vj is a
potential acting on individual particles (one particle potential) and

v represents the interparticle forces (two particle potential). Of

Jk
course such a Hamiltonian is special to a flat space. Readers unfamiliaxr

with global mechanics should adapt special proofs for this case.

6.1 Summary of Notation.

*
(1) T M denotes the cotangent bundle of a manifold M , defined

*
as follows. For each m e M , TﬁM is the collection of R-linear maps
a: T M-—>R (see 5.11), that is, the dual space to T M . Then

*
TM= U{T;M: me M} . T*M has the natural structure of a manifold

(or more generally, a vector bundle).

(2) {;JT(M) denotes the smooth real valued functions on M ;

f: M—-—>R.
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(3) 4 denotes the exterior derivative; it meps k forms into k+l

forms.

(4) © denotes the canonical one form on TM . Itisa mapping

*
0: T —> T (T'M) defined by 6(c )ev. = - o (TT .-v_ ) vhere
m am m'T M am
7'M ? (T'M) and T: TM—>M is th ical
am € it ? vdm € am - an TM' T M M 1is e canonical pro-
n .
Jection. In terms of local coordinates, 6 = X qlipi o See Abraham
i=1l

1, $14]. w = d6 is the symplectic form on T'M .

(5) Py denotes the momentum of a vectorfield X on M.

PeoeF (T"M) and is defined by P.(o ) =0 X(m) . For example, if

X is ~§§ > Py is b, (linear momentum) and similarly for angular
dq +
momentum. P,, enters into classical mechanics in a fundamental way when

X

we deal with symmetry groups and conservation laws.

(6) ({f,g) denotes the Poisson bracket of two smooth functions.

In local coordinates it is the usual expression.

(7T) X, denotes the Hamiltonian vectorfield of a function H ¢ )

*
where M is a symplectic manifold (say T M above). It is obtained from
dH by means of the symplectic form w . The flow of XH is the motion

of the system. A basic fact is that if Tt is the flow,

a + t
e (for”) = {f,H}°T

(equations of motion). This is also denoted LX £ LX denoting the
H

Lie derivative.
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(8) If ¢@: M—> N is a diffeomorphism that is, is smooth, one

- *
to one and onto, with ¢ L smooth, ¢ denotes the corresponding map

of tensors, and forms.

The first theorem we consider is generally referred to as equi-

partition of energy.

6.2 Theorem. Suppose M is a symplectic manifold, H € ;?'(M)

and I = H-l(e) is a compact manifold. Equip 2_ with an orientation

H

suppose the flow is ergodic (to Qe corresponds a measure). Suppose

(volume) Qe invariant under the flow of X. induced on Ze , and

further that there are functions £, f, € C;((ze) R fi(m) >0 for all
) i ) * _
m ez, and a diffeomorphism ¢: Z_—> Z_  such that ¢ (flﬂe) =f0, .

Then

£, =%,

where f. denotes the (constant) time average of £, . (see 3.3). The

1
same theorem holds if we merely assume fl and f2 are integrable.

Proof. That Ze admits an invariant volume and we get a flow on
Ze is proven in Abraham [1]. Since fl and f2 are positive, ¢ 1is
orientation preserving, and by the change of variables theorem

(Abrahem [1, $12]),
/ £, dp = / £, dp

where M 1s the measure on Ze . Hence we have the result by the
Birkhoff ergodic theorem 3.3. (The change of variables formula is

easily extended to it functions.) []
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6.3 Corollary. On RON consider a Hamiltonian of the form

2
NP
H(x,p) = 2 5= 4 V(xse00,%y)
=L

and suppose H“l(e) is compact and the flow is ergodic on Hrl(e) .

2 2
P. b
Then the time averages of §§r and §§; are equal, as well as their
J

individual components.

- .2 I .
Proof, In 6.2 take f; = pj/2mj ) £y = _pk/EmJ. and let @1 I —> %

be given by interchanging pj/¢E3 and pk/JE£ . By symmetry, the condi-

tions of 6.2 apply. [

Similar corollaries can be derived if V has a special form; say

quedratic in x, « See Huang [1, p. 149].

J

It is via 6.3 that the temperature of a system is defined. Each
‘degree of freedom' is assigned a value %kT vhere k 1is a constant.
Thus the temperature of the system is defined so the time average of

N

z p?/Emj is %NkT o Thus for each energy surface, T is some constant.
J=1

Ergodicity is essential to make this a meaningful statement.

The next theorem is a generalization of the classical virial theorem.

We deal with the case of a Hamiltonian derived from a pseudo-Riemannian
metric (the Lorentz metric, or Euclidean metric for example). Incidentally,
in case g 1is a Lorentz metric at each point, the parameter t obtained
from the flow Tt is called the proper time. If the energy H is invariant
under the action of the Lorentz group, so is the flow (Lorentz invariance).

See Abraham [1, §%18, 221.
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6.4 Theorem. Iet M be a manifold, T*M its cotangent bundle with
the natural symplectic structure. ILet H =T+ V vhere V ¢ cff(M) and
T(am) =<%g(m)'(am!am) where g 1is a pseudo-Riemannian metric. Suppose
H-l(e) = Z_ is a compact submanifold of TM . For any vectorfield X

o~ 3%
on M define Gy € oF (TM) by

Gx(ozm) = d?(am)‘XPX(am) + av{m)-X(m) .

Then
(i) the time average of Gy on Ze is zero.
(ii) the space average of Gy on Ze is zero.
(iii) 4if the flow (of XH) is ergodic on Z_ the time and space

averages coincide (termwise).

Moreover, in local coordinates (x,p) the function GX is given by

Gy (x,0) = = &(x)+(2,0+DX(x)) + 5 D,g(x)*(p,p)X(x) + DV(x)X(x)

where D denotes derivative. As above, PX is the momentum of X and

XP is the vectorfield associated to P

X X

For the proof, we first establish the following

6.5 lemma, Let M be a symplectic manifold, H ¢ c;f(M) and H-l(e)
be compact and i: H-l(e) —> M the inclusion. For any T ¢ C}f(M) s
we have
(i) the time average of {f,H}ei on H.l(e) is zero;
(i1) [ (f,H)ei dp =0 .

(Compactness is essential as simple examples show).
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Proof. By abuse of notation we work directly on Ze » For (i),
t
{f,H]oTt = g; (fOTt) so that % [ {£,H}T° ds = %(foTt—f)-——+> 0 as
0
t —> o since f is bounded (H—l(e) is compact). For (ii),
{£,H) = LXHf and since © is invariant under the flow;
{£,H)} Q= LXH(er) = dle(er) since L, =di, +i,d and d(fﬂe) =0 .

But since Z_ 1is compact, we have by Stokes theorem, ) d(iX fﬂe) =0,
H

proving the assertion. Note that ergodicity is not required. []

For example, if on R6N ; H is given as in 6.3, the time and space
average of each Pj is zero since Pj = {qj,H] o Thus, if pj >0 , for

example, the energy surface cannot be compact.

Proof of 6.4. We claim that Gy = (H,PX} so the result will follow

from the lemma. To see this, we have

LXPXT + LXPXV

dT‘XP + dV-XP °
X X

£\

]

(5,2,)

But the flow of XP is induced by Tt* which projects to Tt on M ;
X

hence since V depends only on M ; dV~XP = dVeX . See also Sternberg
X

[1, p. 146-7]. 1In local coordinates

XPX(x,p) = (X(x),-p-Dx(x))

obtained by differentiating Tt* o« The second formula for GX now follows,
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using bilinearity and symmetry of g . (iii) follows from the Birkhoff

ergodic theorem 3.4. [

The Virial theorem 6.4 differs from the usual formulation by the
extra term ng » which is interpreted as an effective potential due to
the curvature of the space.

The following corollary is of special interest in statistical mechanics.

6.6 Corollary. On R6N consider the Hamiltonian

P2 N
H(x,p) = 5%— + I Vj(xj) + Z ij(xj-xk)
J

j=1 i<k

M

J=1

3

where Vj and V Jsk = 15000, are smooth functions om R~ .

jk
Suppose Hrl(e) is compact so that we have a flow induced on H-l(e) .

Then

(1) +the time average of the following quantity is zero:
2/ 5 vy, (x,) (-3, )" (-, )
-2 Xp./2m, + T VV.,(x.)x + . VV, (x,- o(X.-
S R N A j<k & T
(i1) the space average (over Hfl(e)) of the function in (i)

is zero.

(iii) 4if the flow is ergodic on Hfl(e) ; we have (equation of
state)
l .
V| =1k? -5 Z X,- VYV, (x.-x )d
21Vl NI I Geymngd e 7 3 (g

(integration over H-l(e)) where kT was defined above (6.3)

and where
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N %
1
vl = = Jov(x)x = lm £J vv.(x(s))x(s)ds
=1 A R B R J

by definition.
Proof. This is a special case of 6.4 using X(x) =x . [J
Here ]V] is the volume of the ‘'box!
B={xc¢ R3: x is a space coordinate of a point in H?l(e)} .

If other forces are added to the box forces Vj ; [such as ‘'gravity';

mjg-x] other terms must be added [g-Z [ mjxjdp (center of mass)].

The constant p 1is called the pressure and corresponds to time
average momentum transfer as indicated. In 6.6 almost every surface
H~l(e) is a submanifold (Sard's theorem).

The theorem 6.5, 6.6 can be generalized to the case in which Vj P
ij are not smooth (say are distributions) but the system has a flow.
This requires distribution theory which we shant go into here. (The
proof will appear elsewhere).

Finally in this section we briefly discuss transport properties to
illustrate some of the difficulties present and what modifications of
previous ideas may be necessary. This subject is in its infancy and rep-
resents a real challenge for any prospective workers in the field.

The point is to obtain macrocosmic information from microscopic
information; for example the model of a gas such as hard spheres. The
properties we have in mind are heat conduction and viscosity.

One of the problems is that in such models, energy is not conserved,

but is rather transferred through the system. In that case we make use

of a more general ergodic theorem as follows:
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6.7 Theoren (Chacon-Ornstein [1]). Iet T %be a positive linear

operator on L, of & measure space (X,Z,1) (that is, £ >0 implies
Tf > 0) and suppose linlll < ”f”l for all £ e L j(X,u) (see 2.1).

Then for each f,g € Ll(X,u) ; 8>0,

oo e
limit (Z T£)/( 2 Tg)
n —c k=0 k=0

exists and is finite almost everywhere on the set

A= {x e X: Tk(g)(x) >0 for some k > 0} .

In particular if u(X) <® , and T is induced by a point trans-

formation,

n
limit & z ka
n —o k=0

exists almost everywhere on X for each f ¢ Ll(X,H) » (teke g =1)

There are other ergodic theorems which may be useful in a future
development of the subject. We refer especially to Ackolou [1] and
Ackolou~Sharpe [2].

To see why this theorem is appropriate, consider a model for heat

conduction:

6.8 Definition. (Heat conduction model for a hard sphere gas in

two dimensions). ILet s' be the unit I = [0,1] and C =1 X st &

20 ith the set

cylinder. Let Cn =C X .o XC and P=C" XR
{(a,p): Iqi—qjl‘f a for some 1i,j)} removed (corresponding to collisions).

Consider the flow on the phase space P described as follows
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(for the flow to be well defined further sets corresponding to triple

collisions, etc., must be removed)
(i) free motion between collisions
(ii) elastic collisions between the n spheres

(iii) "reflection" at the top wall {1} X sl described by
(Px’py) > (P, ap + (1-a)p) for »>0 and 0<a <1
constants;

(iv) "reflection" at the bottom wall {0} X Sl described by

(p,o2,) = (o, Bp, + (1-p)h) for B >0 and 0<p<1

constants.

6.9 Theorem. The above flow is a contraction. That is, it decreases

the measure on P . Alternatively, the induced flow on 11 has norm <1 .

(lleell < gD -

Proof. The measure on P 1s conserved except possibly under a
reflection. It is sufficient to consider a single particle undergoing
reflection at, say, the top wall. TFor a fixed time, to sufficiently

small, the flow is of the form

(750,20 b= (x + 505 v + 2060 0 )5 Yy by + (1-a)p)

which has Jacobian ¢ ; since 0 < <1 , volume is decreased.[ |
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L e Heat Bath (a,p)

Heat Bath (B,h)

6.10 Conjecture. Almost eveé&mebit above lies in some compact

set (is bounded).
From 6.9 and 6.8 we can state the following (6.10 is not needed):

6.11 Definition (Thermal conductivity). In the above flow, the
thermal conductivity K is defined as follows: Let ¢ be a smooth

function on C and let

t .1 -t -t 2 -t
fO [ifl o(T qi)(T pi/Em)T piy]dt

-k(p) = limit

by [z (- ("%, )1 (55 /2m) Jat
0

(k(p) depends on the initial point (q,p).)

Here the numerator represents the heat flux J_ in the y-direction,
N

. o T ooy oo (L
and the denominator represents the temperature gradient 5 (o) Ty( By)

Just from 6.7, we don't know the above limit exists as the denominator
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is not positive. We could however take the ratio of each with the total
temperature, for example. The situation is less burdensome if the flow
is bounded so that the time averages exist separately (see 6.7).

Some open problems for the above flow which would be worth investi-

gation are as follows:

1. 1In what sense is the flow ergodic? (In the language of

Ackolou-Sharpe [2], describe the boundary).
2. Is K constant a.e.?
3. How does K wvary with the molecular radius a ?

4, Does T obey the heat equation in any reasonable sense

(e.g.: in the thermodynamic limit $37, 9).

(It may be that the above model is too complicated to warrant satis-
factory analysis, and that the proper setting is the continuum limit.)

Viscosity seems to be a more difficult task than heat conduction,
and there is, as yet no simple satisfactory model.

Until recently, the standard discussion of transport coefficilents
was based on Bogoliubov's generalization of the Chapman-Enskog theory,
which leads to a power series expansion of the transport coefficients in
the density. (For a review up until 1960, see Uhlenbeck and Ford [1] ch vII.)
However, it was recently discovered that the series diverges, so that the
entire subject needs rethinking. (For a recent account and references,
see Dorfman and Cohen [1].)

For viscosity, the experimental situation the model should mimic is
as follows: One observes the torque on one of a pair of concentric

cylinders when the other is rotated at constant angular velocity, with the
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gas between. The temperature is stabilized by means of cooling apparatus

for the two shells.

If the flow is laminar and governed by the Navier-Stokes equations,

the viscosity is given by

1N = average X-momentum transferred in

y direction = y-gradient of x-momentum

_ L
= T (

e

1
=)
8s

where § is the angular velocity, 815 8y the radii of the cylinders,
and L the torque per unit length. (See Page [1, p. 278-80]).

A possible model would be similar to that for 6.8 with an X=component
change as well at the top. Again this flow is a contraction. It is clear
what the gradient of P, in the y-direction should be, but the numera-
tor is not so clear. Again we have many open problems. For example does
the above formula for n hold in the thermodynamic limit? etc.

This field is fair game for research workers, but is probably a very
difficult problem, on the level of Sinai's theorem for hard spheres in a

boxe.
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CHAPTER IT THE THERMODYNAMIC LIMIT.

Roughly spesking, the thermodynamic limit is the passage from systems
with a finite number of degrees of freedom to those with an infinite number,
by letting the volume and number of particles tend to infinity, their ratio
approaching a finite limit.

There are considersble mathematical difficulties associated with this limit
(The 'C* algebra approach avoids this by working directly in the limit, hope-
fully simpler). We begin in §7 with a rigorous treatment of the classical
theorems of Yang and Lee., These are generalized in §9, along with associated
problems (the limit in the other ensembles for example), In $10 we discuss the
elegant tfeamment of correlation functions of Ruelle (with a few modifications

and generalizations).



§7. The Classical Theory of Phase Transitions

This section contains a breif outline of the theories of Mayer and of
Ieeg and Yang on phase transitions. This is mainly for orientation and
motivation for later work. The theorems of Lee and Yang are proven in
detail, as the proofs in currant literature are sketchy and omit a number of
points, obscuring the real subtlety of the theorems. For the connection
of the definitions with elementary physics we refer to Huang [1]. Many

of the key papers in the subject are conveniently reprinted in Frisch-Lebowitz

[1].

7.1 Definition. Let M be a phase space (symplectic manifold) and
H: M —>R a Hamiltonian; not necessarily smooth. Let D M be a
measureable set (recall that a symplectic manifold is canonically endowed

with a measure). The partition function of H (relative to D) is defined

by
QD: R?—-—>»R

[

| exp(-BH) du < o
JD -

oy (B) =
vhere B e R, B > 0, and 4 _is the phase volume.
For each B € R, B > 0, the function e PH thought of as an (unnormalized)

probability density function on M is called the canonical ensemble, so

that QD(B) is the probability for the event D.
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From the physical point of view we think of B = l/kT, T the
temperature and k a constant connecting B to physical units (Boltzman's
constant). The canonical ensemble then measures the distribution of states
at a given temperature and is essentially justified by the central limit
theorem.

We whall be interested in the following situation.

7.2 Theorem. Suppose M = U x R3®  where uvC R is open, and

n
- . .
H(a,p) = % Py/2m +V(q) for q e U, p € B3 p o= (By,--0); by e RS ana
51

2
p

P = <;3,pj>-the usual inner product.

If D=0 x RBn; U, C U is measureable, then

where A\ = (2 wﬁ/m)l/2. We often write QU for QD in this case
o

Proof. Here p = uq X up where uq and up are Lebesgue measure
and x denotes the product measure (1.6). One of the basic properties
of product measure is Fubini's theorem (Halmos [2, p.1L8]) which applies

here as the integrands are positive. We obtain



T3

exp(-6 Tpy/2m) exp(-6V)(da x d)
o onR3n

0y (B)

' 2
f exp(-B ij/Em)dp / exp(-pV)dg
L/R3n J 9]
(o]

The first integral is easily seen (i.e. is well known) to be l/ksn. O

The idea behing 7.l is to allow for fluctuations in energy arising
from weak interaction with a much larger system (temperature bath). The

next concept allows fluctuations in the number of particles, arising

from passage of particles into and out of the temperature bath."

7.3 Definition. ILet MP, M;, M?,... be symplectic manifolds and i M —> R

Hemiltonians . Let D" ( M" and define

co n
“} Z
o (Z)B) =X =— Q (5)
D n=0 ni Dn

e

for those pairs B € R, Z € C for which the series converges. cfo is

called the grand partition function and for each z,B with .z € R, > 0,

n
the function Z Q n(B) of n, thought of as a probability distribution
nt D

is called the grand canonical ensemble.

The mean of a mapping f: {0,1,2,...} —> R is, as usual, defined



n
by (re z 58, D)

o) n o n
<t>= ¢ f(n)Zq (B) /= Za (p)
n=0 nt D n=0 n! D

In particular if n denotes the identity map, <n> is the "mean number
of particles", and <n> = 4 32 log‘bgD( z,B) (see below)

If ﬁn = U‘n b'd R3n we often write 52n(z sB) for O? n(z 5B
) D

The expression for <n> is valid in any simply connected region where

égD( z,8) does not vanish and is holomorphic (analytic), for then

%; log ;?D( z ,B) = g; Y, D( z ,B8) /ol D( z ,8) and we may differentiate

term by term. See Ahlfors [1, p. 139].

More general conditions for the convergence of «{_ ame given in the

D
next section.
Just as P was related to the temperature, 2z is related to the

chemical potential.

We consider now,more specifically, two body forces;

7.4 Definition. Let M = R3n x B3P and suppose H_: M —> R is given

by
n o n
H(wp) = Z p7/2m+ 2 v, (o, - [)+ & v, (q,)
n 3=1 J <k JkM' ) k FEETE
where V, R =~—>R and l.l denotes euclidean length.

Jk:
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Suppose IJ(:R3 is open and V. = O on U. Then we write QU(B) or

’ n
n ? OYQ Z n .
Yy (B) for QUz...xU(B) and. f-vU( z,8) for nib ;: % (). (Strictly
speaking U X...xU may not be the configuration space as Vij can be singular.

BV, .
However, we put e 9 = 0 if Vig = also, V, may represent & potential

confining the particles to U; a & function at the boundary for example.)

1
Thus (B) = == J[ exp(-p £ Vv )dg.
Wit = T3 Uxe . oXU i<y i

The pressure PU( z ,B) is defined by

[U[B PU(Z sB) = log ;}U(Z sB)

for suitable z (see above) where [U| denotes the lebesgue measure of U
in RS (volume).

The specific volume v is defined by

vtlj 7 =</ vl =157 2 S log Ly (z ,B)

again if it makes sense.

These two formulas are called the parametric equations of state

in the grand canonical emsemble (compare $6).

The Ursell-Mayer theorem expresses @ and ;Z in terms of 'clusters'.

For this, we prepare the following definition.

7.5 Definition. Consider the situation @escribed in 7.4 and define



£t R x R3 —> R by £;5(8sa) = exp (-8 Vy;([a[)) - 1 so that

QU(6)=::3L—5 ]{'.n‘ [1+¢f

i<k
UX. ® ..XU

jk(ﬁ, a - qk)]}dq

Let £> 1 be an integer and N, = {(3,k): J<k; 0< <4

0<k< & j,k integers}. An f-cluster I is a subet of N

we cannot write I = I' U I" where I'(C N, 1" C N, end contain no

common integers, (That is, I is a connected graph). The

coefficient is defined by

1

b, (B) = Ao
fu 353 oy

such that

L-cluster

z{fffdu "I is on f-cluster; fp = Wfij;(i,j) € I}

7.6

where the integration is over as many copies of U as there are variables.

&

o

. o]
SN\
\ /
\
\“\ //
...,.G
Lhecluster
O
//
e / T
< O
—

3-cluster & 2-cluster




7.6 Theorem (Ursell-Mayer) In 7.4,7.5 we have

n
1 _ 1 U
T QU(B) = X {ézl m, 3 °s U(B)]

n

b zmz = N5 myyeee,m positive integers}

£=1

1
and TGT log ol ( z ,B) = ""3" ,le bz U(B) 2

The proof is a good exercise in combinatorics which we shall omit.
See Huang [1, Ch. 14], for example.

This theorem is historically important as it was a method for handling
the behavior of P and v as [U] —> », the thepmodynamic limit (see
below). They played a role in the Van der Waals equation for example,
using the so=-called virial expansion, which with cavalier mathematics is

as follows:

z3 . 1
PP, =Z4, ('—ﬁ~}
where b, —> b, as [U] => ® and
n,4-1 y/ y/
Za,8nb z7) =szz/2,€b£z.

Mayer's idea in this program was that for small real z > O we

should have a gaa phase with all functions analytic. The first real Zg >0
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for which % fails to converge should correspond to a phase transition

(condensation point). There are two main difficulties with this. First,

we could run into the radius of convergence before a real singularity
(there is no reason to believe that bn are all real and positive).
Secondly, any subsequent phase transitions are masked.

The above situation was markedly improved by two fundamental theorems

of Iee and Yang (7.1l and 7.12 below). They studied a particular potential,

described as follows:

7.7 Definition. Consider the situation of 7.k. We say that

Vi 3 =V is a Lee-Yang potential iff the following conditions hold:

(i) V(r) = = if r < a where a >0

(ii) there is a constant B > O such that V(r) > -B for all V € R

and (ii1) v(r) = 0 for r > r, where r, > a.

Typical potentials are the following:
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The crucial facts are that there be a non vanishing core (a > 0)
a lower bound on the potential and finite range on the forces (r0 < ).
We see no reason to demand that V(r) <0 for a<r< T or that V be

continuous.

The first important fact about the Lee-Yang potential is the following:

7.8 Lemma  In 7.4, suppose Vi = V is a Lee-Yang potential and [U] < w.
Then the grand partition function is a polynomial in gz of degree

Ny < [U[/(%E 33). (Assumption (iii) of 7.7 is not required.)

Proof If n > [U[/(%—T-r- 83) and q € UX...xU then [qi - qj[ <a for
some i,j; 1 < i, < n, by geometry so that, since V is bounded below,

j%: V([qj - qkf) = o for all q € Ux...xU and hence Q,Un(e,) = 0. O

For systems whose grand partition function is a polynomial, we have

the following general pypperties.

7.9 Theorem In 7.4 (or more generally), suppose ;Z_U( z sB) is a
polynomial in z of degree Ny 2 1, and 0 < [U] < w. Then for z € R,
z > 0 we have

(1) p py(z ,8) >0
1uf

o

(ii) 0 < < vU( z,8) <o (see 7.8)
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(iii) p,, and v, are monotone increasing in gz , and so, with

8) U
abuse of notation, PU is a function of VU and B3
oP B2
(iv) B?'r'g (vU,B) = - {-----[-1T <n - <n>>2}-l <0
U <n>

(v) there is a neighborhood of the positive real axis on

which fQU has no zeros.

Proof We have

[ulp PU( z ,;B8) = log(l + alz + oeee Bz 1\I)

and o N
1 1 alz + agz +...+1\Ia,N z
Z =
VU( )B) [Ul 1+ alz 4 see + aNZ N

where a; > 0 and the principal determination of the logarithm is
understood.

Hence (1) and (ii) are obvious. For (iii) we have, by direct

differentiation,
N-1
Sp a, + a,z +...+NaNz 1
lule 5z u(z »B) = -7 = = <>
l 4+ a Z + eeco <4 & Z
1 N

and. - ov _ 9 —l-) S {<n2> <n>2} I <n-<n>>2 (variance

W dz Jdzv [T 2 U]z rule).

Thus (iii) is clear. For (iv), P is a differentiable function of v by

the inverse function theorem, and g% = gl-; / g—% which gives the stated
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formula. (v) is clear. O

Thus in this case, all functions are analytic, indicating no phase

transitions and we get behaviour typical of the gas phase:

1,

[
-
Wy

However, as [U[ —> o (thermodynamic limit), the situation is not

g0 simple, for then the zeros of 5{U.can converge on the real axis

indicating a phase transition.

| A

g
e
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The lLee-Yang theorems guarantee that in the limit, P is continuous,

but 1/v may not be. Thus we have, qualitatively, the following:

) Ny P
~ \
/ \
P 1 ..
~ .
P t \\M’.
A’.,"'/ } l[l -
/"/ l.z/ - A
,,/”// /‘—/‘
= g E = 2 > v

The way U is allowed to expand is mildly restricted to the following.

T.10 Definition. Let Ui,Ué,... be an increasing sequence of subsets of

R3, and let r, > 0. We say that Uﬁ are r_ -regular iff there are unions

0 —o-—-—-——-.v-——

of non-overlapping cubes of side > ros Tn’wn such that

(1) 2, Cu CW

(12) [o,[ —>® a8 n—>

>0 as N =—> ®

(iv) diameter T, —> . (so (iv) => (ii)).

Typical ro-regular sets are expanding cubes, sphers, etc. More
generally, if Uh is the magnification of & set with rectifiable

boundary, they are ro-regular.
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The main theorems of ILee and Yang en the thermodynamic limit then

mey be stated as follows:

T-.11 Theorem (.Lee-Yang) In 7.4, suppose Vi,j = V is a Lee-Yang potentisl

Then for g, real, z >0 and B € R, B> 0, there is a non decreasing
continuous function of z , B P( z ,B) such that for any ro-regular

sequence UnC g3 (ro is that of 7.7) we have

limit

>0 [Un[

log c;ZU( z ,8) =B P( z,B)
n

where OZU ( z ,8) is the grand partition function, defined in T.3,T.L.
n

The second theorem reduces the location of phase transitions to

tracking the zero's of a8 V expands .

7.12 Theorem (Lee-Yang) Suppose the conditions of T.ll hold and B € R is

fixeds ILet S C be an open, simply connected subset of C, the complex

plane with s nRT o (&Y = (z e R: x > 0}) and ‘P:zU ( z,B) has no
n

zeros in S for all n end 3z € S. Then the convergence in 7.1l is
uniform on compact subsets to an analytic (holomorphic) function pP( 2z ,B)

in S. In addition,
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1 s
Wze) T

-~ i
g2 (U |

2 g% {log i;fuﬁ(z,ﬂ)3

exists and is analytic in S, and is non decreasing for z € R, z > O.

Notice that S must be simply connecte@ for T.l2 to make sense.
See for example Ahlfors [1, p. 143]. (If S is simply connected, FiS —> C
analytic and nowhere zero there is an analytie function log £(z) such that
£(z) = exp (log £(z)). Any two such functions differ by a multiple of
2 m i (the determination).) We use the determination of the logarithm such
that on the positive real axis we have the usual logarithm.

The proof of these theorems is somewhat involved so we prepare a

number of lemmas: The hypotheses of 7.1l will be assumed throughout.

7.13 Lemma, Suppose W, C R’ is an increasing sequence of sets, fwjf < o,

d
o WsT - we
Wj C Wj and limit ._..j....L....[..J_‘. = 0. Then we hsgve
Joms00 IW&{

mit  —— [log .y (2,8) = log oly,(2,8)] =0

Jo—e lwgf J J

for all B e€R, z €R, z > 0.



Proof. Clearly, Q‘l;;,( z »B) < Qg (z ,B) as the integrands are
J J

positive and W‘% C WJ., and hence W‘%x...xW‘J C wjx. . .ij . Thus, the

polynomials ./ satisfy JZW ( z8)> QW,(Z ,B).
J J

We now claim that there is a constant ¢ > 0 so that

f;;zwj( 2 B) S expl g o[ - [w3[)]p;2,wé(z £)

which, together with the previous inequality will prove the lemma.

715

To do this, let qa, E(B) be the portion of %FQVI; (B) corresponding
b . 2
dJd

to £ particles in Wj \ W!. More precisely,

J
B)= =— . [ ew-8 % V(|a,-a,[)a
", 28 (n-2) 13" G, 1<) 17

where G, ( Wj XoooX Wj is defined by

= B eee \WE o oo e
Gz {q.° q.l) q.z € Wj\wj s qm_l; 2 qn € sz}

Hence by symmetry in q,j 's we have

m
GO = oy (0) wnere
dJ

M< {n, [wj{ / %T-’ a3} (see 7.8).

By Fubini's theorem, we have
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2i(n-£)1 7\3nqn’ 2(5) - } / , exp - ﬁiﬁj V(Iqi'qu)dql...dqz)dqu_g_ dq_n
)

< ot | exploppa(C0)3) [ 65 V(las-a,l)a, .-
WD exp{- — exp - B q.-q.])4q, ....dq
= 3% a j wr_n"‘e i<i=tal i) 2+l n

n

Since V(r) > -B, and for q,€ WJ\WE, ([qi-qj[) contains at most

5BV
0.3
(-_é) non zero terms, since we may assume [qi-qj[ > a as explained

previously. Note that [WJ.\W&[ = [Wj[ - [Wj[

Thus ;we have proven that

r
a,,4(B) < %exp[-sza(-gﬁl(leklwgh T

n-£) J

Therefore we have, since all sums are finite,

- i~ n
Ly (2 oB) = & 0 a7 (B)
3 3

2 [C(ij [‘[W;j[)]g Zn"e

<z . ke
—nzz z 28 (1’1—.@)- QWJ
sew ze ([ Ly 2 8)

J

r
where c¢ = e:@[-BB(—g-‘)?’ ] > 0, and the lemma holds.D
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The inequality in the above proof will be required later.

7.14 ILemma. Suppose U = jﬁl WJ, where the distance between wj and wk;

J £k is at least rys (all substes of R3) then if [U] < o,

I k
_ 9
aﬁ/rU( z ,B) = j'glm-vj( z ,B)

In particular, if Vj erxe all congruent by translation or rotation,

Lyle 2 =1Ly (o 1"

n

Proof. Clearly, U" = U Xee.x U = U{wgl

(l) XoooX Wc(k): g is a

permutation, I n, = n} and by Fubini's theorem and the fact that V( qu—qk[)
n

. . 1 n 1

is either zero, or qj,qke Wg for some £ we have =7 QU(B) = Z{Qwi(ﬁ)/

nil...nk,!: an = n} agein by symmetry. The result for »{ follows

by the multinomial theorem for polynomials.O
We next prove the theorem for cubes.

T+15 Lemma. For z > 0, B > O there is a real number BP( z ,B) such that
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if Wj is a cube with side ngo then

1 ',
JJ_ini;: -W-J—r log '~;"~W( Z;B) = P(Z )B)

Proof. Partition off Wj into & union of 897 cubes ij;
k=1, ...,,8‘]"1 each with side ,?_lro, and let W:jk C ij be a concentric
cube, a distance r0/2 from the complement of ij. Then, by T.lb,

j-i
.)4’ ‘,\,I( Z JB = [le ( Z J6 8

where W! = UW! o
I 3k

From T.l3 then we conslude that

je=1 Fa] )
8°"" log W'k( z ,p) < log iy (2 ,B)
J J

< 8 0 Iy, (2 80+ z Cfyl- 11 ()
Jk

and, since 8J-l[wi[ = [le; Ay (z,8) =@ ( z 5B)
Jk

N .
[log « ., (2 ,B) - log A, ( z.,8)]
Iwil ka ’ ij

1 o 1
S .ﬁ\‘{_‘;_r log “i'r\'w' ( z )B) = W log f’wi( Z 26)



719

W,|=-|W!
(z ,8)] + zc(-{-—‘ll—LJ—[-]
< . |

1 - ] Ee’
< W [iog ol i ( 2,B) = log .4
J

- Jk Jk

Now wi satisfy the condition of 7.1l3 and

r
(i) )3]—-—->o as i,j —> o

(il = 03Dy / fiyl = 0= - 5
=

so that -th-r log < - (z ,B) forms a Gauchy sequence and, as R is
i i

complete, converge .l

7.16 Lemma. Suppose U, is a union of f(n) disjoint cubes with side

L>r, and f(n) —> © as n —> w. Then if diameter U, —> =,

limit -’%Tn—r log J‘{Un( z ;8) =B P(z ,B)

n——>00

where B P( z ,p) is given in 7.15.

Proof. From the argument of T.l5 we see that -’—Tl log \,x’: ( z,B)
Un Un
is a Cuachy sequence (L > Ty is needed here). We leave the detailed
verification of this to the reader. To see that it converges to the
same limit as T.l5, select a subsequence Un such that there are cubes

. . wh .1 i «1 =W, .| —> 0. i
WJCUJ where WJ is as in 7.15 and that({UJf [WJ[)/{UJ[ > 0. This
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can always be done. Then by the triangle inequality, we have

‘T%ﬂ log in( z 8) - B B(z ,B) sTlU? [Log ,jUj( 2 ,B) - log;;zwj(z 6

+ [( T%;T’" T%;T) log ;?wj( z B)| % T%ET-[log &?WJ( z ,8) -B P(z ,B)

1
From the inequality of T.1l3, the first term is dominated by 1{r1- ZC x
J

(’Uj’"lel) —> 0. Similarly, as Wi— log aﬁw ( z ,8) converges, the
J J B}
second term -—> 0. Hence a subsequence of T%—T log éz?U ( z ,B) converges
n n
to B P(z ,8). As the sequence is Cauchy, the whole sequence converges

to BP(z ,pB).00

Notice that ik is not a priori obvious that by changing the cube
size, or the speed at which they grow, will give the same limit as T7.15.

This is the reason for 7.l6.

Proof of 7.1l. Find ‘I'n and Wn as in 7.10 and note that 7.16 applies.

The proof there shows that limit 1%%1- log QXUU (z ,8)=8P(z,B)
e >00 n n

(the same triangle inequality).

Since log L. ( z ,B) is non decreasing (see T.9) and convergence

U
n

is pointwise, P( z ,B8) is also non decreasing.
To show it is continuous, fix z_> O and find & > 0 so zo~5 > 0.

Then from 7.9,



7.21

d .1 . ! 1/cbr 3
z EZ[F’T_ logof«U(Z ;B)] = ;;U(Z g) S /('3—6)

a bound independent of U. Hence, on ( z - 3, 2+ 6),?%‘i&éu ( z,B)
"“n n

have iniformly bounded derivatives. Hence P( z,B) is continuous at Zgy
(1f fn(x) —> £(x) and f, are differentisble with fﬁ(x) < M then
f is continuous, for [fn(x) - fn(y)[ < |x-y|M which imples

[£(x) - £2(y)] < [x - y[M.) O

Next we turn to T.1l2 and prepare some additional lemmas for

this case.

T.17 Lemma (Vitali's theorem). Suppose fn is a sequence of analytic

functions on a connected open set D(C C and fn are uniformly bounded
on compact subsets of D. Then if there is a set ECD so E has a
limit point in D and for each z, €E, fn( Zo) converges then £

converges uniformly on compact subsets to an analytic function f on D.

Recall that x 1is a limit point of E iff every neighborhood of
® contains points of E other than x.
See, for example. Titchmarch [1, p. 169] or Whyburn [1, p. 87]. We

shall also need the following fact from complex analysis (see Ahlfors [1]).
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7.18 Lemma. Suppose S C is simply connected and open and f: S —> C
is analytic with no zeros in S. Then log f( z ) is analytic on S.
Further, using the principal determination, if [z | < 1 +then

. i
i-1 Z
i

log (L+ 2z ) = j_oZ:l('l)

uniformly and absolutly convergent on compact subsets of the unit disc.

To verify that L log a«fU ( z ,8) are uniformly bounded on S

U
n n

(7-17) we first veri‘éy the following:

7.19 Lemma. Iet Dy C S ve a sphere centered at n € R, n > 0 and of

radius &. Then 'ff]': log C"?U ( z ,p) are uniformly bounded on DB /2.
n n

The hypotheses of T.l2 are assumed.

Proof. lLet Zyseces 2 N be the zeros of the polynomial

%]-—log : U(z ,B), so that N < {U[/g—l-ra3.. let zeSand y=2 -7,
n i n “ z Yi"y ‘Vi
Y; = 24 =7 so that {&Un( z ,8) =m(1 - E-J') = ( v )(_E)'

Then we have, using the principal determination,

2 N y N vy
log +L (z.,B) = ;21 log (1 - T) + 4%, log (—Z——)
n i i
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(note that some care must be used in expressions like log Z2, 2y =

log z, + log 2z, which generally hold modulo 27i) The last term

is just log U (n,s), which by 7.1l when divided by Un converges, SO

n N
is uniformly bounded. We must show that i'U_lg ;5 Lo (1- —g—) is informly
‘n i

bounded. But from 7.18, we have, since [-‘3{-[ < 1, (zeros lie outside D)
i

N N
Iy - e (Lyt1L
iZy tog (1 -9=) = - 45y g5 ()73
1 1
w N
_X_Zl
= A5 (yi) Z

N £ N
5 .;y._)‘e .]; < L:LL__ DX ...9:_...
l:L=l (yi ﬁl - £ i= lyil,z
Y
N y
s & 7S @y

N
so that [,Z, log(l - -3—3;-){ <N/(1 - f%f)
i

But N/thl is uniformly bounded, and if [y| < &/2 we have the result.D

Proof of 7.12. By T.19 and 7.1l7, %I_ log GZU (z ,B) converges
n n

uniformly to an analytic function on D23 /2. For any compact set C(C S

we cover it with a finite number of discs and we may assume one disc

intersects RT. Proceeding inductively, by T7.l9 we see that -I-]J'_-log ) U (z,B)
n n
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is uniformly bounded.

The statements for v follow at once, for if fn are analytic and

converge uniformly to f then fé converge uniformly to f'.0

From this proof, we also have:

T.20 Corollary. In T7.12, we have for gz € 8,

1

m)zﬁz %2 (Z )5)

Notice that a phase transition does not necessarily result from an
analytic function being non continuable across a singularily, but from
the fact that the various analytic portions may not match up. (Compare
the Mayer theory).

Lee and Yang [2] went on and applied this theory to the Ising Model
(a Haﬁiltonian for a set of spins fixed on a lattice in a magnetic field;
see Huang [1, Ch. 16]), and showed that the zeros of . all lie on the
unit circle and converge to 1. Thus there are two phases with transition
at 2z = 1. Everywhere else on R, P and 1/v are analytic.

Even before Yang and Lee, Van Hove [1] asserted the existence in the
thermodynamic limit of the free energy and pressure in the grand canonical
and canonical ensembles (see § 9). However, it was pointed out by Van Kampen
that the proof was fallacious. See Fisher [1, footnote 2], where the
correct proof also appears. In § 9 we shall generalize some of the above

results (due mainly to Ruelle and Fisher).



Ghas oo otion is concerned with the concept of "stability" and
the -~ iclent conditions for it introduced by Ruelle. It is important
for the thermorvrenic limit; and more specifically, for generalizations
of the theorems of Lee and Yang (§7), discussed in the next section.

These notions are important for guantum mechanical systems as
well as classical ones. Much of this section follows Ruelle [2]. Ve

Lrgin with the definition of stability.

8.1. Definition. Consider a grand canonical ensemble consisting of phase
il . . . n e .

spaces M and Hamiltonian functicns H : M ——> R U {w}; not

necesgarily smooth for n = 0,1,2,.... The system is called stable iff

there is a consts.r B > 0 such that

1 (m) = > -Bn
. . . n
lfOI‘ 4 otda n = O,.L,-eu an& m €& l\’ll @

e first important remark is the following.

ko) ¥ n

8.2. Theorem. Consider a grand canonical ensemble witn H': © M -———3 R,

n n n noo, . . . . .
=T 4 V where T is the kinetic energy obtained from a Riemannian
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metric and Vn iz a function on Mp‘ Then Hn is stable iff there is a

constant B > 0 so
Vn(q) > -Bn

for all g e Mp, n=0,1,.00
Further, suppose U- (C M' lies in a compact set and [U"[ < K°

n

for a constant K > 0. Then for each p >0, z > 0, F%% %T / aBH ap
Sdom= L *

converges. (We assume the dimension of M- is k)

Proof. If H® is stable then V'(q) > - Bn by taking p = O
ie. consider the zero section. The converse is clear as ™ g positive.
TFor the second part, it suffices to prove the result in a coprdinate

n n n
chart. By Fubini's theorem [ e PH au = [(J e PT du)(e'ﬁv dq). The

*.

T " o
first factor was evaluated in §7 in terms of the eigenvalues of g, and
is bounded by l/hn for a constant A > 0. (The details are left to the

reader.) The result now follows from:

8.3 Lemma. Suppose a >0 and B > 0; then

® a L4Bn
L = @ P converges ( < «)
n!
n=0
® =) an
and 5. —r & diverges ( = @),
n=0 n? ges ( )
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Proof. The first series is exp(aeﬁ) < o, The second diverges by

the ratio test, for example.(d

Next we consider conditons eqguivalent to stability for a grand
cancnicsal ensemble arising from two body forces which have no hard cores.

To issustrate vwhat is going on, first sonsider an example

8.4 Example (An unstable system). Consider a two body potential

v: Rt —> R;

V(r) = if r<r -¢

0]

~b if r ~e<r<r 4+ €
o) o)

0 if r> ro + €

where a,b,ro,e are positive real numbers, r, - € > e, and 3b > a

A

r r +€

@....{4...;;\ fe)
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. . n n
The corresponding grand canonical ensemble on R3 bid R3 is

Pl

unstable ). To see this, consider points =, ,...X% with s wpoints
J 17 )_‘_n =

2
in the ¢/2-neighborhood of a tetrahedron ia R,

s

It is clear that

Lg
! } 5
o X=X = Ug L s=1)a -~ 12
1,5 V{[x;-x.]) = hsa + k s(s-1)a - 12 bs
= hsga - 12 32b <0
. !‘l‘s PPN u-s { \
Hemce X V([xiuxj[) = - 5 V(0) «+ i§j=l V(]ximxj[,

).
= - 2sa + (ha - 12b)s”

and 8o, by the lemma, the grand partition function diverges, for a region

n . . o .
U =U Xeeex U and U containing a tetrahedron as above.

Next we prepare the following:
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8.5 Definition. Let X be a topological space and f: x —> R U ()}

a mapping. We say f is upper semi-continuous iff for every € > 0 and

x € X ‘there is a neighborhood U of x such that y € U implies

£(y) < f(x) + €. Lower semi-continuous is defined analogously.

Obviously, f: X —> R 1is continuous iff it is both upper and
lower semi-continuous. Also if g: Y —> X is continuous and
f: X —>R wupper semi-continuous then frg is upper semi-continuous,

(other hypotheses when X = R generally fail).

Notice that the next theorem does not apply to systems with
hare cores; even though in that case the grand partition function is a

polynomial, as we saw in 7.8, they can be ' unstable.

8.6 Theorem (Ruelle). Suppose V: R™ —>R U {»} is an upper

semi-continuous function with V(0) <« and V(-x) = V(x). (Let
m >0 be a fixed integer.) Then the following are equivalent
. n
(i) for any X500 X € R,
n
i,§=l V(xi—xj) >0

(ii) there is a B e R, B > 0 so

n n
i<§=l V(Xi_xj) > - Bn (stability)
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(iii) for any U R" measureable with [U] < o (Lebesque measure)

and all z >0, >0

s n
‘\"j = 2 E‘ -f3 - p ° 0 e
,«U(ZJB) =20 o f expl bigj V(xi xj)]dxl dx

U Xeoox U

converges

iv) for any UC R", |U| < «, and some z > 0, B >0, o« (z,8) in
U

(iii) converges.

Upper semi-continuity is not required for the equivalence of (i)

and (ii) nor the implication (i) => (iii) and (iv).

sl

Proof . Slncei’ 1 V(xi—xj) =n V{0) + 2 igb V(xi-xj) it is

clear that (i) and (ii) are equivalent. That (ii) implies (iii) follows
since

B o0 n
“ou(m:8) < By Iy [U]” exp(pBn)

which converges. (This was also noted in 8.2.)

As (iii) implies (iv), it remains to show that (iv) implies (i).

o\ s , m
Suppose (i) is false. Then there are X.,..,X in R 80
33 / 1 n

n

i%j:l V(xi—xj) = -2 ¢<0.

By upper semi-continuity (see remarks after 8.5) there are

n

. T o impl i U o = o
nelghborhozds W, of x, so that y; € W, implies i?j=lJ(yi yj) < -¢
ig W, and W' =W, X...X wn«(s—times). Then for q € W',

let W = LW 1

ns
ns n
151 Vlagmay) = - = V(0) + 2, V(a;-q)

2
<- 22y - el

2
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so that
fe's) Z“'
= = 7 exp{-p.Z. V(g,~q,)]dq
n= nt ﬁ KesoX Wc o PlZJ (ql J
oo Zn
ol i TS -
~ n= nl f expk B iéj V(qi qj)} dq.

w!

diverges for any z >0, B > 0 by 8.3.0

Clearly (using translation invariance) (iv) can be replaced by
(iv)' for any sphere U R, and some z > 0, g > O, pgu(z,ﬁ) :

converges .

There is a convenient and quite general criterion for stability
which we next sonsider, dve to Fisher and Ruelle {1]. First, recall the

following

8.7 Definition. Let #J be a complex Hilbert space (2.3) and
T: 4 ——> #  a linear map. Then T is called posifive iff for each
x e, <x,Tx> e RT (ie. is real and nomnegative).
A complex n x n matrix is called positive iff for any orthonormal
basis, the corresponding linear transformation is positive (in ¢" = C x...x C)

(The condition is easily seen to be independent of the basis.)

8.5 lemma. If T: f5 —_— s positive then it is symmetric



self-adjoint, Hermitian).
dJ P)

An nxn matrix Aij is postive iff for all ZyseeesZ € c,

Proof. Obviously <x,Tx> = <Ix,x> as it is real. By the
polarization identity (<x,y> = % (<y, xty> - <X-y,%X=-y> + 1 <+iy,x+iy> -
i <x-iy,x-iy>}) we have the result. See Halmos [3,p.13]. The second part
is clear as the expression is just <z,Az> where z = (Zl’°°’zn) with respect

to the standard basis.[O

The notation in the Fisher-Ruelle theorem below is somewhat

cumbersome, so we deal with it separately.

8.9 Definition. Iet m >0 be an integer and M° =R x R
B M 1 F 0o b oeee nlJ =1n, be a grand

canonical ensemble (§7). We say it arises from p-spécies of particles

>R U {eo} with n

iff Hn = Tn + Vn where Tn is obtained from a Riemannian metric

(kinetic energy > O) and where v g™ >R U {«} is of the
following form:
) = F, I ( )
Viia) = 2 o (a. - g,
- o=l . o *i(o Q
1(@)<s(a) (@) j(@)
M

+QK§=1 i?m) 3%5) Qaﬁ(qi(a) " %(p))
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where ¢bﬁ: R — >R U {0} for o, =1,.0.,p and with g € R

denoted qz(q, ’noa,q_. )o-.)q - }...)q‘l )o
1(1) 1(n) u(2) u(n,)

The theorem then gives a sufficient condition for such a system
to be stable. (Notice that Fisher-Ruelle add a redundant hypothesis

qoaB(q) = Cpﬁa(-q) which follows from those of 8.10, 8.8.)

8.10 Theorem. In 8.9 suppose qbﬁ = éé) + qég) where qéé) (a) >0,

and possibly a positive many body potential is added to H'. If we can

~

U’ R™ —> R,

write, for

ix

cPO@(X) = I{m e ?Paﬁ(y)dy

where Ebﬁ(y) is a postive p x 4 matrix, and ¢bﬁ(o) < w. Then the

system is stable. 1In fact

"
V) > - 550, wéé) (0)
Proof. Clearly
)
vMq) > = = o2) (q. . ea, )
TS R G (G

(2)
> z (2570 = Qifny)
T i) g(p) PP H) T %)

i
- 1 (2)
= 3 W) - 3 oE ny Gy (0)
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(2) N
ol o % S " %))

where Wn(q)

fl

fl

% fexp i y(qi(a) - qj(ﬁ)) cpaa(y)dy

> 0, from the lemna [l

n _1 P .
8.11 Corollary. Suppose H (q,p) = 5 g(p,») +i§j v (qi )+ v'(q)

where V'(q) > 0, and
3 = N &
v(x) = [ e (y)ay, V(y) >0,

with V(0) < «». Then the system is stable.

The property of V in 8.11 is called positive type. More

generally, we have:

8.12 Theorem (Bochner). A function £ Rm > R i of positive type

. .. .m
(that is, for any Kpperos X € R 2Zyseez

n
o € C,.,E Z, f(xi»xj)zj > 0)

i,J=1

iff there is a measure p, on rR™, uf(Rm) < e g0

£(x) = [ ¢ au(y)

o s . . 2 2
Moreover, f dis integrable, resp. continuous, in L~ iff Mo = T Ho
4N
where o is Lebesque measure and £ is continuocus; resp. integrable,

in L2 .
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For the proof, see Bochner [1], for example, or Schwartz [2].

This mekes the proof of 8.11 trivial:

Alternative proof of 8.1l1l. We have

n

- >
1,31 v(x, cj) >0

using 2, = 1. Hence, since V(x) = v({-x), 8.6 applies.

The corollary 8.11 has wide application as we shall see later.

First, we note a few more consequences:

3.13 Corollary. ®Suppose, in 3.9, there are constants Qy 8O

m

{+) = - o > R p : -
qu\x) qoﬁﬁx(x) where X: R >R U {x} is of positive type,

X(0) < ». Then the system is stable.

o~

A - A 2
v.- £ 't? ( =5 A = ~ )
Proof. X(y) > 0 so that a?ﬁ Bodoladn X(y) [é(zaga,[ X(y) >0

so 8.10 applies.D

The corollary does not hold for the coulombh potential, but will

if we smear the particles slightly.
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8.14 Corollary. In 8.9, suppose P,: R® ——> R are continuous with

compact support (for example), X: R® ——> R U (=} is of positive type

and.

Pog () =/ mpa(y)ps(y’) X (xky-y')dydy’

RR

with qu(o) < w, Then the system is stable.

Proof. From the convolution theorem (see Yosida [1], for

instance), and ;a(P) = ga(rp)
(1) = y(®) By(p) X(o)

(modulo some positive factor), so the same calculation as 8.13 shows

~
QQB(Y) is a postive matrix.O

Examples of such X are the coulomb (X(x) = 1/[x[) and Yukawa
(X(x) = e'K’X{/{x[) potentials. We leave the computation of these
Fourier transforms to the reader.

For an amusing direct proof of 8.1h for the Coulomb case (going
back to Onsager in 1939), see Fisher-Ruelle [1, p. 263].

Fisher and Ruelle also discuss the quantum mechanical cse, and
show, under general circumstances that we have catastrophy when the

stability condition is not satisfiéd. ( like the divergence in 8.3).
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Stabllity in the pure coulomb case in guantumn mechenics has
recently been established for fermions by Dyson and Lenard. See Dyson [1].
The proof of +this important fact is, however quite difficult.

In nmclear physics the problem of stability was also discussed
(See Blatt and Wersskopf [1, Chapter ITI}) but the main emphasis was on
giving criteria under which exchange forces (not considered here) could
produce stability in o system which would otherwise bhe unstable.

emainder of this section is devoted to mors useful tests

el
(
H

4
/

for stability. We begin with hard cores {(see 7.8 znd compare 8.6).

K

8.15 Theorem. Consider, on R, a potential V: R® —>R U {],
fhociostsbinghdintions) ?

V(x) = V(~x) and a bard core of radius a > o (see §7). Suppose there

moog . .
is a constant D > O so KypeeesX € R, fxi—x‘[ > a implies
i Lod
n .
45 V(xi) > =D, Then the system with V ag two body force is stable (7.4).
_— . - ; n .
Proof. Odviously w = B V(x-x)2-ZD if [x-x[<a

Lsave;n then

J
@
f“‘)
Q
5
o0
o
1
g

[
i
i

for some i,j. Bub if fximx

1 . 1 1
LoV{x,-x,) = = .5 % Viz,-x,)> - =D,
ig=1 i 2 i=l %%. i3 - 2
3t

8.16 Corollary. The Lee-Yang tuo body potential (7.

e

~3

a—
=3
(2]
t
o
)
et
©
*
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Proof. If V(r)> -3 and fxi—xjf > a,

o 3
5 V(xi) >~ B (ro/a)

by geometry.d

For example, nuclear forces are often of the Lee-~Yang type.

More delicate conditions ensuring 8.15 are the following

8.17 Corollary (Ruelle-Penrose). Suppose V: R -——> R is a two body

potential with hard core of radius a > o. Suppose V 1is continuously

differentiable on (a,») and

(1) limit V(r) =0
L2500

(i) [° rm[%—_}(r){dr < o
a

Then the corresponding grand canonical ensemble on Rm is stable (7.4).

Procf. We assume the reader is familiar with the Riemann-~-Stieltjes
integral (Apostol [1, Ch. 9]). Assume m = 3 for simplicity. Let
3 { . .
l""’xn € R, [xi X;j‘ > a and Fi(r) denote the number of Xj’ J ;é i

with [x.,-x,] < r, so that
173 -

X
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(2]
2 V(fx.-x,{) = [ v()aF,(r)
FLoT 7 e B

= V(x)F (r) } fxf.\

by the integration by parts formula. The first term is zero by (i). But

m—[dr <

fF(r)dVdr{ ;&)

a

a

Hence from 8.15 we have the result (c.f. proof of 8.15).0

The next theorem exploits the method of 8.11.

8.18 Theorem. Suppose V: R —> R U {x} satisfies

(i) V is bounded below
(ii) there are positive real numbers al,ag,cl,cg,nl,n2 (with

n,n, >m din R') such that

-n
v(r) > e r if T

A
o

: 2 .
lV(r)[ < egr if r>a,

Then we can write V = v, + V2 where Vi > 0 and V2 is

continuous of positive type. In particular, the grand canonical ensemble

with V as two body potential is stable (8.15).
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For the proof we shall employ the following

~n
8.19 Lemma. Let & >0 and F: R —> R, F(x) = ({x[2 + a?) /2

-n N N
/2 so that o " Glap) = F(p)

for n>m. Let G(&) = (1 + Igfz)
where % is the Fourier transform of F. Then G is positive and

decreasing.

The proof is a technicality we omit. Hints are outlined in
Ruelle [2], and the Fourier transform is calculated explicitly in

Schwartz [2, p. 116].

Proof of 8.18. Multiplying V by a constant if necessary, we

may essume 8, < 1< 8y Iet n = min(nl,nz} so that

-n
V(r) - c;r >0 for r<a

and [V(z)]| < ¢ for r > a

L0
2 2
%) =1
and hence [V(r) - e T [ < (eq + ey)r for r > a,.
Since V is bounded below ((i)) there are positive constants 5,03 80

V(r) - clr—n > - c3(r2 + 62) /2

for all r, as is easily seen.
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From 8.19, there is O, 0 < & < B so that

Vy(2) = ¢, Glap) - e 8™ Glep) 2 0

for all p € R

Let Vl(r) = V(z) - V,(r)
= V(r) - cl(r2 + Q{2)- /2 - c3(r2 + 52)—11/2
> e - (24P /2 >0

Z%

which completes the proof.O

8.20 Corollary. In 8.18, consider in Rm,

V(r)= éﬁz - -]?’-r-i—e—;nl>n2_>_m, A,B>0
r T

Then the corresponding system is stable. (Lenard-Jones potentials.)

Proof. (i) of 8.18 is clear g V(r) is continuous, V(r) —=> 0
n.-n
as r —>o and V(r) —>® as r —> 0., For (ii), V(r) = (&-Br + 2)/
"1 P72
r and A - Br > Cl for r sufficiently small. The other

inequality is similar.O



10k

§9, The Thermodynemic Limit of the Thermodynamic Functions.

Here we discuss :the thermodynamic limit in the three ensembles; micro-
canonical (§3), canonical (§7) and grand canonical (§7) with respect to the
thermodynamic functions. Correlation functions on the other hand, will be
considered in §10.

We concentrate mainly on the basic ingredients of the subject and the
thermodynamic limit in the spirit of Yang and Lee (§7). For the equivalence
of the formalisms we have a few remarks, but refer to Van der Linden [1] for the
main theorems.

Our asswmption on the potentials is that of strong tempering. Fisher [1]
assumes only weak tempering for the limit in the canonical ensemble. Whether
this is sufficient for all three ensembles is not known at present.

The reader should compare the above mentioned treatments with ours, as
the proofs and methods are quite different. The only new results here are
a eimplification and extension of Van der Linden [1, §3 and 5], and some
differentiability criteria for the various functions. Ve also give precise
treatment of differentiation with respect to volumes, a subject that is not
ugually carefully discussed in this context.

We begin with the definitions for the microcanonical ensemble.

9.1 Definition. Consider phase spaces M  C R*Y x R*V and Hamiltonians
H? : M* —> R (ve assume that all singular parts such as hard cores and
collisions have been removed from M') n = 0,1,2,°+e. For D C M, (measurable),
let
% (n,D,e) = p{me D : B(m) < ne}/n!
where 1y is the measure on ME (Think of e as thé energy per particle)

If D=UX *+« X UX B A M, we write £ (n,U,e) for = (n,D,e).
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The microcanonical entropy is defined by:

S(m)(n)U)e) = J.I:l: log & (n:U:e)
In the following we shall assume that Bp is symmetric under permutation

of (ql’.”’qn)'

Notice that X (n,U,e) is a positive increasing function of e and D
(in the sense of inclusion). It is also worthwhile noticing that if Hn is
a stable system (8.1), then Z (n,U,e) =0 for all e < - B, (The n! and 1/n

in the above are essential for the theory.) (See the delicacy of 9.23, 9.22).

9.2 Theorem. Suppose H' : M> —> R is a(stable) system as in 9.1l. Then
we have, in the sense of Riemam-Stieltjes integration, for:.each g > 0, and
e the 'variable",

J¥ exp(-nep)a T (n,Use) =5 [ exp(-pE)du
00 D ~

(Note that this makes sense without £ being differentiable, as it is monotone).

S

Proof. This is a special case of the following fact from measure theory
(See Halmos([l,p. 67,80]): If u is a measure on a space y and u : y—>R

with g(t) = plxey : u(x) <t} and £:R —> R is continuous with compact

support, then [ fou ap = fw f dg
Y =00
This easily gives the theorem.{|

This theorem states the connection of the microcanonical with the

canonical ensemble. The right side is Jjust QD'

It is a famous theorem of Lebesque that a monotone function om R is
differentiable almost everywhere. However, we shall require a stronger

condition to ensure that this derivative will coincide with the distributional
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derivative (see 9.16 below). The result is as follows:
9.3 Théorem. Suppose, in 9.1, that D 1is open and that (for n fixed) s
(i) {me D : H(m) < ne} lies in a compact set,
and (ii) H is smooth (c”)’ on D
Then 2 ié‘differentiable almoét everywhere in e, More specifically,
if ne is a regular velue of H (that is, dH(m) # 0 if me H"l(ne)) then

Z is e¢» in a neighborhood of e.

Proof. T¥or this proof we assume a knowledge of calculus on manifolds.
See Abraham Li,ch II] for example. By Sard's theorem, it suffices to prove
the last staéement. Now for each m ¢ H‘l(ne) there exists, by the implicit‘
function thecrem, a local chart about m in which H becomes linear. We
may suppose this local chart is a rectangle for example. The set in (i) is
covered by a finite number of these charts. But

13-;-{2 (eth) - % (e)}=%p[meD:e§_H(m)<e+h} (if >0 ),

has a limit on each of the charté and hence on the finite unién. The theorem

readily follows. (]

In case D=Ux s x Ux R MF, and

n
#a,p) == v5/em + ¥, (a)
5

notice that (i) holds if U is open and bounded. Also,
" aH(a,p) =0 iff p =0 and av_(a) = 0
(eguilibrium point),

Next we wish to define & £ / QU. For this, we require:

9.4 Lemma. In 9.1, suppose ne is a regular value of H°, Then there

is a unique positive function £ : R —> R, continuous almost everywhere such
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that for each U ( R measurable,

Z (n,U,e) = [ £(x) ax.
U

(in fact, f is smooth on an open dense set). dx denotes Lebesque measure.

Proof. We know that f exists by the Radon-Nikodym theorem. The point
here is continuity alﬁost everywhere., However by Fubini's theorem we see
that f 1s obtained by integration of a characteristic function, that of
the set (m - H(m) < ne} which is open. In fact,

f(x)f=£¥‘ f xedu where n-l copies of U UX see X U X Rn’v

]
appear and x_  is the characteristic function of {m : H(m) < nel.
Since the discontinuities of this characteristic function x , are a closed
e
set of measure zero, as H"l(ne) is a submanifold (implicit function theorem),

we have the result.[]

9.5 Definition. In 9.1, 9.4, suppose U is an open submanifold whose
boundary oU is a submanifold and is compact, (or a submanifold almost

everywhere, using charts), so that OU inherits a natural measure. Then define
%Zﬁ (n,U,e) = [ £ ap,
ouU

where Ko iz the measure on oU, DNotice that thig definition defines
éZ/BU uniquely except on sets where £ may fall to be continuous on a set
of positive measure on oU. (This collection of surfaces has, in a precise
sense, which we won't discuss, measure zero).

In the case of regular shapes such as spheres or cubes, oX/0U may be
defined by differentiating with respect to the linear dimensions of U as

follows:

9.6 Theorem. In 9,1, suppose U is the interior of a sphere (resp. cube)
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centered at the origin in R’ and A U= {xx : xe U} for X e R, Then if
f (in 9.5) 4is continuous at almost all points of U (which will happen for

almost all spheres in view of 9.5),

d

Proof. Ividently we must show

ffduo= limit —l-(f £fdu -/ fdu)

U h —> 0 P(14h)U U

Since f is bounded we may assume it is Continuous, and hence uniformly
continuous. Then if fb is defined to be constant on the radii, and equal to
f on OU we have by Fubini's theorem,

1
Jfap == [ £ dau-[f au)
du ° By © v °

1 -
=={ J (f-£ ) ap - [ (£-£_) apl.
b (l+h)U( of “H {I ol

For h sufficiently small, sdy h > O, lf-fo] < ¢ on the radii of
(1+0)W/U, so the sbove is < % e [(1+h)U/U| < € K for a constant K (K is

the area of a sphere in Rv). Hence the assertion. [

The above derivative is with respect to a scale, not the volume. For the

latter, a factor (va‘l)“l is inserted. We define then

&L

Purther quantities of interest in the microcanonical ensemble are as

follovws:

9.7 Definition., In 9.1, define
(1) Qficrocanonical temperature )

'B(m)(n,U,e) = as(m)(n,U,e)/ae

(under the conditions of 9.3, say; a.e).

(ii) (Microcanonical pressure)
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oL
P(m)(n’U’e) = S—Oﬁﬂ'(n:U:e)/ £(n,U,e)
with O5/dU defined in 9.5 for suitable sets U, and &E/3|U] = (3£/3u)/v

as above,

Here one should think of |U|/n as being constant (density) so that
9.7(ii) essentially agrees with the definition of pressure in $§6.

In the case of the canonical ensemble we have a similar set of definitions:

9.8 Definition In 9.1, define (see 7.l)

(i) (canonical partition function)
1 .
Q(n,U,p) =5 [ exp (-pH_) du
T B g xeex Ux R B
(i1) (canonical free energy)

1

f(C)(n:U:B) -y log Q(n,U,p)

(ii1) (canonical internal energy)

e(c)(n,U,B) = i—=< B > = %f exp(-ﬁHn)Hdp/ J exp(-H )au = - bf(c)(n,U,B)/BB.

(iv) (canonical pressure)

(c)
P(C)(n:U:ﬁ) = n"'?;"‘c (n:U:ﬁ))

d]u|
(ie:a%—(n,u,a) / (o, 1B);

Note Q is a measure on U, but f(c) is not).

Cne has a result for Q similar to that of 9.6.

The connection with the microcanonical ensemble is:

9.9 Theorem. In the above, we have

(1) Q(n,U,p) = f°° exp(-Bne) 4  (n,U,e)

P

(11)  e{®)(n,0,8) = [exp(-pne) ea 5(n,U,2)/0

200



(111) p(n,U,8) = [° exp(-pne) - n dégjlé—i-(n,U,e))/Q
| ul.

=R

Proof. This follows readily from 9.2 and the definitions. [}

Thus, in a certain sense, the canonical quantities are means of the
microcanonical ones in a probability distribution. In the limit one obtains
equalities (n —> ) using the central limit theorem. . That is & far from
obvious fact first proved in van der Linden [1] which will not be proved here,

Finally we come to the grand canonical ensemble: (Here it is slightly

more convenient to use y than z)

9.10 Definition, In 9.1, let (c.f. T.k4)
(i) (grand canonical partition function)

[~
;ﬁ(U;ﬁ:ll) = I e Q (n;U’ﬁ)
n=0

(say the system is stable;$8)

(i1) ( grand canonical pressure)

28 (0,8,0) = - 1062(u8,)

(iii) (grand canonical specific volume)

l/U(g)(U,ﬁ,p.) = - ép(g)(U,B,u)/a B

(iv) (grand canonical internal energy)

e(g)(U,fB,p.) = e U(g)(U;B)M)g_P_(g)(U)ﬁJ“)O
. B
The connection with the canonical ensemble is (c.f. 9.9)

9.11 Theorem. In the above, we have

(1) 1/ '8 (up,u)

i

<n >/IU]

[+]
= T%T s &M Q(n,U,p)
n=o
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1
<n> z nl

X
<n>

(11) ) (u,p,u) =

=

*(En>'.

Again this follows at once from the definitions. The preceding definitions
set up the three thermodynamic enalogies using the microcanonical, canonical
and grand canonical ensembles. These can be expected to coincide only in
the thermodynamic limit. Thus, one of the fundamental problems of classical

statistical mechanics is the following. (For a recent review see Mazur [1].)

9.12 Asymptotic Problem of Classical Statistical Mechanics.

The problem is, roughly, to prove the following statements under reasonable

hypotheses:

I. Microcanonical Thermodynamic Limit.

(1) For each v € R, v > O show that

F limit s(m)(n,Uh,e) = s(m)(e,v)

e3>

exists, for "any" U CRr' with thl/n —> v and
that s(m)(e,v) so defined is concave in e and V.

(2) Show that, as in (1), almost everwhere, we have

T pimie 8@,y e) = 3 s (e,v)/ 3 e
n —> o B
(3) Show that also,

limit p(m)(n,Uﬁ,e) =Eis(m)(e,v)/a vV a.e.
n >

II. Canonical Thermodynamic Limit

(4) As in (1), show that

limit f(c)(n,Uh,ﬁ) = f(c)(B,v)
n =—>
exists and is convex in P, concave in V.
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(5) Show that

limit e(c)(n,un,g) = af(c)(B,v)/aﬁ a.e.
n ——>

(6) limit p(c)(n,Un,ﬁ) = Bf(c)(ﬁ,v)/av a.€.
n —>

ITII. Grand Canonical Thermodynamic Limit.

(7) Show that, for suitable U RY,

limit p(g)(U,ﬁ,u) = p(g)(ﬁ,u)
lu| — =

exists and is convex in B,u
(8) show that

umit 188 (ue,) = 8@, ) /o0
[U] = =

(9) Show

e @) (u,8,u) = - v(8(8,u)0 8 (8,108 .

IV, ZTEquivalence of the three Insembles.

(10) Show that the microcanonical and canonical ensembles are
equivalent, in the sense that if p(v,e) is defined
implicitly by

e(c)(B,v) = e
then
s(m)(e,v) = f(c)(ﬁ(e,v),v) + e Ble,v)
(11) Show that the canonical and érand’canonical ensembles are
equivelent. That is if p(B,v) is defined implicitly by
v(g)(B,u) = v, then

f(C)(B;V) = P(g)(ﬁ)ﬂ(ﬁﬁv))v + u(B,v).

This definition is what we mean by the thermodynamic limit for the

classical thermodynamic functions. For n finite notice that we have an honest
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classical Hamiltonion system with a flow, At present, there seem to be no
theorems showing that the thermodynamic limit is an honest classical Hamilton-
ion system with an infinite number of degrees of freedom. This passage should
be roughly, the change from ordinary to partial differential edquations.

The rest of this section is devoted to the proof of (1) - (9) above.

For (10) and (11) we refer to van der Linden [1] (the idea is as stated

in 9.9 and 9.11.)

In this section we will not attempt generalizing the second theorem

of Lee and Yang (7.12). This will be discussed in § 10,

First, we recall a few basic facts @bout convex functions:

9.13 Definition. Suppose £:R(or R+) —> Roe We say L is convex
iff for all x,y e R, 0<a <1l we have
flox + (L-a)y) < af(x) + (1-a)f(y).

Similarly £ dis concave iff -f is convex.

f convex f concave
There are some basic and standard facts about convex functions we now list:

9.1% Lemma. (i) if f is measurveble then f is convex iff
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1 1
f(5(xty)) < 3(£(x) + £(y));
(ii) If £ is convex then f is continuous and is differentiable
almost everywhere., The derivative is monotone increasing;

(iii) If £ is twice differentiable, £ is convex iff dgf/dx2> 0.

See, for example Hardy-Littlewood-Polya [1]. From (ii), observe that
df/dx has only a countable number of jump discontinuities (Apostol [1,p 162]).
To attack the above problems, it is now standard to use the following

theorem due to Griffiths [1].

9.15 Lemma. Let fn:R(oer)‘-> R be a sequence of convex functions
with fn——> f almost everywhere. Then
(1) £ is convex (obvious),
{ii) with the exception of a countable set of points x

dfn daf
limit —= (x) = T (x).
n —> o

However, this (with "countable™ replaced by "of zero measure")is a special
case of a more powerful result which we now give; it assumes an elementary

knowledge of distribution theory.

9,16 Lemma. Suppose fn and f are locally bounded functions and the
distributional derivatives dfn/dx and df/dx are locally bounded functions.

Then if £, —>f a.e., ve have dfn/dx —> df /[Ax almost everywhere.

Proof, Since f —>1f a.e,, [ —> 1 in the sense of distributions.
Hence dfn/dx ~> df/dx in the sense of distributions as the operation of
differentiation is continuous. But if g, —> g 1in the sense of distribut-
jons and gn,g are locally bounded functicns, then g, —> g a.e, To see
this, suppose there is an ¢ > 0O and a set A of positive measure such that
!gn-g( >e¢ on A, for an infinity of n. By the regularity of Lebesque

measure, there is an open set U so p(U) = pu(a) . U DA, Choose a smooth
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function ¢ one on an open subset of U, and zero outside U. Then we have

[ leo - eol du>en (a)
So g, cannot converge to g. I

From this lemma we may dispose of many of the above problems easily

First we show that (1) dimplies (2) and (3)

9.17 Theorem. In the microcanonical ensemble, 9.1, suppose that H
is smooth. Then

(1) if UnCR" and a.e.,

Limit 8™ (0,u e) —> s (e,v) ana
n
n —-> [

s(m) is convex in e ‘then
limit B(m)(n,Uﬁ,e) = Bs(m)(e,v)/Be a.e.
N = 0
(ii) if for every sequence of spheres (or cubes) with {Uh[/n = v,

and some e, (a regular value of Hh)’
i limit s(m)(n,Uh,e) = s(m)(e,v)
n —=-> ©

(m)

and s is convex in v then

limit p(m)(n,Uh,e) = Bs(m)(e,v)/bv .
n o=
Proof. Trom 9.3, s(m)(n,Uh,e) is locally smooth a.e. and from 9.1k,
s(m)(e,v) has a locally bounded derivetive. Hence 9.16 gives (i). To
prove (ii), we have n O /d|U| = O /Ov where v = |n Ul/n and this holds
locally for almost all v by 9.6, é?nce 9.16 again gives (ii).[ ]

Next we show that part of (4) dimplies (4),(5) and (6);

9.18 Theorem., In 9.8, f(c)(n,Ubﬁ) is convex in B

(1) If Llimit f(c)(n,Un,B)=f(c).(6,v) for all B then
. n =—>

f(c)(a,v) is convex in B and
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limit e( )(n, 5) = 8f(c)(ﬁ,v)/6f3 2.

N > 0
(i1) If, for all spheres (or cubes)with

CJul/a=v,  imit f(“’)(n, U B) = () (g,v)
n =—> ® -

(p fixed), then
) limit p(c)(n,Un,B) = Bf(c)(ﬁ:v)/av

n —> o
almost everywhere (v).

Proof, For (i), it is sufficient to check

Pl (a,0,8)/082 > 0 1in view of 9.1%, 9.15

However we have
Qg__f_(c)(n,U,B) =<H 2 < Hﬁ >=<(8 -<H >PF>>0
8% -
by a simple calculation. (Means in the canonical. ensemble),
(i1) follows in a way similar to 9.17 (ii). ]

Next we show that part of (7) dimplies (8) ‘and (9).

9.19 Theoremes In 9.10, suppose the system is stable and for some

sequence Uﬁ C:RV and for almost all B,u € R,

limit p(g)(U sBsp) = p(g)(ﬁ,u)
n—> 0

exists., Then

(1) p(g)(U sB,u) and p(g)(ﬂ,u) are convex in B,u

(11) limit l/v(g)(U sByu) = Op (g)(B,u)pr 800

n —>
and (iii) limit e(g)(U SBop) = V(g)(ﬁ,p) _EF (Bsn), aces
3> 00 6(3 -

Proof, By 9.1k, 9.15 it is sufficient to check (i), Also

we may assume the sum over n is finite, again by 9.15. We have
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& 2
—5 log 2(U,B,u) =<(n -<n>)">>0
so that p(g) is convex in u, and similarly
o~ 2
—5 log 2 (U,B,p) =<(E -<H>)>>0
Sal n n =
Clﬁ . .
(g) N
so that p is convex in R.

The remaining problems (1), (4), (7) will be treated simultaneously.
There is a further basic condition required besides stability which we now
introduce., By the standing convention, box potentials are excluded from the
regions (See T.4 for example). (It seems to us that the ideas of "free

volume" (see Fisher [1]) here are quite unnecessary; see §7).
9.20 Definition. Comsider E :M* C %X R*Y — R

n
H'(q,p) = = P?/Zm + Vﬁ(Q). We say the system
i=1
is strongly tempered iff

(1) V, i1s invarient under translation in ™ and under

permutation of the coordinates qi € Rv

(ii) there exists r, > 0 such that for all n,m,

Vn+m(xl’o.')xn:yl,co';ym) ._<_ Vn(xl’...’xn) -+ Vm(yl,..."ym)

vhenever [xioyil 2Ty for all i=l,ece,n and J=l,cc-,m.

¥
Here yé,xi € R,

For example, in the case of two body forces:

v
9.21 Lemma., If, in 9.20, vn(q) = p) V(q,-qj) S
i<g=L
for V : R” —> Ru{=), V(g) = V(-q) and V(x) < 0

if lx[ > Ty then the system is strongly tempered.
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Proof, Clearly (i) holds. Cbserve that

m+m(xl’""X 2Vpeeeo ¥y ) = Vn(xl’°"’xn) + Vﬁ(g,-»-,ym)

n,m (‘ |
+ Z V(x.=y.
i,j=1 o

SV (xpy000,x ) + V(v 5000,y ) [

It is useful to retain 9.20 in the generality of many body forces,
as these actually occur. (chemistry for example), Notice that hard cores
are not excluded by 9.20 or stability.

Week tempering requires only that there is ¢,W so that for each n,m,

~(v+e)

n+m( ’...’xﬂ"yl,‘.',ym) S Vn(xl,o'o,xn )+ Vm(yl,uou’:y‘m) + nmWr
if r is sufficiently large, where lxi-yil >r, (r depends on n,m).
The above lemma shows that for two body forces; one demands

V(x) < plx [ (V¥e)

if [x[ Z_ro.
Next we require twc sets of inedualities derived from stability and
strong tempering respectively for the thermodynamic limit. (These play the

role of 7.13 and T.lk).

9.22 Lemma, Suppose

: M* C R —> R H'(q,p) "Ef’ ®/em + V_(a)

is a stable system, That is, Vh(Q) > -nB for a constant B, ILet
5, be the measure of the unit ball in R, so § = -y “/P(L4m)2) where
I' is the usual gamma function (I'(l4n) =n! if n is an integer).
Then we have: (c.f. 9.1, 9.8 and 9.10).
n
(i) Z(n,U,e) 5%1!- 5nv[2m(eﬁ_~3)n]m’/2

(i)' s(m)(n,U,e) is bounded above (|U|/n,e fixed)
n
(i1) Q(n,U,p) < Luf exp (nBB)

k‘d
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(11)' f(c)(n,U,B) is bounded above (|U|/n,p Fixed)

(111) 2(0,8,0) < e (12 exp(pmp))
A .

(1i1)’ ,p(g)(U,B,p,) is bounded above., (B,n fixed),

Proof. We have
n! & (n,U,e) = p{(q,p) € Uxeeox UX R n M ; B (a,p) < ne) < p(axB)
where A =UXeeeX U and B = {pean : = pf/zm < (e+B)n}
by subset inclusioﬁ. ﬁence (i) is clear. To prove (i)', ve use (i),
and log P(1+4a) > xlogx - x (Stirlings formula) to deduce ‘

) (n,0,e) = L 10g = (n,U,e)

< =« nflog [U] + %l{l—g-log(hwm(e-&B)/M}]
- n log 'n +n | “

1og(|ul/a) +-§~ [1+Llog(bmm(e+B)/v)1+1

(Vo terms may be dropped, as this is fairly delicate)s, (ii) and (iii)

were proven in §8 and (ii)' and (1i1)' follow directly, using Stirlings

formula for (ii)'.[]

Next the inequalities using strong tempering.

n
9.23 Lerma. Suppose H' : M CR™ xR —> R : E(q,p) = = pi/:?mi-vn(q)
. ) i=l :

is a strongly tempered system. Suppose U ,U" CuC R and the distance

between U' and U" is at least r, Of 9.20. Then we have (cof,,9.1,

9.8 and 9.10)
n
(1) % (n,U,8)> & % (m,U', Ze') 2 (o-m,U",—(e-e')) for all
n=o - m Ne-m

e < e,

()¢ s_(m)(n-ifm,U,e) * nim ?_s(m)(n,U',e) o n + s(m)(m,U",e) ©m
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(11) Qln,U,p) 2 : Q(m,U’',p) Q(n-m,U",g) for all g > 0.
m=0

:

(il)’ (nfm) f(C)(n"'m:U:B) Zn f(_C)(l’l:Ut;ﬁ) +m f‘C)(m:U":ﬁ)

(1i1).. (U,B,p) >5:(U ,m) (u",B )

(111)" vl 28 (v,8,u) > 1uf 2 (ut,8,u) + 07 o8 (ump,).

Proof, To prove (i), we have
' 2
£(n,U,e) = ¢ u{(e,p) € Uxeesx U K™Y 0 M ¢ 2 p/2m + ¥, (a) < ne)
> ’I%Tu{(q,p) € U' u U" Xeoox U' v U" X R 0 o ¢
£ p°/em + V_(a) < ne)
i S 'n

by set inclusion.

Let A ={ae U uU" Xeox U' v IR ol
exactly m components of q lie in U'}. Clearly Am are disjoint

measurable: sets, s0 tha.t

Z (n:U)e) > ":"‘-" 2-' M{(Q:P) € A X R : Z PE/?BI + Vn(Q.) < e}

m=o
. B
2 ;ﬁ-mio m!in-m?' ”{(qzn’q ~m*Pm ’pn-m)
U Xeeax U X U xeoox U" x BRVx g(ERV s P /2m + V. (qm) < ne’
. i=1
n
and L pl /2m +V_ _(a ) <n(e-e')]
i=n-m+l aen fnem

again by set inclusiod and permutation symmetry. ((i) of 9.20). The set
above is a cartesisn product so that, rearranging the factorials, we have (1).

To prove (i)', choose one term of (i) to get

‘ 1
log £ (n+m,U,e) > log & (n,U', n+§le ) +log & (m,U’,%g-n- (e-e'))

Now choose e! = 5-%1- e so0 that this is exactly the result (i)
The proof of (ii) and (iii) <follow by a similar argument using the

U, U', U" in the cartesian product. (See 7.17 also). Taking logarithms
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gives (ii)' anmd (iii)' . ]

The inequalities (i)',(ii)',(iii)" will now be used to obtain the
thermodynamic limit, The argument is based on the elementary theory of

subadditive functions which we now review,

9.2k Definition., A sequence of real numbers 8,585,000 is called

subadditive 1ff & < an+am for all integers n,m. Similarly a mapping

£ : Rlor R) —> R is subadditive iff f£(x4y) < £(x) + £(y) for all

%,y € R (resp. R,

The notions of subadditivity and convexity are quite different and

should not be confused. A basic fact gbout subadditive sequences we need is:

9.25 Lemma. (Polya - Szegd[l,pt. I, exercise 98]) Let 8 585,00 De
a subadditive sequence and suppose {an/n} is bounded below., Then an/n

converges i.e., is a Cauchy sedquence in R,

Proof. Let a = lim inf {an/n} = limit inf {a.l_/k] so aeR as
) n—>o0k>n o
an/n is bounded below, Given € > o choose N so n > N implies

a.n/n >a-e, and find some m >N so amo/mo <a+ef2. Let K, =

max {a;,°ee,a } and choose N> N so n >N, implies Ke/n < ef2. Ve
o

claim that n > N, implies

a-e<an/n<a+e.

To see this, find an integer r so m <ng (r+1 )mo. Then by subadditivity,

1 1 ' (
a /n< E(armo'lfan_rmo) <= {ra K ) < am/m + Ke/n <a+efe+efz=a+e. [

Evidently if a.n/n is not bounded below, then aq/n —> . @,

{

Although we shall not need it, it is interesting to note a generalization
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of the above, Namely, if anl,'-',nr is a multisequence subadditive in each
index, and ahl,---,nr is bounded below, then it converges. This can be
used below to obtain the thermodynamic limit of rectangles (rather than cubes)
directly. |

As in §7, to obtain the thermodynamic limit, we require some regularity
conditions on the regions. The condition here is slightly stronger to com-
pensate for slightly weaker inequalities., (The reader should compare these

with the definitions of Fisher[1]).

9.26 Definition. Let r, ¢ R, r, >0, and U, CRrY, j=1,2,000 ,

We say that Uﬁ are strongly ro-regular iff for any L Z.ro, there are

unions of cubes of side L ; say-Tj,Wj such that
(1) TjCUjCWj 5§ =1,2,000

and (ii) (g l-lz 1) / 25l =0

Notice that from this it follows that
W, u. and |T, U] —> 1 as J—b o,
0/ Tu,l ana [zl / o] 3
Then the main theorem on the thermodynamic limit may be stated as follows:

9.27 Theorem. Suppose i Ve C Y x g% — R,

n
Y2
"' (q,p) = % p /om + v, (a)
i-1 "

is a stable, strongly tempered system. Then
(1) there exists a function s(m)(e,v) concave in e,v such
that for any strongly r, regular sequence Us C:Rv, with [Uﬁl/j —> V,

we have
Limit ™)

s 5 (5,0,,0) = s e,m)
J —
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(i1) There exists a function f(c)(a,v) convex in B, concave
in v such that for any sitrongly ro-regular sequence Uﬁ C:Rv with
]U&I/j —> v we have

limit f(c)(J U, B) = f(c)( B8,v)
J =

(iii) There exists a function p(g)(a,u), convex in B,u such
that for any strongly ro-regular sequence -Uﬁ C:RV, we have
limit p(g)(U Bop) = P(g)(ﬁ:h)
j—> o
As usual, the proof proceeds by way of a number of lemmas. In all,

the hypotheses of 9.27 will be assumed,

9.28 Lemma, Let C; be a cube with side J L - r. /2 (L2>r ,3=1,2,000).
Then there are functions
ls(m)(e,V) ; f(c)(ﬁ,v), p(g)(ﬁ,u)
such that ‘

(i) if n(j) 4is an integer such that lcjl/n(j) -~> v,

vints 5™ (n(3),c,50) = s e,m)
J—>

(i1) for n(J) as in (i), '
limit f( )(n(J), :ﬁ) = f(c)(ﬁ:v)

J —> o

(111)  1limit p(g)(c Bon) = 2808, 0).
J—>

Proof. By 9.23, -8 ( )(n(J), ,e) o n(j) is subadditive in J.
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By 9.22, »s(m)(n(j),cj,e) is bounded below. Hence it converges. The

other parts are similar. [

The next observation is important and seems to have been overlooked.

(m)

(i.e. ¢ it is often assumed, without justification that s° depends only

on the density |[U|/n = p).

9.29 Lemma. The functions defined by 9.28 are independent of L, n(j).

(g)

Proof. Tach part is similar, so we prove it only for p'~’: Suppose

Cj and D‘j are two such sequences of cubes with Cj (:Dj. Given a constant

K there are subsequences such that

(Io 1 - fe,] x)/[p [ —> o.

It is sufficient to check subsequences, for by 9,28 p(g)(cj,ﬁ,p) and

p(g)(Dj,ﬁ,u) both converge. Suppose p(g)(cj,ﬂ,u) —~> a and write

|p§g)(pj,g,u) - | <= [LogZ2(D,5851) - 1ogZ(C,,B,u)]
J
1 .
* IIC logg@,(cj,ﬁ:u) -a |
- e |

The second term —> 0 and by 9.23, 9.22 there are constants Ki,Ké

g0 that 1og£(pj,5,u)gxllbjl and 1ogg§(cj,a,p);_xelcjf. Assume J

large so we ma& take Ki Ké > 0. Hence we.have the fééult.m
b4

9.30 Lemma. The functions defined by 9.28 have the convexity and

concavity properties stated in 9.27.

Proof. Three of these have already been proven (c.f. 9.18, 9.19). The

o m) . .
rest are similar, so we prove that s( ) is concave in e. In 9.23, Suppose

B
d\’

|

1 e

=
B

e - e, + (1-c) e, and choose e' = -
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so that
s(m)(nl+m,Un+m,e) > -E-« (m)(n, Uy o¢ &g )+ ms(m)(m, U ,(1-c ) e, )

Letting n,m —_— @ giveé the result. O

Proof of 9,27. The proofs of (i),(ii) and (iii) are similar, so we

prove only (i). Since Uj/,j ~> v we may work with log Z (j,Uj,e) =

(U,
dJ
g(m) (U‘j ;) rather than ?]—E-log 2 (3 ,UJ. ;€)e The proof now proceeds in two
steps which, together imply the theorem.

Step 1. lim inf é'(m)(j,Uj,e) > 'é:'(m)(e,v).

To see this, given L, choose T, as in 9.26 and construct ’1‘3 with

edgesb L - :c'o/E. Hence, by 9.22, if CL denotes a component cube,
mt

50)(3,0,,0) > lﬁjl 5 (a(z), ¢ e)

vhere J =Z n(L). Letting j —> ® ve see

lim inf S(m)(J,U se) > s(m)(n(L), L,e)
now let L —> » and use 9.29,

Step 2. lim sup s( )(J U e) < s( )(e v)

Here, given L, cons’cruc‘c W‘j as in 9.26 and the corresponding W3 o« Let
¢, bea cube so C 3 DWWy DUy snd filling out C./ W, with cubes 1,
we have, by 9.23

ey % w), cpe) 2 lu,l50)(5,0,e)

s (2] 5300, onye)

Hence | [C l l ,l
5 M (5,05,0) < =L glm)y (3),0,¢) = --—-——s(m)(n(a) ~350ps€)
v, lu, |

Letting L, J —> « gives the result, since
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1] lYﬁ‘,_H.
EARENUA

(we leave the €'s to the reader.,) Thus the proof is complete. I

As Fisher points out, this argument is quite delicate and it is easy

to be fallacious. We would therefore appreciate any comments on this

theoremo (9.27).
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§10. The Thermodynamic Limit of the Correlation Functionms.

The basic theorem of this section is that the correlation functions
have a thermodynamic limit (UnC RY —> ») and are snalytic for
]z[ < & where € >0 depends on the interaction potential V.
References are Groenmeveld [1], Ruelle [2, (Ch. III), 3,4,5] and
Penrose [1]. Our version is a slight simplification and generalization
of part of Ruelle [3].

We begin with the definition of the correlation functions;
10.1 Definition, Consider a stable system with Hamiltonian
g M CEY x Y —> R
H'(q,p) = irbil v5/em + v (a).

As usual, for |U| < w, B>0, z € C,

|
>~
E1%
i)
g
:
£
B

& :
oo (U: Z;ﬁ) =

il

VoEP A\ em(-pv )a
LG gunexp ),

vhere U” = U><U><...><UﬂMn Mn_M“xR

The correlatlon functlom are defined by

co

<U, 8) SLO o
§

U°xR

P <Z:B)ql:-°-:qn)

(55 Iy exp(=pH +s)dqn+l“‘dqn+s "'dpn+s)
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o0
Un g 1 0
KU: ,B8) Z (;'6 E—f) . eXp(-ﬁVn+s )dqn-l-l"'dqn.;.s
s=0 U
for q, € RY, p; € RY, where © 5 is the characteristic function of

U", (We allow p to assume the value + o)
If, in a particular discussion, (or z) is fixed throughout,

it will be omitted from the symbols.

The two main theorems are as follows:

10,2 Theorem, In 10,1, suppose Vn(q_) = 5 V(ql-qa) where
i<
V(g) = V(-q) end
(i) the system is stable,

and (ii) either the system is strongly tempered (§9) or the condition

(R) : ¢ = fRV [exp(-pV(q))-1]ax < @

holds, Then there is an € > O such that for U, C RY with

{diemeter (Ui)} —> ®, we have

U,

L
pn """9 pn n =1,2,.¢o

wniformly in g on bounded sets, and z for |[z] < &, Moreover

U,
Py * and p, are analytic in z for |z] < €, (The choice of € depends

on V).

10,3 Theorem, Under the hypotheses of 10.2,

1 ) )
~= z — log @(Ui:z,ﬁ) and log é(;(Ui,Z;B)
fUi] dz U,

are anslytic in some circle |z]| < € and converge to an analytic

function as i > o ,
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The rest of this section is devoted to proofs of these theorems,

Using Ruelle's ideas, the proofs are remarksbly easy, and elegant.

First we make the following observation:

10.4 Lemma, In 10,1, if |U| < », &2 (U,2,p) is analytic in z,
and if <§i(U,z,B) is not zero in some region (one always exists sbout
the origin as Z (U,0,B) =1, and ., is continuous), then

an(z,ql,...,qn) is analytic in z. Also, we have

H

Lo plU(Z,Q)dq zglog{fZ:(U,Z)

lu] v

i

1/v (U,2)
in this region,

Proof, The first part is immediate from stability, as in 8.2,
and the second follows by integrating the expresgsion for Py term by
term, admissible as the series converges uniformly in g, for each

z, by stability (c.f. Weierstrass M-test). [

The idea of Ruelle was to cast the expressions for Py into
operator language in an appropriate Banach space, and apply standard
powerful tools to extract the result, Our method differs from his in
that we use the fixed point theorem rather than inverting an operator.

In pursuit of this result we derive identities for the correlation
functions going back to Kirkwood-Salsburg [1] and Mayer-Montroll [1].
(See also Hill [1, p. 251-3].} (We only shall require the first identity

below, but we give both for completeness),
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10.5 Theorem, In 10,1, suppose the system is stable and

v (a) = 153 Vgg-a,)i @ = (appeeerq) e B, V(gy) = V(-g). Tet

z e¢C, uC R and P >0 De fixed., Define

3%

f:R —>R; f(x) = exp[-pV(x)]-1

K (X, l,oo.,x ) = I[ f(X-X )
J=1

and

n
K (X ’l.',x ,y ,...,:Y) = n I[ f(y- )
L L j=l k=1 K
Then we have

(1) (Kirkwood=-Salsburg)

z o 1 |
pl(x ) =¢C (xl)( ){l+zi; xl,xg,...,xs+l)ps(x2,...,xs+l)dx2...dxs+l}
e _

and, for n > 2,

(1)(A

‘ Z
pn(xl’o-o,xn) -(;",J) exp ["'an l,.oc,xn)] X C (Xl,oio,xn)

-
{Qn l(xe,...,}’ )+Z4t"g‘ K (Xl’ nl? °°°? n+t)pn+t 1( seees® . )dx "¢ “on }
e U '

where (l)(x seees®y ) = Z V(x X, ) .
=2

(i1) (Mayer-Montroll) for all n,m = 1,2,3,... Wwe have

ol o) = (3) exmlB, (xy,m)] x

M
1
{1+ Z ES\ K (xl;...,xm,yl;...,y ) ) (Yl,...,y )d’y’l.,,dy }
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Proof., (A simple exercise in combinatorics), Notice that (n > 2)

n n+s
Vs (Fppeeax ) = Z V(Xl"xj) + Z V(xlmxj) + Vn+s_l(x2,...,xn+s)
‘ J=2 J=n+l ’
so that
exp[~BVn+s(Xl,...,xn+s)]
= eXP["ﬁVn (Xl,...,xn)] eXp[-BVn_l_s__l(xz,...,Xn+s)] ]I (l"'f(xl-xj))

,j =n+1L

Inserting this in the definition of p n and expanding the last factor,

noting symmetry gives
1
ey nty) = 2 explopr, P01

g O S‘
Z (”\7) T exp[-ﬁvn+s_l(x2,...,xn+s)] X
U

J
Gee)rer T )ee By D000, ey
t=0 '
(the t=0 term being 1) .
Since the terms are positive and we have convergence, we may rearrange

the sums, Briefly,

[>4] 2] o]

LL-L2

s=0 =0 t=0 s=t

Introducing k=s-t +then gives



l;o-o,xn)] X

2 & , Dkt
Z Z () g
Tk

(exp LBV ey (Bpr e oo X gy )]
U |

see dxn+k+t

1
mrer g (FpoFppoeees®y e a0 4

Removing a factor z/ A , the remaining sum over Xk, with &, inecluded

is exactly

pn-M:--l(xE?’ coesXnit )e

The case n=1l is proven in a similar way.

For (ii) we proceed. as above, using instead

vm-&-n(xl’ AR TEEL "’xm+n) = Vm(xl’ ® ""xm) + Vn(xm-l-l" eee ’xm-l-n)

m mn
T -
J=1 k=m+l

We leave ‘the rest to the reader, 0

Notice that 7, has disappeared in these formulae., In (i), n=l
the first term would have been &/, if we had not included it in the
definition of Ppe This feature is essential to make the procedure
work,

We will interpret the {pn(z,xl,...,xn)} as elements of a Banach

space (U,B fixed). We now set up the machinery for this purpose.

10,6 Definition. Let (X,Z,u) be a measure space and L7(X,u)
denote the (equivalence classes of ) measuresble functions f : X —> R

such that ess sup £ = inf{M e R : [f(x)] <M almost everywhere) < o ,
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The following is standard, but we give 1t anyway.

10.7 Lemma, L (X,u) with the norm [[£]| = ess supf is a Banach

space (B=-space)

Proof, The properties |[|f| =0 ==>f =0 ace, and [aff = alll
are clear, For the triangle inequality, if [f(x)] <M a.e. end

lg(x)| < N a.e. then |f+g| <M + N a.e, Teking the infimm over M

and W gives |esgll < Jiell, + el

°
o0

Forvcompletehes's (see 2,3 for definitions), let fn be a Cauchy
sequence, Then fn(x) converges for almost every x, defining a
measureable function £, We must show that ”fm-i‘”m -3 0 (this implies
£ e L7(X,u) and f, —>£). Given &>0 choose N so nm>N

implies an-fmnm <gf2, For k>N and any £>0N we have
Ifk(x) - £(x)] < lfk(x) - fz(x)] + ]:E'g(x) - £(x)]
< ef2 + Ifz(x) - £(x)]

But for a.e, X, choose £ > L (which depends on x) so [fg(x)-f(x)] < gf2.

Thus for any x € X, |:’c‘k(x)-f(x)l <eg for k>N. @O

We shall also require the following well known fact from complex

analysis.

10.8 Temma. The bounded analytic functions £ ;: DC ¢ —> €

(D open) form a Banach space with

Il = sup{|£(z)] : z € D},
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The next lemma is another routine verification much like 10,7,

and so is omitted,

10,9 lemma., Suppose E,,E.,... are Banach spaces with norms
——— 102l
I ”(l), I ”(2)’". and ¢ = (07,05000) 15 a sequence of positive

real numbers. Let

(sequences of elements e (el,eg,...)) and

E={ceck "e”(I = sup {cn"en“(n)] < ),

N
Then E is a Banach space with norm || Il0 .

One of our basic tools below will be the following

10,10 Iemma (Contraction Lemma). Let M be a complete metric

space (1.,8) and £ : M ~> M a mapping. Suppose there is a constant

k so 0<k<1l, and
a(f(x),2(y)) < k a(x,y)

for all =%,y € M. Then £ has a unique fixed point (a point such that

f(xo) = xo). The map f is continuous.

Proof, ILet x ¢ M and consider the sequence {f(n)(x)} of the
iterates of f applied to x. Then d(f(n)(x), f(nfp)(x))

< ae™x), £ ) s a®@P (), 2040 (x))

Kn+p—l

< (K" oot ) alx,£(x))
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by the triangle inequality. Since l+K+K2+... is convergent, the
sequence f(n)(x) is Cauchy. Since M 1is a complete metric space,
the Cauchy sequence f(n)(x) has a limit point y. This limit point

y is a fixed point of £ since
le(y) - vl < le) = 22+ 1@ -y
<« @) - 5+ 1P - g

and the right hand side approaches zero as n —> o , This fixed point

y is unique, for f(x) =x and f(y) =y, then
alx,y) = aE®), 203 < Palxy)
Hence d(x,y) =0, or x =y, Continuity of f is obvious. [

We now return to the correlation functions,

10,11 Definition., In 10.3, let E, denote the Banach space of
functions @ (z,%;,000,% ) analytic end bounded in z for lz] < €

and essentially bounded in Xysooe,X € Rv. Given ¢ >0 let

-2,...) and

g = (§:§-l:§

=
i

e

L s
=

(with the usual vector space structure) and let

4]
E, ¢ =E_, nom I ”g,s

£,€
For q) € Eg’s 2 CP = (@l’@Q"")’
define (B fixed)

(KU(P)n(Z,Xl,o..,Xn) s D = 1’2,000
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by
(160) (2,%)) = Cylx;) f; a1+ E X
st Ks(xl,...,xs+l) ws(z’XE’""Xs+l)dx2"'dxs+l
and (KUQ)n(z,xl,...,xn) = CUn(xl,...,xn) i%-x
exp[-ﬁvn(l)(xl,...,xn)] {cpn_l(xg,...,xn) + tgl ;3‘-;- X

dax )

fUt Ky (%% pq00000 ) @ (Kpseoesdy p )aX g eeedy 0

where Vh(l), K% are defined as in 10.5, and we regard 1 ¢ El’

We next wish to show that for €,¢ appropriately chosen,
K.:E —> E and is a contraction (satisfies 10.10). Warning :
U £,€ g€ _—
KU is not a linear map, (Ruelle‘s corresponding operator is linear;

Ruelle [3]).

To do this we require condition (R) stated in 10.2. The

hypothesis of strong tempering is then eliminated by the following.

10,12 Lerma, In 10,2, if the system is stable and strongly
tempered (§9) then for any B > O,
¢ =/, (exp[-pv(x)]-1)ax < = ,
R
Although the proof is straightforward it is rather awkward., For
the details, see Ruelle [2, p., 90]. A trivial proof of this lemma

probably exists,
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We shall therefore be content to prove 10,2 under stability, and
condition R.

10,13 Lemma, In 10,11, suppose V 1is stsble and satisfies (R)
v
of 10,2, Then if ¢ =1/C and &< - exp(-28B-1), ‘then

K, : E —> B and is a contraction for any vC RV. More generally,

U " Tge £,€
for any ¢ >0, we may choose € < ¢ e-‘z‘ﬁBe“‘-E'C o

Proof, From stability and permutation symmetry, we see that

n
Vm<l)(xl’“"xm) > -2B; namely, Zl i V(x -x ) > ~2nB by definition
i=l j#i
of stability, end so there is an i, so i V(xi-xj) > =2B.
G
Next, observe that

B [CHYN 5 exp(-BB)

Uogual + £ F Iogpeall, + )
€ =] -l '
;;; exp(288) (¢ [loll, loll, & >
X 1 o, .n
nil nl o)

using the fact that ¢ llo [l < lol o Hemee
=1 g -1
e (ko) Ml < X] exp(2p8) & * loll, o - exp(ce)

£

7\.V

exp(2e8+41) £ ol .

< lol -

Hence KUcp € Eg, e Moreover, KU is a contraction as

a(KyPs Ky¥) = [[KUCP - KU‘””g,a and the first (constant) terms cancel, so

the dbove inequalities apply. 0O
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10,14 Lemma, In the gbove, the fixed point of KU is the vector
where components are the correlation functions {an(z,xl,,..,xn)}.

In particular, p ~is enalytic for lz] < e,

Proof, The an satisfy the Kirkwood=-Salsburg equations, and

so are fixed points of KU.' The only question is whether or not
v €

Pn £,€

so coincides with the fixed point of KU on a (smaller) neighborhood

. However, for & sufficiently small, an is analytic

of z =0, Since an has at most a finite number of singularities
in |z| < €, we can repeat on all open discs where there are no
gingularities, to conclude that the singularities are in fact removeable.

Hence the lemma. o

The final basic property of the operators KU we need is as follows,

10,15 ILemma, Consider the operators KU on functions on a bounded
i
set S(:IRV. Then there is a & > O and corresponding & > O such

that

K
KUi
uniformly, on the fixed points.
U

Proof, First we claim that all the fixed points Pn + are

uniformly bounded. In fact, from before, we see that ¢,€ can be
chosen so that HKU @" < max(1, “Q” ) and so if we start with a
‘U,
U
”¢”§ <1, eand note p i =1lim K. @ then clearly |p l” <1,

n —o 1
(independent of Ui)’ Secondly, we claim that K , —> K wiformly

Ul

on any bounded set, and the fixed points in particular. In fact, from

the definition 10.11, choose U, 80 large that U, :)S, and we can
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set CU = 1, (This is why bounded sets are required.,) Then since
i

K. is integrable, given & > 0, choose i so large that
5K(xx x_ ., )dx ax <(a)t
VL Tl T Tt LT s =
R'\U, |
Then
[ve]
)
=m € 1
3 II(KUicp - ko) ll, £ X] exp(-28B)( Z T X
t=1

tel,
( 5 Ky (s Ko e oo B ) 0o v ) €7 ol
(&V\u)®
£

}\QV

< 5 exp(2pB) (¢™ (exp(5t)-1} [l )

This proves the result, 0O

One more lemms and we are abt our goal!

10,16 lemma, Let M be a complete metric space and fi,f 2 M o——> M
contractions on M with the same constant k. Let xi be the fixed
point of fi and suppose fi —> £ uniformly on these fixed points.

Then [xi} converges to the fixed point of £.

Proof, First, note that X, is a cauchy sequence.,
In fact, given € >0, choose N so myn >N implies
d(fm(xi), fn(xi)) < g(l-k) for all i. Then
alx,x ) < alg, (x), £ (x)))
+a(e (x)), £(x))

< e(l-k) + Kd(xn,xm) .
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Hence d(x ,x )< &. |

Now suppose that x; —> x, so that fn(xn) —> x, Given
€>0, choose N S0 n >N implies d(ﬁn(gn),f(xn)) < g/2 =nd
d(fn(xn),x) < gf2, Then d(f(xn),x) < €, Therefore f(xn) — x
and f(xn) —> £(x) since f is continucus. Thus x = f(x), the

required result. 0O

Proof of 10,2, By 10.15 the contractions CK, (with fixed points
CsmUi), are uniformly convergent on the fixed point;. Hence, by 10.;6,
10,13 €9 i C¢ (uniformly), which is the result., Note that
the contraction constants are independent of Ui. Analyticity was given

in 10,14, DO

Proof of 10.3. Clearly the correlation functions in the limit

are translation invariant. In particular pl(xl) is constant, say

1/v. Then by 10.k,

U
Z 3 gL 1 i

Z logof.z- ;; = Sl [pl (xl) = CU.pl(Xl)]Xm
.1 2 0.1 0, :

From the proof of 10.15, given € > 0, there is an N so 12>N
U .

implies [pl - . pl[ < €& on Ui' Hence we have

<e,

<=

Z ‘g% logcﬁi -

|u, |

as réquired. Since the functions are analytic and uniformly convergent

in 2z, the second part follows as well. O



In this development we have a lower bound (€) on the region
of analyticity, (but probably a crude one), Penrose [1] gives, on
the other»hand an upper bound,

The analyticity established here justifies the classical virial
expansions for sufficiently low demsity (see $7).

The correlation functions where existence has been established sbove

have an importent general feature: the so=called cluster decomposition

property. This says that if =x 00X, ~are partitioned into clusters

1
xu ...xa 600X  oeeX with % n, =n and the clusters are made to
1 T y=l Y

n
separate %rom each other, then

lim .Q.x =lim x ..'x o0 X .OOX °
Py eem,) = Lim ol “nl) ol 7nk)

This behavior is appropriate to that of a pure phase., As was pointed
out in Mayer and Montroll [l], when two distinct phases are present, this
cluster decomposition property does not hold,

In fact, the existence theorems of this chapter spply only to
the gas phase and it is a major wunsolved problem of the subject to
extend the theory beyond the first phase transition, The farthest
the formalism which uses correlation functions has been taken is
illustrated in Ruelle [5]. The great difficulties encountered have led

to the introduction of new formalism but the main problems remain open,
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CHAPTER IIT

States in Classical and Quantum Statistical Mechanlcs,

Recent trends in statistical mechanics, particularly the approach
using C* algebras, rests heavily on a more refined notion of state.
These ideas have been influenced greatly by quantum mechanics. The
object of the treatment in these lectures, not quite achieved, was to
show how the necessity for these new ideas arises nsturally from
elementary examples, Since the subject has many open problems, it
is far from clear that a definitive formulation has been obtained but,
surely, something is going on there.

In this chapter we summarize some ¢f the elementary. aspects of
states, give a brief account of the current status of the subject,

*
and give a resum€ of the literature on the C  algebra approach.

§11. States in Finite Dimensional Spaces,

Although the underlying spaces in Koopmenism and guantum mechanics
are infinite dimensional, it is convenient to first see the formalism
for finite dimensional spaces, The general case is similar; however

non trivial pathologies of physical interest can and do arise.

11,1 Definition. If E,F are (finite dimensional) complex vector
spaces, we let L(E,F) denote the set of (continuous) linear maps
f :E —>»F with the structure of a complex vector space, We also
write L(E) = L(E,E). Let, in case E is provided with an imner product,

(,) J(&)

il

{A e L(B) : (el,Aez) = (Ael,ee)}, the self adjoint
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(symmetric ) elements of L(E), together with the structure of a real
vector space, Elements of J (E) are called observables, For

*
A ¢ L(E), A", +the adjoint is the unique element of L(E) satisfying
(e.,he.) = (A" for all W let T = L(E,C)
e),he,) = el,ez) or a. €58, € B, Ve also le = 5€),

the dual.

11.2 Theorem, If dim E =n, then L(E) and J(E) both have
. . 2
dimension n .

Proof, It is elementary linear algebra that dim L(E) = n2 as

a complex vector space. ILet Al""’Am be a basis of J(E). In
L(E) they are obviously linearly independent. Since, for each
* * ¥ *
A e L(B), A=%—(A+A)+i{£‘5(A-A)} , end A+A,%(A-A)eJ(E),

it is clear that they also span L(E). DO

As a corollary, if £ e L(J(E),R), then f has a unique extension

to an element of L(L(E),C), which we also denote I,

11,3 Theorem, L(E) is a complex Hilbert space with the inner
, *
product (A,B)= tr(A'B), a=nd J(E) is a real Hilbert space with

(A)B) = tr (AB).

2
Proof. If A ¢ L(E) we may identify, via a basis A € o , and then
* Il2 -
tr(A'B) = ¥ a,b,
. i
i=1

which is an inner product, O

Recall that A e L(E) is positive; A >0 iff (e,Ae) >0 for all
e ¢ B, If Ac J(E) then A is positive iff its eigenvalues are
positive (> 0). It is a theorem of linear algebra (cbvious for A ¢ J(E))

¥,
that A >0 iff there is B so A =3B B.
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11.4 Definition, The states on E are defined by
E=1(f e L(I(E),R) : £(1) =1, A>0 ==>F(A) >0} vhere 1le J(B)
is the identity map.

For e ¢ E, [ef =1, let £, eg, £ (a) = (e,Ae).

Clearly the extension f € L(L(E),Cc) is also positive as A >0
implies A e J(E). As we shall see below, the states 'fe are pure,
(In statistical mechanics one is generally interested in impure states

as well),

11.5 Definiticn. Let E be a linear space and S5 CE a subset.
Then S is called convex iff for all t, 0 <t <1, e,,8,¢ S8 we have
’tel + (L=t )e2 €S, Apoint e € 8 1is an extreme point in case
e] + ey e, €8, e =teg (1-t)e,, 0Lt <1 implies t =0 or

t = 1.

Re extreme points

Y \l\aﬁ
& PP
?’

o7

(=

11,6 Theorem, The states g of E form a convex subset of
L(J(E),R). Also (= is a (topologically) closed subset., The extreme

¢

points of & are called pure states.



..]_Lp]-

Proof, (Any finite dimensional vector space is equipped uniguely
with a topology determined by any norm), If fl’fz € 6 then
(tfl + (1—t)f2)(1) =t + (l=t) =1 and if A >0, (’cfl + (J.-t)f2)(A) >0

+ ; )
is convex)., Hence /& 1is convex. To show E-j is closed we must

(R &

show that if £ —>f, f e & then f e [ . But this is obvious, O
n n B

We now recall a basic theorem of Hilbert space theory which, in the

finite dimensional case, is clear,

g g
11,7 Theorem, (Riesz) ILet & be a Hilbert space and f €& .

Then there is an e ¢ /F so f(e') = (e,e!) for all e! ¢ #.

3

11,8 Definition, Iet f e/5 . Then the unique p, € J(E) so that

i

4

£(A) = tr(pfA) (by 11.7, 11.3), is called the density matrix of the

state f.

Thus the association f > p, is a bijection between & end
gt = {p e J(®) : trp =1, p >0} (taking A(el) = (e,el)e we see
(e, pfe) > 0). Also, we see that the association is linear, when defined,

so preserves convexity and extreme points,

11.9 Theorem, f € £ ,f 4 0 is a pure state iff its density matrix
Pe is a projection onto a one dimensional subspace, iff there is an

eeB, [ef] =1 so £(a) = (e,he).

Proof, From elementary linear algebra (see, for example Hoffmen
and Kunze [1, p. 172]) we may write, uniquely, pp =2 AP, where A,
are the distinct eigenvalues and p, exre projections onto independent

subspaces, If f is a pure state then P is an extreme point and so,
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since the eigenvalues add to one, the gbove sum can contain only one

term and A\ has multiplicity one, Conversely, if P is a projection

and Py = t Pp + (l--’c)pf then by uniqueness of the spectral decomposition
1 2

sbove, and the positivity of the eigenvalues, we see that if 1 4 0,1,

For the second equivalence, if £(A) = (e,Ae) then pp 1is the

projection to e as tr(pfA) = (e,Ae). Similarly we have the converse. [

p € L(E) is called strictly positive iff p 1is positive and

(x,0x) =0 implies x =0, Note that p ¢ J(E) is strictly positive

iff its eigenvalues are,

11.10 Theorem, &' is a closed convex subset of J(E), and of
J(E) N {p e J(B) : trp = 1), With the relative topology of the later
set, the interior of 5 t  (topological interior; the largest open
subset ) consists of the strictly positive elements of g ', and the
boundary is O~ ' = {p ¢ 5’ : det p =0}, If dim E > 1, the pure

states are contained in J&¢,

Proof, That &£ ' is closed is clear, as in 11.6. If p e £t is
strictly positive, which holds iff det p 4 0, then so is a neighborhood
of p, since det is a continuous map., Hence p € interior g te
If pe &' is not strictly positive (det p =0) and € >0 ‘there is
a strictly positive p! so ”p - p']l < € as is seen by diagonalizing

for exsmple, Hence the theorem. 0

11,11 Example, If dim E = 2, the pure states coincide with

d&', but not if dim E > 2,
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Proof, If det p =0 and dim E =2 then p is a projection

i

0) so is a pure state, The

il

onto a one dimensional subspace (or p

assertion for dim E > 2 is obvious. 0

11,12 Definition, The entropy on /' is the map
s : £ —>R; s(p) = ~tr(plogp).

Here 1logp is the unigue map such that exp(logp) = p and is
defined on all complex matrices. As it is invariant under similarity,
we can compute it easily for diagonalizable maps., In particular, if
o€ g' then logp € J(E) (ie : it remains real)., See §5 for basic

properties of -xlogx,

11,13 Theorem (von Neumann), The entropy s is strictly concave

2y

on &''; that is for Pspp € C 'y
s(apy + (1=a)py) 2> as(py) + (1-a)s(p,)

for all o, O0< o<1l and equality holds iff pp =Py OF Q= 0, or

o =1,

The inequality is clear if o and py are simultaneously
diagonalizsble (i.e. commute)._ In general, however, it is a non-trivial
inequality on the eigenvalues. (What makes it so delicate seems to be
the fact that the eigenvalues of a sum of matrices is not related in
any simple way to the separate eigenvalues), The proof mey be found in

von Neumann [1l, Ch, 5, §31.

11,14 Corollary., Let /fic E1 Dbe a closed convex subset of &

Then there is a unique p € f; i which maximizes the entropy s. It is

called the most chaotic state of J'_.
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Proof, As was observed in §5, since trp = 1,
s(plogp) = =% xi log xi < log n; ‘that is, s is bounded., Since s 1is
continuous and & J'_ is closed, s assumes its least upper bound.,
To see that it is unique, suppose it is assumed at PPy and Py + Poe

But then if o ¢ 0,1 we have, by 11.13, s(opy + (l-a)pg) >s8(py)e O

A typical physical situation to which 11.14t applies is the following.

Fix Ajseee,A, € J(E) and ayseees8 € R and let

gi = {p € s M tr(pAi) = ai S.i = l,o..,k} e

Clearly g I'L is a closed convex subset, It corresponds to the situation

in which we know the expectation values Byseeesly of k observables

Al,... ’Ak‘ For further discussion along these lines, see Wichmann [1].
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