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ABSTRACT: Electrocatalytic CO2 reduction to generate multicarbon
products is of interest for applications in artificial photosynthetic
schemes. This is a particularly attractive goal for CO2 reduction by
copper electrodes, where a broad range of hydrocarbon products can be
generated but where selectivity for C−C coupled products relative to
CH4 and H2 remains an impediment. Herein we report a simple yet
highly selective catalytic system for CO2 reduction to C≥2 hydrocarbons
on a polycrystalline Cu electrode in bicarbonate aqueous solution that
uses N-substituted pyridinium additives. Selectivities of 70−80% for C2
and C3 products with a hydrocarbon ratio of C≥2/CH4 significantly greater than 100 have been observed with several additives.
13C-labeling studies verify CO2 to be the sole carbon source in the C≥2 hydrocarbons produced. Upon electroreduction, the N-
substituted pyridinium additives lead to film deposition on the Cu electrode, identified in one case as the reductive coupling
product of N-arylpyridinium. Product selectivity can also be tuned from C≥2 species to H2 (∼90%) while suppressing methane
with certain N-heterocyclic additives.

The electrochemical reduction of CO2 to commodity
chemicals or fuels driven by solar energy provides an

appealing strategy to utilize an inexpensive carbon feedstock to
close the anthropogenic carbon cycle via artificial photosyn-
thesis.1−5 The use of electrochemical systems comprising earth
abundant materials has certain advantages with respect to
scalability and ultimate implementation. Toward accessing
value added products and high energy density liquid fuels, the
generation of multicarbon products is highly desirable. Cu is
one of very few materials capable of converting CO2 to C≥2
products, including hydrocarbons, alcohols, and aldehydes, with
significant efficiencies.6−9 Importantly, Cu-catalyzed CO2

reduction can be performed in aqueous bicarbonate.
Typically, a distribution of products is obtained with a copper

electrode, with the highest Faradaic efficiency (FE) for C≥2
products being observed at ca. −1.1 V vs. RHE (VRHE) on
polycrystalline Cu.7 The nature of the Cu electrocatalyst has
been tuned to increase the selectivity for multicarbon products.
For example, it has been shown that single crystal electrodes
displaying Cu(100) facets promote C−C coupling and thus the
formation of products such as ethylene and ethanol.10−12

Stepped (100) surfaces, such as Cu(911) and Cu(711), are able
to convert CO2 into C≥2 products with efficiencies approaching
80%.10 The selectivity toward C≥2 products on less expensive
polycrystalline copper can be increased by several means,
including optimization of the process conditions such as the
buffer strength of the electrolyte and CO2 pressure,13,14

nanostructuring the electrode,15−22 and plasma activation.23 A
higher pH near the electrode surface and surfaces with
increased density of bound CO generated under these

conditions have been proposed to shift the selectivity from
C1 to C≥2 products.

13,14 The pH has also been shown to affect
the CO adsorption to the electrode and product selectiv-
ity.24−27 CO can be an intermediate of Cu-catalyzed CO2

reduction,6,28 and oxide derived Cu shows increased conversion
of CO to C≥2 products.

29

Organic additives, such as ionic liquids and pyridines, have
also been employed previously to affect product selectivity of
metal electrodes.30−33 The use of pyridines is particularly
notable in this context as they have been reported to facilitate
methanol generation, a six electron reduction product of CO2,
on Pd30 and Pt electrodes31 with FE ≈ 30%. Although the role
of pyridine in such processes has been debated, proposed
mechanisms have invoked mediation of electron and proton
transfers via either singly or multiply reduced and protonated
species, such as dihydropyridine (DHP).31,34−37 Redox
mediators that can transfer both protons and electrons are
appealing given the multiproton multielectron nature of CO2
reduction. Mediators with hydridic moieties or weak element−
H bonds (e.g., N−H or C−H) may be particularly suitable for
facilitating reactions of species generated in CO2 reduction.

38,39

Here, we report the ability of N-substituted arylpyridinium
additives to dramatically tune the selectivity of electrochemical
CO2 reduction on polycrystalline copper for C≥2 products.
Electrochemical reduction of CO2 was performed on a

polycrystalline copper electrode with CO2-saturated 0.1 M
KHCO3 electrolyte at pH 6.8 using a recently reported cell
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design with high catalyst surface area to electrolyte volume
ratio.40 Briefly, the cell design used in this study consists of a
cathode compartment and an anode compartment with a
volume of 2.0 mL each, separated by a Selemion AMV anion-
exchange membrane. CO2 gas sparged into the cell was
dispersed using a PEEK frit at the inlet of the cell. A copper foil
was used as a working electrode and platinum foil as a counter
electrode, both with a surface area of 1 cm2. Potentials were
measured versus a leakless Ag/AgCl electrode and converted to
the RHE scale. The gaseous products were analyzed by gas
chromatography coupled with FID and TCD detectors. The
performance of polycrystalline copper in this cell is similar to
what has been previously reported in terms of product
distribution at various potentials (Table S2, Figure S17).7,8,40

In our setup, ethylene and C≥2 products are observed at
potentials negative of −0.9 VRHE, with the peak FE for ethylene
(14%) at −1.14 VRHE, for ethanol (7%) at −1.06 VRHE, and for
methane (32%) at −1.18 VRHE. Although substantial yields of
C2 products are observed between −1.06 and −1.14 VRHE, they
remain minor, with dihydrogen evolution reaction (HER, FE ≈
40%) and methane production (FE = 20−30%) being the
major processes at these potentials (Table 1).
The effects of pyridine-based and other N-containing

heterocycle additives on the electrocatalytic CO2 reduction
with a Cu electrode were studied (see Figures 1 and 2 and
Table 1). The electrochemical properties of water-soluble N-
tolylpyridinium chloride (1) salt were studied by cyclic
voltammetry (CV) using a Cu disk electrode in a 0.1 M
KHCO3 electrolyte solution (see Figure S14).41 Under N2, a
reduction wave at ∼−0.6 VRHE appears in the first CV scan and
disappears completely after a few cycles. A white layer of
material was observed on the electrode after multiple CV scans.
Similar CV features and deposition behavior were observed
when performing the CV under CO2. However, higher currents
were observed in the presence of CO2, indicating that this
system promotes electrocatalytic reduction. To quantify the
products formed during CO2 reduction, chronoamperometry
was performed. Addition of water-soluble 1, at a concentration
of 10 mM, results in remarkable changes in the selectivity
profile (Table 1 and Figure 2). Ethylene (FE ≈ 40%) and
ethanol (FE ≈ 30%) become the major products at −1.1 VRHE

with combined FE of ∼70%. 1-Propanol is also obtained in
significant yield (FE ≈ 7%). Suppression of HER is observed at
potentials more positive than −1.1 VRHE, illustrated by a
decrease in FE to 15%. A sharp rise in hydrogen FE is observed
at more negative potentials. Notably, methane is a very minor
product (FE ≈ 1% or less) at potentials positive of −1.1 VRHE.
At more negative potentials, methane production rises to FE
between 5 and 10%, which is still significantly lower than in the
absence of 1. The combined FE of C≥2 products at −1.1 VRHE
is approximately 80%, to our knowledge unprecedented for
polycrystalline copper electrodes. The increased selectivity for
ethylene vs. methane at −1.1 VRHE remains stable over
prolonged electrolysis for up to 10 h (Figure S18).
An examination of the partial current densities of products

formed in the presence and the absence of 1 shows a decrease
in the partial density toward hydrogen and methane production
at −1.1 VRHE and more positive potentials (Figures S15). In
contrast, the partial current densities toward ethylene, ethanol,

Table 1. Faradaic Efficiency toward Different Products Produced during CO2 Reduction on a Polycrystalline Copper Electrode
in a CO2 Saturated 0.1 M KHCO3 Electrolyte with 10 mM 1−14 at an applied potential of −1.1 VRHE

a

Faradaic efficiencies (%)

compound CH4 C2H4 C2H5OH C3H7OH CO H2 HCOO− C≥2 total C2/CH4
b j (mA/cm2)

none 20.2 12.4 7.2 2.8 1.7 42.8 4.7 26.0 96.4 ≥0.7 −4.46
1 1.0 40.5 30.6 7.1 l.8 15.5 6.5 78.2 103.1 ≥36 −1.02
3 3.1 29.3 29.6 0 2.5 21.8 10.1 58.9 96.4 ≥15 −0.70
4 0.3 37.7 22.3 8.7 2.1 16.6 10.6 68.6 98.3 ≥130 −1.46
5 0.1 40.8 26.7 8.6 2.1 12.4 8.8 76.1 99.5 ≥450 −1.34
6 2.1 18.2 16.0 0 3.7 52.1 6.9 34.2 99.0 ≥9 −1.40
7 0.07 33.6 27.1 11.8 3.1 10.0 13.0 72.4 98.7 ≥830 −1.10
8 5.1 1.7 0 5.3 2.6 50.5 10.6 7.0 75.8 ≥0.5 −3.32
9 0.4 0.1 0 2.1 0.4 88.5 5.6 2.2 97.1 −6.28
10 0.04 0 0 0 0.2 65.9 9.5 0 75.6 −2.95
11 0 3.2 0 0 0.7 28.6 9.0 3.2 41.5 −0.97
12 4.2 4.0 0 0 0.3 61.6 5.5 4.0 79.6 −4.03
13 0.01 0.07 0 0 0.5 76.6 1.3 0.07 78.5 −6.44
14 0.2 0.01 0 0 0.3 91.3 5.3 0.01 97.1 −4.20

aAll values represent an average of at least two runs. See Supporting Information for raw data. bRatios shown are the lower of the independent values
measured.

Figure 1. Overview of the N-heterocyclic chloride salt additives
studied herein.
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and 1-propanol formation at these potentials are similar with
and without 1 in the electrolyte. This suggests that the addition

of 1 effectively suppresses the hydrogen evolution reaction and
the methanation reaction, while not affecting the formation
rates for C−C coupled products.
The effect of the concentration (1, 5, 10, 20 mM) of 1 on the

product distribution for CO2 reduction at −1.1 VRHE was
investigated (Table S6). With increasing concentration, the FE
for ethylene and ethanol increases steadily up to 10 mM. In
contrast, dihydrogen production decreases with increasing
concentration of 1. Most dramatically, methane FE decreases
from ∼20% in the absence of 1 to ∼1% at 10 and 20 mM 1.
The dependence of product distribution on the concentration
of 1 indicates that this additive plays a role in the overall
reduction chemistry. Given that the highest yield of C≥2 was
obtained with 10 mM 1, all other experiments were performed
at this concentration. In all cases, the deposition of a colorless
film on the electrode was observed.
Control experiments were performed to exclude the

possibility of the detected products being decomposition
products derived from 1. Electrolysis experiments using the
same copper electrode with 10 mM 1 in a 0.1 M K2HPO4/0.1
M KH2PO4 buffer (pH 6.8) and a N2 flow showed no carbon-
containing products, indicating that CO2 is required for
hydrocarbon production. To confirm that CO2/bicarbonate is
the source of carbon in the hydrocarbon products, isotopic
labeling experiments were performed. The electrolysis experi-
ments were carried out under the same conditions described
above, but using 13CO2 and KH13CO3(aq).

42 The GC-MS
analysis (Figure 3a) of the gaseous products obtained from 13C-
labeling experiments shows patterns diagnostic of 13C-ethylene
(H2

13C13CH2, m/z = 30). For comparison, the same analysis
performed on the bulk electrolysis with natural abundance CO2
displays 12C-ethylene (H2

12C12CH2, m/z = 28, identical to
that of the calibration standard). The formation of 13C-ethylene
is further verified by 1H NMR spectroscopy, which reveals a
doublet (1JC−H = 154 Hz) at 5.40 ppm (Figure 3b). The liquid
products obtained from the 13C-labeling experiments have also
been subjected to 1H and 13C NMR analyses. The 1H NMR
spectrum exhibits resonances of 13C2-ethanol,

13C3-1-propanol,
and 13C-formate as indicated by their characteristic 1H−13C
splitting patterns (Figure 3c), and their 1JC−H values are
consistent with that obtained from the carbon satellites in
natural abundant standards (Figure S24). For ethanol, <1% of

Figure 2. Faradaic efficiency toward products produced during CO2
reduction on a polycrystalline copper electrode in a CO2 saturated 0.1
M KHCO3 electrolyte with 10 mM N-tolylpyridinium chloride at
different applied potentials, E (VRHE).

Figure 3. (a) GC-MS analyses and (b) 1H NMR spectra (400 MHz, CDCl3) of ethylene, and (c) 1H NMR spectra (400 MHz, H2O:D2O = 9:1) of
(primarily) ethanol and propanol after bulk electrolysis at −1.1 VRHE with 1 (10 mM) and natural abundance (red) and 13C-enriched (blue) CO2-
saturated KHCO3 (0.1 M). Black: Calibration standard of natural abundance ethylene. Purple dot indicates a trace impurity of methanol (<10 μM).
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the 12C signal was observed, presumably due to the presence of
a trace (<1%) 12C impurity in the 13CO2 source.

43 Lastly, the
13C NMR spectrum (Figure S25) displays the expected peaks
for 13C2-ethanol and

13C3-1-propanol. Notably,
1JC−C splitting is

observed, indicating that the products are essentially fully 13C
labeled. Taken collectively, the 1H NMR, 13C NMR, and GC-
MS analyses performed with 13C-labeling conclusively confirm
that CO2 is the carbon source of the Cu-catalyzed electro-
catalysis described herein.
Although the exact nature of the species derived from 1

during electrocatalytic CO2 reduction remains unclear, the
nature of the N-heterocyclic organic compounds present at the
end of the electrolysis has been investigated for the case of the
N-tolylpyridinium chloride additive. After 1 h of electrolysis at
−1.1 VRHE,

1H NMR analysis shows that virtually all of
compound 1 (>98%) remains in solution. However, the
colorless deposit formed on the electrode is soluble in organic
solvents and, based on subsequent analysis, is shown to arise
from 1. Accordingly, upon rinsing the postelectrolysis electrode
with water and then quickly transferring it to an inert
atmosphere, the deposited film was extracted into CD2Cl2 for
NMR analysis. The 1H NMR spectrum shows the same number
of peaks as 1, but two of the peaks are shifted significantly
upfield (Figure S5). A species with the same NMR spectrum
was prepared independently by reduction of 1 with cobaltocene
in dichloromethane. A solid-state structure of this compound
(2) was determined by single crystal X-ray diffraction (XRD)
(Figure 4). The C−C distances within the nitrogen containing

ring are indicative of localization of single and double bond
character resulting from dearomatization. The structure
corresponds to two equivalents of 1 being reductively coupled
at the para position on the pyridine ring, a net one-electron
reduction per pyridinium. The mass of the deposited film
corresponds to only ∼1% of 1, accounting for a small amount
(∼0.6%) of reducing equivalents used in the electrolysis. A
related dimerization process has been discussed in a computa-

tional study of the effect of pyridine on CO2 reduction, but was
not in this case considered to be on the productive CO2
reduction pathway.34

To test whether this surface compound is indeed critical to
the CO2 reduction chemistry observed, after 1 h electrolysis
with 1, the solution was replaced by an electrolyte solution free
of 1 and electrolysis was then performed for another hour. A
similar product profile was observed for the second electrolysis
run, strongly suggesting that the film rather than soluble 1 is
required for the observed selectivity shift (Table S4).44 We
dropcast independently prepared 2 from either dichloro-
methane (4.2 mg of 2) or benzene (0.5 mg of 2) solutions
on the Cu electrodes but found that modified electrodes
prepared as such did not result in the selectivity profile
observed for electrodeposited 2. They instead afforded
predominantly H2 (>75%). Additionally, disruption of the
electrochemically deposited film, by manually removing it or by
dissolution with organic solvent followed by redeposition by
solvent evaporation, results in selectivity similar to polycrystal-
line Cu. These observations suggest that the film of 2 and
factors such as its morphology and the nature of the contact
between the Cu surface and the film as generated during
electrodeposition may be instrumental to increased production
of C≥2 species.
A structure−function study was performed by varying the

nature of the N-substituent of the pyridinium additives (Figure
1). With additives 1, 3, 4, and 5, which are N-arylpyridinium
compounds with substituents in the para position of the aryl
group of varying electronic properties, C≥2 products were
obtained with similarly high FE (>70%) while HER remained
low (FE 15%). Notably, 6 displays a tert-butyl substituent and
similar electronic properties to 1, but is more bulky, which may
change its capacity to adhere to the Cu electrode. It gives very
different results; 6 still enhances the selectivity of C≥2 over C1
products, but the efficiency toward hydrogen (FE ≈ 50%) is
significantly higher than with compounds 1, 3, 4, and 5,
indicating that the steric profile of the additives may be
important for selectivity. Compound 7, with a phenyl
substituent on the pyridine ring, is similar in catalytic behavior
to 1. The most remarkable observation for compounds 1, 3, 4,
5, and 7 is the increase in the C≥2/CH4 ratio from 0.7 with bare
Cu to >15 with 3, >36 with 1, >130 with 4, >450 with 5, and
>830 with 7. Cu with N-butylpyridinium (8) as an additive
shows significantly more HER (FE ≈ 50%) compared to N-
arylsubstituted pyridinium. The low overall Faradaic efficiency
(∼80%) observed for the alkyl substituted pyridinium suggests
that nonproductive side reactions occur during electrolysis,
possibly including degradation of N-butylpyridinium itself.
Inspired by previously reported changes in CO2 reduction

selectivity on Pd and Pt, H-substituted pyridinium was also
investigated as an additive to polycrystalline copper under
analogous conditions.30,31 Including pyridinium chloride (9) as
additive substantially enhanced the HER (FE > 88%). Other
mono- and dicationic pyridinium and imidazolium chloride
compounds, which could potentially deposit on the electrode as
neutral species upon reduction, were also tested (see Table 1).
However, all of these additives facilitate mostly HER activity
and low overall Faradaic yields. Runs with methylene blue (13)
result in coloration of the solution, indicating that reduction of
heterocycle-derived species that are not precipitated on the
electrode occurs, lowering the FE for productive reduction
chemistry. 1-(4-Pyridyl)pyridinium (10) behaves more like H-
substituted pyridinium rather than the phenyl-substituted

Figure 4. Synthesis, crystal structure, and selected structural
parameters (Å) of 2. Thermal ellipsoids are shown at the 50%
probability level.
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pyridinium derivatives, which could be due to a similar binding
effect of the pyridine to the Cu active sites. Although 1,1′-
diphenyl-4,4′-bipyridinium (12) exhibits a structure related to 2
by the addition of two hydride equivalents, only small amounts
of hydrocarbon products were observed when it was used as the
additive. This compound (12) formed a black precipitate on
the Cu electrode after electrolysis, which is in contrast with the
white films deposited for the case of compounds 1−7,
suggesting the possibility of a different reaction pathway. The
high yield for HER, reaching FE of ∼90% with pyridinium (9)
and imidazolium (14), and almost quantitative total FE,
demonstrate that organic additives can be used to tune the
selectivity of electrocatalysis on Cu electrodes for different
products from C≥2 hydrocarbons to H2.
The mechanism of tuning selectivity with organic additives

remains unclear. Materials displaying pyridine-like N-sites
reminiscent of the simple pyridinium motifs reported here
have been employed for CO2 reduction. For example,
electrocatalysts based on N-doped carbon materials have
shown good FE toward CO production at low over-
potentials,45−47 and N-doped graphene quantum dots have
been reported to produce hydrocarbon products, mostly
ethylene, ethanol, and n-propanol.48 With Cu nanoparticles
on an N-doped carbon nanospike film, highly selective
production of ethanol (FE = 63%) was observed at 1.2
VRHE.

49 The weak C−H bonds present in species like 2 may be
involved in H-transfers to surface bound intermediates of CO2
reduction.34,37,39 To test this possibility, 1-d5 was prepared
featuring a perdeuterated pyridine moiety. Electrocatalytic CO2
reduction experiments performed with 1-d5 as the additive in
natural abundance buffer resulted in similar behavior as with 1.
1H NMR analysis of the resulting film (Figure S6) is consistent
with formation of species 2-d10, without H/D exchange. This
observation suggests that the C−D(H) bonds in 2-d10 (and 2)
are not cleaved and regenerated during electrocatalysis. We
cannot strictly exclude the possibility that such processes do
occur, to a very limited extent and below the detection limit of
1H NMR spectroscopy, on the layers of film proximal to the
electrode.
Alternatively, the film of 2 could selectively suppress

hydrogen and methane formation. Analysis of partial current
densities for each product shows that addition of 1 does not
affect the C−C coupled products, but lowers the rates of
formation of methane and hydrogen, consistent with this
proposal. This could indicate that the film selectively poisons
Cu sites that catalyze C1 or H2 product formation. Alternatively,
the electrodeposited film might restrict proton diffusion,
thereby increasing the local pH near the electrode surface. A
related effect has been demonstrated for mesostructured Ag
and Au catalysts.25,26 Pyridinium compounds with N-aryl
substituents that are relatively flat show the highest increase
in C≥2 selectivity, while tert-butyl substitution leads to increased
H2 production. This behavior suggests that differences in
binding to specific Cu sites, in packing of the film affected by
the steric profile of the pyridinium moiety, or in electrode
roughness factors may significantly affect overall selectivity.
In summary, a simple, inexpensive, and tunable system for

the reduction of CO2 to multicarbon products with high
selectivity has been reported herein. Upon reduction on
polycrystalline Cu electrodes, N-tolylpyridinium chloride
forms a deposited film consisting of its bimolecular reductive
coupling product. This electrode electrocatalytically reduces
CO2 to C≥2 species with higher than 75% FE. Formation of

methane and hydrogen is significantly inhibited for this and
several related N-arylpyridinium additives, with the ratio of FE
for C≥2 species to CH4 being >800 for certain additives. An
aryl-substituted imidazolium additive is shown to dramatically
shift the product selectivity to H2. More generally, the
combination of a metal electrode and a reducible organic
additive with potential to precipitate and form a film allows for
tuning of selectivity between hydrocarbons and hydrogen.
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