Explaining Extreme Ground Motion in Osaka Basin during the 2011 Tohoku Earthquake

Victor C. Tsai¹, Daniel C. Bowden¹, and Hiroo Kanamori¹

¹Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA.
Corresponding author: Victor Tsai (tsai@caltech.edu)

Key Points:
- Ground motion in Osaka Basin during the Tohoku Earthquake was unexpectedly large.
- Surface waves are locally amplified by structure differently than body waves.
- Accounting for effects of structure in Osaka Basin on surface waves explains anomalous extreme ground motions during the Tohoku Earthquake.

Abstract
Despite being 770 km away from the epicenter, observed ground motions due to the Tohoku Earthquake in the Osaka Basin were unexpectedly large, with an amplification of more than a factor of 20 compared to immediately outside the basin, and including 2.7-m peak-to-peak roof displacements at one high-rise building. The local ground motions exceeded expectations based on standard computations of site response by a factor of 3, predicted frequencies of peak acceleration were off by at least 50%, and such discrepancies have not yet been explained quantitatively. Here, we show that utilizing semi-analytic theory for surface-wave amplification, we are able to accurately predict both the amplitudes and frequencies of large ground amplification in the Osaka Basin using only knowledge of the local one-dimensional structure. Comparison between this simple prediction and observed amplification was not expected to be so favorable, and suggests that simple one-dimensional surface-wave site amplification factors can be useful in the absence of full three-dimensional wave propagation simulations. Such surface-wave amplification factors can be included in addition to the standard measures of site-specific site amplification, and should help explain strong ground motion variability in future large earthquakes that shake Osaka Basin and elsewhere in the world.
Plain Language Summary

Using the local structure to predict surface-wave amplification accurately explains extreme ground motion amplification in Osaka Basin during the 2011 Tohoku Earthquake, whereas such ground motions have been unsuccessfully modeled with standard measures of site amplification. The results demonstrate how necessary it is to include a measure of surface-wave amplification if one is to accurately predict earthquake ground motions. The approach can potentially be incorporated into new site-specific earthquake hazards analyses in nearly an identical way to which existing approaches to site amplification are already being used.

1 Introduction

The 2011 M9.1 Tohoku-Oki Earthquake was one of the largest earthquakes to occur this century [Simons et al., 2011; Nettles et al., 2011], and caused ground motions that exceeded accelerations of 2 m/s^2 in Tohoku prefecture [Kurahashi et al., 2011; Irikura et al., 2012]. Surprisingly, the Tohoku Earthquake also caused strong ground motions in Osaka Basin, 770 km away from the epicenter, the most populated area in western Japan [Sato et al., 2012; Iwata et al., 2016]. While it is well known that the Osaka Basin is a deep sedimentary basin that is expected to locally amplify earthquake ground motions [e.g., Sato, 1990; Pratt et al., 2003; Miyakoshi et al., 2013; Yoshimoto and Takemura, 2014], the estimated amplification based on standard site-specific vertically-propagating shear-wave site amplification calculations [e.g., Kanai, 1952; Satoh et al., 1995; Thompson et al., 2012] severely underestimated the ground motions compared to what was observed. Perhaps most importantly, long-period ground motions (3-10s) were amplified by a factor of more than 20 (Fig. 1 and 2), and underestimated by a factor of 3 using standard predictions of site-specific site amplification (see Fig. 3 blue line), leading to significantly stronger shaking of high-rise buildings than expected. The Sakishima building, in particular, which was instrumented from the ground to the top floor, had peak-to-peak roof displacements of 2.7 meters, due to much larger long-period (~6 second) ground motions near the resonant frequency of the building than expected [Kashima et al., 2012; Kanamori, 2014]. With the possibility of great earthquakes at the much closer Nankai and Tonankai subduction zones, the significant and as yet still unexplained underestimate of ground motion in the Osaka Basin due to the Tohoku earthquake is alarming, and underscores the importance of better quantitative understanding how much ground motions are amplified there.

2 Theory

Here, we show that a simple semi-analytical estimate of surface-wave amplification [Bowden and Tsai, 2017] adequately explains the amplification of ground motions in Osaka Basin. This estimate of amplification based on the local one-dimensional (1D) velocity and density structure at a known site relative to the ground motion at a reference site of a different 1D structure is similar in style to the site amplification calculations that are done by propagating shear waves vertically through a 1D structure but explicitly accounts for surface-wave propagation rather than vertically-incident shear wave propagation. Such vertically-propagating calculations of site amplification calculations are currently used in some site-specific ground motion prediction equations (GMPEs) [e.g., Cramer, 2003; McGuire and Toro, 2008; Stewart et al., 2014], but the estimate described here is for surface waves (both Love waves and Rayleigh waves) that propagate laterally (through a smoothly varying medium) rather than for vertically propagating shear waves. While such estimates will never
be as accurate as those produced from a full three-dimensional (3D) wave propagation simulation [e.g., Bard and Bouchon, 1980; Olsen, 2000; Graves et al., 2010; Iwaki and Iwata, 2011], the simplicity of the calculation, the generality in which it can be utilized, the straightforward ability to evaluate one distinct cause of amplification, and the physical intuition that is gained from such a description makes it useful as an initial estimate.

Our calculation of surface-wave site amplification is based on the simple theory described by Bowden and Tsai [2017], which calculates the relative amplitudes of surface waves by imposing conservation of surface-wave energy flux (assuming no scattering). This assumption is a clear simplification of reality, and specifically excludes the effect that lateral basin boundaries can have in reflecting waves and creating additional resonances, but accounts for resonant-type behavior inherent in a 1D (slow velocity) basin structure. The surface-wave site amplification term can be calculated as

$$\frac{A}{A_R} = \frac{u(0)}{u_R(0)} \left(\frac{u_I}{u_{R_I}} \right)^{-1/2},$$ (1)

where A/A_R is the surface-wave amplitude at the site relative to a reference site, $u(0)$ is the displacement eigenfunction at the surface, U is the group velocity, and I is the vertically integrated kinetic energy for the mode considered [Tromp and Dahlen, 1992]. Subscript R’s refer to the reference site, and the expression applies to any surface-wave component of motion. This result is derivable by observing that the surface-wave energy flux should be the group velocity multiplied by the average kinetic energy density [Lighthill, 1978; Whitham, 1999]. For Love waves, the average energy flux per unit width is then

$$F = \int_0^\infty \rho^2 A^2 u(z)^2 dz = \frac{\nu_0^2 A^2 I}{4},$$ (2)

where ρ is density and ω is angular frequency, so that conservation of surface-wave energy flux requires Eq. (1) to hold (in the absence of geometric spreading). The derivation is similar for Rayleigh waves, but one must account for the 2 components of motion, and thus the general inclusion of $u(0)$ in Eq. (1) (which is 1 for Love waves). These simple formulas have existed in the literature in various contexts for at least 50 years [Tromp and Dahlen, 1992; De Noyer, 1961; Woodhouse, 1974], but were only applied to ground motion hazards for the first time by Bowden and Tsai [2017].

Previous ground motion hazards work has noted that surface waves are amplified differently than direct S waves [e.g., Pratt et al., 2003; Arai and Tokimatsu, 2005; Furumura and Hayakawa, 2007; Miyakoshi et al., 2013; Yoshimoto and Takemura, 2014], but previous authors have not been able to calculate how potentially damaging surface-wave amplitudes are transformed solely due to surface-wave propagation from one 1D structure (e.g., a reference structure) to another 1D structure (e.g., within the basin of interest), and instead have assumed excitation and propagation of surface waves within a single 1D structure (or have performed full 2D/3D simulations). As such, previous calculations of 1D surface-wave amplification [e.g., Miyakoshi et al., 2013; Yoshimoto and Takemura, 2014] do not allow one to compare the surface-wave amplitudes within a basin to amplitudes prior to entering the basin, as is typically desired and which is accomplished with the theory of Bowden and Tsai [2017]. Finally, we note that the theory relied on is more general than the elliptical valley theory of Trifunac [1971] and accounts for both Rayleigh and Love waves rather than just incident SH waves.

3 Results
Application of this theory to fundamental-mode Love waves (transversely polarized shear waves) and Rayleigh waves (vertical and longitudinal polarizations) in the Osaka Basin is shown in Fig. 3. We use structure at the OSKH02 site in the middle of the Osaka Basin as the site of interest and structure at the OSKH04 site just outside the Osaka Basin as the reference site [Fujiwara, 2009; JSHIS, 2017] to compute the 3 components of surface-wave site amplification. OSKH02 and OSKH04 are at azimuths of 243 and 242 degrees relative to the Tohoku earthquake epicenter, respectively, and separated by approximately 30 km. As shown, the peak Love-wave amplification is approximately 20 at periods of 6-8 s, with a broader range of periods (1.3-9 s) that also have significant amplification. The Rayleigh-wave amplification is also large, with both the vertical and horizontal components reaching amplification factors above 10 in the 1-10 s period range. For comparison, the ‘standard’ site amplification factor for the same pair of sites due to vertically propagating shear waves is also shown in Fig. 3, which has maximum amplifications of only 6. It is clear from this comparison that while the standard site amplification factor cannot explain the large ground motions shown in Fig. 2A that were amplified by a factor of 20, the Love-wave site amplification approximately explains both the amplitude and period of the observed ground motions, despite the simplicity of the calculation. While the roughness of the observed spectra, including the sharpness of the 6-8 s spectral peak, is not reproduced by the surface-wave predictions, which display a broader and smoother amplification spectrum, the simple predictions do a surprisingly good job at fitting a smoothed version of the observed spectra. (The observed roughness may be due to complexities in wave propagation that are not accounted for.) Moreover, the other components of motion (Fig. 1BC) are also approximately explained by the Rayleigh-wave site amplification terms, with observed spectral amplifications of nearly 20 on the other components (Fig. 2BC), and a higher frequency of maximum amplification on the vertical compared to horizontal component. It may also be noted that both the surface-wave and standard site amplification terms could be improved by using improved 1D velocity structures. For example, it is well known that the standard site amplification peak can be moved to a more realistic period of 6.5 s from the peak at 8 s with slight modifications to the velocity structure [Iwaki and Iwata, 2011; Asano et al., 2016].

While not the focus of this contribution, we note that the simple analytic theory described here for estimating surface-wave amplification also explains much of the long-period (3-15 s) amplification observed in other sedimentary basins (see Supporting Information), including amplification of the 2004 Chuetsu (Niigata) Earthquake in the Kanto Basin [Furumura and Hayakawa, 2007; Denolle et al., 2014] and amplification of the 2010 El Mayor-Cucapah Earthquake in the Los Angeles Basin [Bowden and Tsai, 2017]. Thus, while some of the observed amplification may be attributed to other effects, such as lateral scattering and complex basin reflections, a considerable fraction can be attributed directly to the 1D surface-wave effect described here. Finally, we note that higher-order mode contributions can also be calculated (see Supporting Information).

4 Conclusions

We have shown that a simple semi-analytical theory for surface-wave amplification adequately explains the extreme amplifications of a factor of 20 in the Osaka Basin, while standard measures of site-specific site amplification do not. As such, these 1D surface-wave site amplification factors are of clear use for earthquake hazards prediction, and the simplicity with which such factors can be computed allows them to potentially be included in site-specific GMPEs without needing to perform a full 3D seismic wave propagation simulation. Applications of such corrections to earthquake ground motion predictions in the Osaka Basin
and elsewhere are crucial particularly due to the possibility of future regional megathrust earthquakes that will have strong surface waves.

Acknowledgments, Samples, and Data

We thank T. Furumura and two anonymous reviewers for comments that helped improve the manuscript. The KiK-net data used in this study were obtained from the National Research Institute for Earth Science and Disaster Prevention (NIED) data centers, http://www.kyoshin.bosai.go.jp/kyoshin/. This work was partially supported by NSF EAR-1453263.

References

Kurahashi, S., and K. Irikura (2011), Source model for generating strong ground motions during the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63, 571-576.

Sato, T. (1990), Simulation of observed seismograms on sedimentary basin using theoretical seismograms in the period range from 2 to 20 sec – synthesis of seismograms at Kobe and Osaka stations for the 1961 Kita-Mino earthquake, JEES, 33, 193-198.

Whitham, G.B. (1999), Linear and nonlinear waves, John Wiley, Hoboken NJ.

Figure 1. Seismic records from the Tohoku-Oki earthquake, filtered between 0.143 and 0.167 Hz (6-7 s, i.e. in the frequency range of peak amplification), observed at OSKH04 (upper panels) and OSKH02 (lower panels) for the (a) transverse, (b) vertical and (c) radial components of motion. Ratios refer to the observed filtered peak amplitudes at OSKH02 divided by those at OSKH04. (d) Map of the Osaka Basin, showing stations OSKH02 and OSKH04.
Figure 2. Observed spectral amplification ratios for OSKH02 relative to reference site OSKH04 from the Tohoku-Oki earthquake for the (a) transverse, (b) radial, and (c) vertical components of motion recorded from the Tohoku-Oki earthquake.
Figure 3. (a) Predicted spectral amplification ratios for OSKH02 relative to reference site OSKH04 for the three fundamental-mode surface-wave components (Love in purple, horizontal-component Rayleigh in yellow, and vertical-component Rayleigh in red) as well as for the ‘standard’ vertically-propagating shear wave (in blue). (b) One-dimensional velocity profiles for OSKH02 (solid black) and OSKH04 (dashed red) used for the predictions shown in panel (a).