Supporting Information:

Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles

Tao Cheng, Yufeng Huang, Hai Xiao and William A Goddard III*

Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, California 91125, United States

* E-mail: wag@wag.caltech.edu
simulation methods

We used LAMMPS (1 Feb 2014 version)1 with the USER-REAXC package and fix
\texttt{qeq/reax}.2 for the Molecular Mechanics (MM) Dynamics simulations. A Nose-Hoover
thermostat was used to control the temperature with a damping parameter of 100 time steps.

To grow a gold (Au) nanoparticle (NP), we used a zigzag carbon nanotube (CNT) with a
diameter of 8.39 nm as the catalysis support, which was kept fixed during all the simulations. The Embedded-atom-model (EAM) 3 was used to describe the interaction between Au atoms,
and a Lennard-Jones (LJ) potential was used to describe the interaction between Au and the
CNT. The temperature for the growth simulation was 300K, and the deposition rate for the
growth simulation was 3.0 Å ns-1. The time step was 1 fs. After 35 ns of growth simulation, an
Au NP with a normal thickness of about 10 nm was obtained on the CNT support. Annealing
simulations were carried out to heal the defect and increase the grain size. Each annealing cycle
included 10 ps cook-off simulation from 300 K to 1200 K, 5 ps NVT simulation at 1,164 K, 10
ps annealing from 1,164 K to 300 K and 15 ps NVT simulation at 300 K. After 120 annealing
cycles, a fully crystallized Au NP formed on CNT support. In the annealing trajectory, the Au-
NP structure after 63 annealing cycles is mostly close to the experimental structure, which was
further refined by using 20 ps ReaxFF reactive force field (ReaxFF) simulation at 300K using a
previous published Cu-C ReaxFF parameters.4 The time step for the reactive force field
(ReaxFF) simulations was 0.25 fs.

Quantum mechanics calculations were performed with VASP package5-7, using the PBE
flavor8 of DFT and the projector augmented wave (PAW) method9 to account for core-valence
interactions. The kinetic energy cutoff for plane wave expansions was set to 400 eV. The
Methfessel-Paxton smearing of second order with a width of 0.2 eV was applied. The
convergence criteria are 1×10^{-5} eV energy differences for solving the electronic wave function.
All geometries (atomic coordinates) are converged to 1×10^{-2} eV/Å for maximal components of
forces.

Cluster models for VASP calculations were cut from the simulated nanoparticle using a
cut-off of 8 Å taking the selected site as a center. We consider that this provides an accuracy 0.02
eV while keeping the computational cost modest. For cluster calculations, a 20 Å cubic box was
used, and only gamma point was considered in these calculations. All the Au atoms were fixed in
cluster calculations.

Debyer, (freely available on \url{https://github.com/wojdyr/debyer}), was used to calculate the
diffraction pattern for the synchrotron x-ray source. QSTEM (freely available on
\url{http://qstem.org/}) was used to simulate the TEM images.
The simulated XRD-diffraction pattern of Au NP shows peaks of FCC Au. The widened peak of Au NP is due to the Nano-size effect.
Figure S2. Comparison of the equation of state of FCC Au between ReaxFF and QM.
Figure S3. Au octahedral with a length of 6.93 nm (10,425 Au atoms), which consists of 2,024 facet sites (87.77%), 276 edge sites (11.97%) and six corner sites (0.26%).
<table>
<thead>
<tr>
<th>Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;# alfa;gammadw;valency;Eunder;Eover;chiEEM;etaEEM;n.u. cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u. ov/un;val1;n.u.;val3, val4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Context: The table contains various numerical data related to bond energies, dispersions, and other physical properties. The entries are formatted in a way that suggests they are results from computational chemistry calculations, possibly involving molecular structures or materials properties.
References

