Comparison of the Beta Spectra of $^{12}\text{B}^*$ and $^{12}\text{N}^*$†

T. Mayer-Kuckuk* and F. C. Michel

California Institute of Technology, Pasadena, California

(Received March 12, 1962)

The observed near-equality of the vector beta-decay coupling constant given by the decay of $^{12}\text{O}^*$ and the muon-decay coupling constant led Feynman and Gell-Mann" to postulate the conservation of the vector part of the beta-decay current. Gell-Mann" pointed out that, as a consequence of this conserved-vector-current (CVC) theory, an appreciable and calculable term is added to the beta-decay interaction. The appearance of this term is analogous to the situation in electromagnetism where, in order to describe the interaction, it is necessary to add to the Dirac Hamiltonian a term representing the additional interaction with the anomalous magnetic moments. As a test of this prediction, Gell-Mann" suggested a comparison of the beta-decay spectra of $^{12}\text{B}^*$ and $^{12}\text{N}^*$.

Some considerable support for the hypothesis of a conserved vector current has already appeared in experiments on beta decay. In the decay $^{14}\text{N}^*(\beta^-)\text{Ne}^{19}(\gamma)\text{Ne}^{20}$, Boehm, Soergel, and Stech" found a beta-gamma angular correlation with sign and magnitude consistent with estimates from the CVC theory. A more quantitative test is provided by the beta-alpha correlation in the mirror decay $^{13}\text{Li}^*(\beta^-)\text{Be}^{8}(\alpha)\text{He}^4$ and $^{13}\text{Be}^*(\beta^-)\text{Be}^{8}(\alpha)\text{He}^4$ reported by Nordberg, Morinigo, and Barnes, where agreement was found within limits imposed by a shell-model calculation of the relevant $M1$ matrix element. Precision measurements of the $^{14}\text{O}^*$ decay energy and half-life" have established that the beta-decay and muon-decay coupling constants differ by only about 1.8%, with an uncertainty which depends largely on theoretical corrections. The present report concerns a direct comparison between the spectra of $^{12}\text{B}^*$ and $^{12}\text{N}^*$.

† Supported in part by the Joint Program of the Office of Naval Research and the U. S. Atomic Energy Commission.

* Now at the Max Planck Institut für Kernphysik, Heidelberg, Germany.

FIG. 1. Energy-level diagram of the triad $^{12}\text{B}^*$, $^{12}\text{C}^*$, and $^{12}\text{N}^*$. Only the transitions and levels of importance for this paper are indicated. The notation is standard.

545
to an energy dependence of the transition-matrix element of the form

$$|M|^2 = \text{const} (1 \pm \frac{1}{2} AE)$$

where E is the beta-particle energy and $\frac{1}{2} A$ is proportional to the interference term between the second-forbidden vector and allowed axial vector-matrix elements. The plus sign applies to electron decay and the minus sign to positron decay. The interference term between the allowed and second-forbidden axial vector-matrix elements is insensitive to E and does not differ in sign between electron and positron decay. The ratio of the transition-matrix elements of the B^{32} decay to the N^{32} decay then becomes, to first order in E,

$$|M(B^{32})|^2 / |M(N^{32})|^2 = \text{const} (1 + AE).$$

The quantity A is analogous to the magnetic dipole transition-matrix element in electromagnetism. In the CV theory, this analogy becomes exact, and A is given by a combination of known constants times the transition value of the magnetic moment operator \mathbf{u}. From electromagnetism we have, aside from a constant factor,

$$\mathbf{u} = \left[(1+\mu^s) + (1+\mu^v) r_x \mathbf{r} + [1+r_z] \mathbf{r} \right],$$

where $\mu^s = -0.12$ and $\mu^v = 3.70$ are the isotropic scalar and vector nucleon anomalous magnetic moments in isotropic spin formalism. For a $\Delta T = 1$ transition, only the isotropic vector terms contribute, and we need only

$$\mathbf{u} = (1+\mu^v) r_x \mathbf{r} + 1 r_z.$$

In the Fermi theory the same relation holds between A and \mathbf{u} except that μ^s (beta decay) will necessarily have the same value as μ^v (electromagnetic). If the pion current contribution to the electromagnetic interaction of the nucleon were omitted, then μ^s (electromagnetic) would essentially vanish. Gell-Mann gives, analogously, μ^s (beta decay) $= 0$ as a reasonable guess for the Fermi theory. A dispersion theoretical treatment by Goldberger and Treiman verifies this in estimating $\mu^v(F) \approx (1/15) \mu^v$ (CVC). We then have

$$A(CVC) = K [\langle |4.70\mathbf{r} + I \mathbf{r}|^2 \rangle]$$

$$A(F) \approx K [\langle |1.25\mathbf{r} + I \mathbf{r}|^2 \rangle],$$

If $\langle |\mathbf{r}|^2 \rangle / \langle |\mathbf{r}^2| \rangle$ is large, then measuring A is not a sensitive test; however an intermediate coupling analysis of the transition under consideration indicates that this ratio is small (less than 0.1).

The value of 4.70 is appropriate for a free nucleon; thus to improve the estimate of A, the transition-matrix element $\langle |\mathbf{r}|^2 \rangle$ is determined from the gamma-decay width of the 15.11-MeV state of C^{32}, the $T_2 = 0$ analog of the ground states of B^{32} and N^{32}. The value of A is then computed to be

$$A(CVC) = (1.33 \pm 0.15) \% \text{ per MeV},$$

$$A(F) \approx 0.35 \% \text{ per MeV}.$$

The uncertainty in A comes mainly from the uncertainty in the C^{12} gamma-decay (15.11 MeV) rate, where the experimental value $\Gamma_\gamma = 53 \pm 11$ eV, derived from the work of Hayward and Fuller has been used. Taking into account the more recent determinations of Garwin (11.9± 9.7 eV), Barber et al. (11.9± 0.7 eV), and Hanna and Segel (11.9$ \pm 5.5$ eV) yields a weighted average value $\Gamma_\gamma = 50 \pm 4$ eV and $A = 1.29 \pm 0.07$ per MeV. Taking into account the 20% larger fit value of N^{32} increases this by 5% to 1.35± 0.07. No attempt has been made to assess the uncertainty in the value of A estimated from the Fermi theory.

In deriving the ratio of matrix elements from the observed spectra, it is necessary to make corrections for components arising from transitions to excited states of C^{32}, and, in addition, corrections for inner bremsstrahlung and other electromagnetic effects. The last have been computed by Gell-Mann and Berman who give an expression of the form

$$S(E,B^{32})/S(E,N^{32}) = \text{const} [1 + (A + B) \times f(E)],$$

where $S(E)$ is the experimental spectrum, corrected for branching to excited states of C^{32}, and divided by the appropriate Fermi spectrum. The electromagnetic corrections are represented by B, estimated to be -0.25 ± 0.15% per MeV, while the quantity $f(E)$ represents the ratio, $f(E,B^{32})/f(E,N^{32})$, of the inner bremsstrahlung corrections to the spectra of B^{32} and N^{32}. With this correction assumed calculable in the range needed, the experiment determines $(A + B)$, which is to be compared with the predicted values,

$$A + B = (1.10 \pm 0.17) \% \text{ per MeV (CVC)}$$

$$\approx 0.10 \% \text{ per MeV (F)}.$$

II. APPARATUS

The beta spectra of B^{32} and N^{32} were analyzed with an iron-free single-lens magnetic spectrometer directly connected to a 3-MeV van de Graaff accelerator. The B^{32} was produced in the reaction $B^{11}(d,p)B^{32}$ and N^{32} was produced in the reaction $B^{10}(He^3,p)N^{32}$. The targets were located at the object point of the spectrometer. The deuteron or He^3 beam was periodically interrupted at a frequency of 60 cps and the beta particles counted in an anthracene scintillator after suitable delay. The references:

- W. C. Barber, F. Berthold, G. Frick, and F. E. Gudeman, Phys. Rev. 120, 2081 (1960).
production rate of the activity was monitored by the reaction protons from \({^7B}(d,p){^8B} \) for \({^{13}B} \) and \({^{13}B}(He,p){^{16}C} \) for \({^{12}N} \). A silicon \(p-n \) junction counter served as a proton detector.

Spectrometer

The spectrometer used here is essentially that described by Horney et al.,\(^{19}\) except that the baffle system was modified for the high beta-particle energies involved. This arrangement is illustrated in Fig. 2. As can be seen in this figure, the baffles on the counter end of spectrometer were all faced with lucite. The lucite was coated with a conducting layer of carbon to inhibit static charging. To further reduce scattering, the walls of the spectrometer were lined with narrow brass rings to serve as traps for forward-scattered electrons. Similarly, the central brass absorber was machined to have the saw-toothed cross section shown in the figure. The ring focus slits were of aluminum, so shaped as to permit the minimum possible transmission of particles outside the selected momentum range. The spectrometer was aligned using a special baffle and counter arrangement to define the electron trajectories.\(^{19}\) The best source and counter position could be determined to within 0.3 mm. The final experimental arrangement was quite insensitive to such small displacements. With a calibrated \(Bi^{207} \) source, the transmission was experimentally determined to be 0.85\% and the resolution to be 1.5\%. Energy calibration was accomplished using the conversion lines of \(Cs^{137} \), \(Bi^{207} \), and thorium deposit. The least-squares fit to these points gave an uncertainty of \(4 \times 10^{-4} \) in the magnetic rigidity \(B_{\rho} \) for a given current setting. The earth’s magnetic field was reduced to less than 1/10 of its ambient value in each axis of the spectrometer by using three orthogonal sets of compensating coils.

Beta Detector

The beta-particle detector consisted of a 10-mm thick, 38-mm diameter anthracene crystal mounted on a 90-cm long lucite light pipe leading to an RCA 6292 photomultiplier tube. The tube was shielded from the stray magnetic field of the spectrometer by three mu-metal layers wrapped directly on the photomultiplier tube and two concentric cylinders of soft iron. An 0.5 mg/cm\(^2\) aluminum window covered the crystal. The effect of the magnetic field on the photomultiplier was checked using a \(P_{\gamma}^{208} \) source and a thin CsI crystal. The line shift was less than one percent in energy between zero and the maximum field used in this experiment. No change in shape or area of the pulse-height distribution was observed.

The pulse-height distributions recorded on a 100-channel analyzer for two ranges of beta-particle energies are displayed in Figs. 3 and 4. It may be observed in Fig. 4 that the high-energy electrons give nearly identical pulse-height distributions for energies above 5 MeV. The “double-peaked” distributions at the lower energies are discussed by Porter et al.\(^{20}\) The lower energy peak is ascribed to electrons that pass through the crystal, while the second peak represents electrons that are scattered through large angles within the crystal and hence stop in the crystal. Below 2.3 MeV, the energy of electrons having a range equal to the crystal thickness, all of the electrons stop in the crystal and hence the two peaks merge into a single peak. At very high energies it is un-

\(^{19}\) W. F. Horney, T. Lauritsen, and V. K. Rasmussen, Phys. Rev. 76, 731 (1949).

Fig. 3. Pulse-height distributions in the anthracene crystal for low-energy beta particles from \(B^{13} \).
likely that an electron will stop in the crystal and one again observes only a single peak.

The pulse-height distributions were continuously monitored during the actual runs, and the total count was recorder by a scaler which counted all pulses above a given channel. Figures 5 and 6 are experimental pulse-height distributions of 8-MeV beta particles from B10 and N12 including background. The background was separately determined from measurements at zero field and high (> E_{max}) field. To estimate the number of real counts below channel 21 in Fig. 5 we assume, from the near constancy of the difference between the background and 8-MeV counts, that this number is reasonably given by the number of real counts in channels 10 to 30. We then find that about 0.6% of the true counts fall below the discriminator level at 8 MeV. The same number is obtained from the observed distribution of 5- and 10.5-MeV B10 electrons. Since this quantity does not appear to be energy dependent, no correction is necessary for these counts.

The approximately uniform intensity of small pulses over a large channel spread, as seen in Fig. 5, is significant for another reason. The channel in which a pulse appears is, for high-energy electrons, directly proportional to the path length of the electron in the crystal. The only part of the pulse-height spectrum inaccessible corresponds then to the very short path lengths. Any backscattered electrons not seen in the tail must either lose enough energy to produce a pulse larger than the tail pulses and thereby be counted, or be scattered within a very shallow depth of the crystal. Only the latter can be lost and need to be examined in more detail. If the intensity in channel 10 is assumed to consist entirely of such backscattered electrons, then an upper limit to the total backscattered intensity lost may be calculated from the data to be approximately 0.90% at 5 MeV and 0.96% at 11.5 MeV.

The possibility of using a scintillator thick enough to stop all electrons was also examined experimentally, but rejected on the ground that the increased volume led to greatly increased sensitivity to room background, due largely to x-rays from the accelerator, and stray neutrons originating in the target.

Proton Detector

The reaction protons from the target were monitored as a measure of the number of active nuclei produced. Since the gating cycle is fixed and the beam pulse fluctuations average out, the total number of protons divided by the total duration of the run (clock time) is then directly proportional to the average activity. A silicon p-n junction counter was used to detect the protons. This counter was located inside the spectrometer near the target as shown in Fig. 2. For the B10-reaction monitor the protons from B$^{10}(d,p)$B11 leading to the ground state ($Q=9.2$ MeV) were detected after absorbing the lower energy protons in 118 mg/cm2 of aluminum. For the N13-reaction monitor, the protons from

COMPARISON OF β SPECTRA OF B^{11} AND N^{12}

![Diagram of beta-spectra](image)

B10(He,β)C12 leading mainly to the first-excited state ($Q=15.3$ MeV) were detected after passing through 344 mg/cm2 of aluminum. The pulse-height distributions were monitored on a multichannel analyzer. A typical B10-proton spectrum is shown in Fig. 7. No field dependence of the proton spectra could be detected (less than one percent in energy). The solid angle subtended by the proton counter amounted to 0.7% of the sphere.

Circuitry

Figure 8 shows a block diagram of the detection system. The beam is on for 8.3 msec and off for 8.3 msec; the "beam-off" signal triggers the gate generator, which, after a delay of 1 msec, turns on the beta-particle scaler for 5.25 msec. The total counting time is monitored by simultaneously counting the oscillations from a 20-kc/sec quartz oscillator. The pulse-height distributions from the beta-particle and proton detectors were monitored and recorded on multichannel analyzers. The "coincidence" scaler checks the operation of the gate generator by recording a count if the beam and beta-particle scaler are on simultaneously. This and the total number of gate pulses were monitored as a check. All the scalers were simultaneously turned on and off by an external timer unit not shown in the figure.

Targets

The targets consisted of approximately 0.3 mg/cm2 of boron on foils of thickness 0.5 mg/cm2 and 3 mg/cm2 for B^{12} and N^{12}, respectively.22 The boron was deposited on the foils by heating them in a low-pressure atmosphere (less than 15-mm Hg) of diborane gas.23 This heating was accomplished by focusing the image of an arc light on the foil which was mounted in a frame of 1.5-mil aluminum. For the B^{12} the foils were 5000 Å nickel, and for the N^{12} they were 500 Å nickel on copper backing. This copper backing enabled the target to withstand the strong He3 beam in the N^{12} experiment, while the boron deposit adhered better to the nickel. Natural boron (19% B^{10}; 81% B^{11}) targets were used for the B^{12} and enriched boron (96% B^{10}; 4% B^{11}) for the N^{12}.

Bombarding Conditions

The beam from the electrostatic accelerator was magnetically analyzed and brought into the spectrometer to give a beam spot 2-mm square. The size and position of the beam spot were insensitive to changes in the spectrometer field, and it was not necessary to reposition the beam spot for each beta-particle energy. 1.65-MeV deuterons at 0.2 μA were used for the B^{12} and 2.75-MeV He3 ions at 2–3 μA for the N^{12}. The beam was chopped at the ion source by periodically turning off the rf voltage. The possibility of an HD$^+$ contamination of the beam, which could produce a B12 activity in the N^{12} experiment, was examined by bombarding a natural boron target with a 1.00-MeV He3 beam. From this experiment it was concluded that less than 8×10^{-4} electrons were produced per positron at the 2.75-MeV bombarding energy on the enriched target.

III. EXPERIMENTAL PROCEDURE AND RESULTS

The spectra were sampled at 0.5-MeV intervals in the range 5–15 MeV for B^{12} and 2.5–18 MeV for N^{12}, the data being collected at alternating high- and low-energy points to minimize effects of target deterioration and instrumental drifts. Each data point consisted of

21 The B10 spectrum was also taken using the thicker 3-mg/cm2 backing. No influence on the shape factor was found for the energies considered in this paper.

subtracting the neutron and general background, about 1.7% remained of the 4.2% N12 background. This remaining N13 background, about 1.6% at zero field and 1.8% at high field, has a magnitude and variation comparable with the residual B13 background which tends to confirm scattering and/or bremsstrahlung as a common background source. In the B12 experiment, the variation of the background was studied up to 5 MeV beyond the B12 end point and showed little dependence upon the field.

In the spectrum studies, particular attention was given to the regions 5 to 10.5 MeV for B13 and 5 to 13 MeV for N12. The lower limit of 5 MeV was dictated by uncertainties introduced by branching to excited states of C12—indicated by arrows on Fig. 9—and the upper limits were held well below the spectrum end points to minimize the effect of uncertainties in calibration and background subtraction. The data for the relevant ranges are exhibited in Table I, in terms of counts per unit momentum interval, corrected for background, as a function of magnetic rigidity. The indicated standard deviations represent combined uncertainties from statistics and background subtraction.

Table I. Momentum spectra of B13 and N12. Correction for background has been made. Second number indicates combined uncertainty due to background and statistics. The electron momentum is symbolized by η.

<table>
<thead>
<tr>
<th>R_p(kg-cm)</th>
<th>$N(\eta,B^{13})$</th>
<th>S.D.</th>
<th>$N(\eta,N^{12})$</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.898</td>
<td>3649</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.587</td>
<td>3903</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.270</td>
<td>4631</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.950</td>
<td>4980</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.028</td>
<td>5748</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.302</td>
<td>2898</td>
<td>23</td>
<td>6119</td>
<td>30</td>
</tr>
<tr>
<td>19.976</td>
<td>3076</td>
<td>11</td>
<td>6657</td>
<td>31</td>
</tr>
<tr>
<td>21.650</td>
<td>3171</td>
<td>10</td>
<td>6998</td>
<td>33</td>
</tr>
<tr>
<td>23.323</td>
<td>3212</td>
<td>9</td>
<td>7212</td>
<td>33</td>
</tr>
<tr>
<td>24.994</td>
<td>3198</td>
<td>8</td>
<td>7466</td>
<td>35</td>
</tr>
<tr>
<td>26.665</td>
<td>3085</td>
<td>7</td>
<td>7503</td>
<td>35</td>
</tr>
<tr>
<td>28.336</td>
<td>2933</td>
<td>7</td>
<td>7477</td>
<td>36</td>
</tr>
<tr>
<td>30.023</td>
<td>2722</td>
<td>6</td>
<td>7369</td>
<td>36</td>
</tr>
<tr>
<td>31.676</td>
<td>2455</td>
<td>6</td>
<td>7215</td>
<td>28</td>
</tr>
<tr>
<td>33.346</td>
<td>2139</td>
<td>5</td>
<td>6912</td>
<td>25</td>
</tr>
<tr>
<td>35.017</td>
<td>1794</td>
<td>6</td>
<td>6443</td>
<td>29</td>
</tr>
<tr>
<td>36.687</td>
<td>1433</td>
<td>6</td>
<td>6006</td>
<td>25</td>
</tr>
<tr>
<td>38.355</td>
<td>1001</td>
<td>6</td>
<td>5634</td>
<td>25</td>
</tr>
<tr>
<td>40.025</td>
<td>721</td>
<td>6</td>
<td>5021</td>
<td>21</td>
</tr>
<tr>
<td>41.696</td>
<td>415</td>
<td>7</td>
<td>4390</td>
<td>19</td>
</tr>
<tr>
<td>43.363</td>
<td>183</td>
<td>7</td>
<td>3711</td>
<td>16</td>
</tr>
<tr>
<td>45.033</td>
<td>38</td>
<td>5</td>
<td>2998</td>
<td>13</td>
</tr>
<tr>
<td>46.704</td>
<td>2413</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.373</td>
<td>1804</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.042</td>
<td>1158</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.711</td>
<td>678</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.380</td>
<td>200</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

The measured momentum distributions for B^{12} and N^{12} are tabulated in Table I; the Fermi plots of this data are exhibited in Fig. 10. The end points obtained from this experiment are, for B^{12}, 13.381±0.041 MeV and for N^{12}, 16.36±0.21 MeV, to be compared with values of 13.369±0.001 and 16.43±0.06 MeV, respectively, as determined from reaction data.

We first consider the analysis of the B^{12} data. The derivation of the shape factor requires correction for branching to excited states of C^{12}. The end points of these beta-decay branches are known from the level structure of C^{12} and are indicated by arrows in Figs. 9 and 10. The branching fractions to the 4.4 and 7.6-MeV levels have been measured to be 1.3±0.1 and 1.3±0.4%, respectively. Thus to construct S(E,B^{12}), we first subtract from the observed momentum spectrum the simple ideal Fermi spectra corresponding to these branches. No attempt is made to include possible spectral deviations in the branches themselves, as the error so introduced should be negligible. After this subtraction, the remaining spectrum is divided by the ideal Fermi spectrum corresponding to the ground-state transition to give S(E,B^{12}). Finally a correction for inner bremsstrahlung f(E,B^{12}), is applied to give the shape factor S/f, which is found, as shown in Fig. 11, to exhibit a linear energy dependence of 1.6±0.09% per MeV. The error (standard deviation) cited derives from the uncertainty in the least-squares fit a of straight line to the data.

For the N^{12} data, additional complications enter since only the branching fraction to the 4.4-MeV state of C^{12}, 2.4±0.2%, has been measured with precision. The branching fraction to the 7.6-MeV state can be estimated to be about 4.0±1.3% from the mirror branching fractions in B^{12} quoted above and the approximation of charge symmetry. The large uncertainties in this branching fraction, introduced by the uncertainty in the mirror branching fraction and by the deviation of the two branches from the charge

FIG. 11. Plots of the shape factors S(E,B^{12})/f(E,B^{12}) and S(E,N^{12})/f(E,N^{12}) normalized to unity at 8 MeV. Statistical errors and least-squares fits are shown. Branching end points are indicated by arrows. Slopes are 1.82% per MeV for B^{12} and 0.60% per MeV for N^{12}.

For the B^{12} data, an additional correction is made for the branching fraction to the 4.4-MeV state of C^{12}, 2.4±0.2%, which has been measured with precision. The branching fraction to the 7.6-MeV state can be estimated to be about 4.0±1.3% from the mirror branching fractions in B^{12} quoted above and the approximation of charge symmetry. The large uncertainties in this branching fraction, introduced by the uncertainty in the mirror branching fraction and by the deviation of the two branches from the charge symmetry.

FIG. 10. Fermi plots for B^{12} and N^{12}. The observed end-point energies, indicated in the figure, are in agreement with the values from reaction data of 13.36 MeV for B^{12} and 16.43 for N^{12}. The curvature of the N^{12} plot due to branching can easily be seen. In the B^{12} plot this effect is overcompensated by CVC-shape factors. Branching end points are indicated by arrows.

32. V. Soergel (private communication) reports, however, a larger value for the B^{12} branching ratio to the 7.6-MeV level of C^{12}.

33. J. F. Vedder, University of California Radiation Laboratory Report UCRL-8324, 1958 (unpublished), analyzed the Fermi plot of N^{12} into linear components using reaction data end points and reports a 3% branch to the 7.6-MeV level which is in agreement with our results, but no uncertainties are quoted. The branching ratio to the 4.4-MeV level is neither in agreement with other experiments (see reference 26) nor in agreement with that expected from the analogous B^{12} branching ratio.
Fig. 12. Fermi plots of the contribution from the 7.6-MeV branch in N₁² after subtraction of the ground-state transition, assuming the indicated shape factors, and the 4.4-MeV branch using the published branching ratio. The branching ratios indicated by these plots are 3.0 and 3.2% in that order. The end points are given by weighted least-squares fits. Error bars indicate the combined uncertainties of the 4.4-MeV branching ratio and the experimental data. The N₁²-end point has been taken to be 10.44 MeV in these examples, the end point for the transition to the 7.6-MeV state is then 8.78.

symmetry assumption, then give correspondingly large uncertainties in the form of $S(E,N₁²)$ below 8.5 MeV. For this reason the data has been analyzed to see if a better value for this branching fraction can be determined. This involves decomposing a complex beta-decay spectrum into the separate branches. In principle, the decomposition can be realized by constructing a best fit to the linear portion of the Fermi plot near the end point of the most energetic transition which is then subtracted from the data. This procedure is repeated until either the decomposition is complete or the remaining data after extraction of the n^{th} branch is no longer adequate due to the experimental uncertainties in the data compounded with the uncertainties introduced by each subtraction. For the N₁² spectrum, many of these uncertainties are avoided by using the branching fraction and end point of the 4.4-MeV branch which are known from independent experiments. Furthermore, the end point of the 7.6-MeV branch is also known from the reaction data, so the problem would actually be overdetermined were it not for the fact that the precise shape of the ground-state transition is not known. In fact, it is just this shape that is to be measured! Advantage of this overdeterminacy is taken by introducing a shape factor of the form $(1+aE)$ into the ground-state spectrum and demanding agreement between the reaction data end point of the 7.6-MeV branch and that found by the subtraction procedure indicated above. In this fashion the quantity a is found to be $0.6 \pm 0.3\%$ per MeV and the 7.6-MeV branching fraction is $3.0 \pm 0.4\%$ where the uncertainties are derived from the uncertainties in the various branching end points, in the 4.4-MeV branching fraction, and in the statistical scatter of the data itself. The Fermi plots for two assumed values of the quantity a are shown in Fig. 12. This value of 3.0% for the 7.6-MeV branching fraction, along with the other known branching data, is now used to determine $S(E,N₁²)/(f(E,N₁²)$ which is plotted in Fig. 11.

It is readily apparent that the shape factors shown in Fig. 11 differ appreciably from one another; the N₁² shape factor rises with a slope of $(0.60 \pm 0.08%)$ per MeV while the B₁² rises with a slope of $(1.82 \pm 0.09%)$ per MeV. Comparing the two slopes, one finds $(1.22 \pm 0.13%)$ per MeV for the experimental value of the factor $A + \delta A$. The uncertainties quoted above are from the statistical scatter of the data alone. Other uncertainties, including that introduced from the branching fraction estimated above, are discussed below. The effect of the uncertain 7.6-MeV branching fraction can be avoided, at the expense of precision, by using the N₁² data for positron energies greater than 8.0 MeV only. The least-squares fit to this limited portion of the shape factor, which is insensitive to the 7.6-MeV branch, yields an energy dependence of $(0.52 \pm 0.20%)$ per MeV and consequently a value of $(1.30 \pm 0.22%)$ per MeV for $A + \delta A$.

Errors and Corrections

The sensitivity of the spectrometer to source misalignment has been checked by deliberately placing a Bi⁰⁰⁷ source off axis and also by moving the beam spot 2 mm on the target. No significant effect was observed. Such a misalignment is over ten times what we would reasonably expect during the experiment.

If the upper limit of the HD impurity in the He³ beam were accepted as being present, then the $A + \delta A$ result would be decreased by 0.02% per MeV.

The uncertainty due to the residual component of the earth's magnetic field is completely negligible at these energies.

In the energy region studied, an error of a constant amount in the background subtraction will lead to a slight curvature of the shape factor but will not essentially change the least-squares fit to the slope. If the background correction is applied assuming that the background has a form $b + cE$ with b and c determined from the high and zero field backgrounds, instead of just averaging the two, then $A + \delta A$ is increased by 0.04% per MeV.

The 1.5-keV uncertainty in the actual end-point energy of the B₁² transition, given from the reaction data, has negligible influence on the B₁²-shape factor. On the other hand, the 60-keV uncertainty in the N₁² end point gives an uncertainty of 0.18% per MeV in the N₁²-shape factor. If only N₁² data above 8.0 MeV is used, then this uncertainty is increased to 0.27% per MeV. A 10-keV error in calibration at 13 MeV gives 0.04% per MeV for both B₁² and N₁², but these are in the same di-
rection and give almost no error in the value of \(A + 8A \)
which is given by the difference between the two shape
factors.

The uncertainty in the branching ratios of \(B^{12} \) and
\(N^{12} \) to the 4.4-MeV state of \(C^{12} \) is significant only for
the \(N^{12} \)-shape factor, where it introduces a 0.04% per
MeV uncertainty unless only data above 8.0 MeV is
used, whereby this uncertainty is reduced to 0.01% per
MeV. The 7.6-MeV branch is unimportant for the
\(B^{12} \)-shape factor in the energy range considered, but
strongly influences the \(N^{12} \)-shape factor. The uncer-
tainty in our result for this branching fraction in the
\(N^{12} \) decay, (3.0 ± 0.4)\%, introduces an uncertainty of
0.14% per MeV in the slope of the \(N^{12} \)-shape factor.

The beta-particle counting efficiency of the an-
thracene crystal may be energy dependent due to back-
scattering or, in the \(N^{12} \) experiment, annihilation in
flight of the decay positrons. In both cases, the beta
particle must be lost before sufficient energy has been
deposited in the crystal to produce a pulse that will pass
the discriminator level. In this experiment such back-
scattering loss is negligible but the annihilation loss
will be significantly greater for the low-energy positrons
than for the high-energy positrons and consequently
gives the \(N^{12} \)-shape factor a spurious slope of approxi-
mately (0.06 ± 0.02)% per MeV with the uncertainty
due to variations of the discriminator level among the
various \(N^{12} \) runs. If the beta particle loses a large fraction
of its energy via bremsstrahlung, and the brems-
strahlung quanta are not captured, then it will not be
counted. Computation indicates that only about 1 in
2\times 10^4 beta particles are so lost with the experi-
mental arrangement used. Experimentally, the small
number of small pulses in the pulse-height distribution testifies
to the unreliability of this effect. Annihilation of posi-
trons should also give a contribution to this small-pulse
region in the \(N^{12} \) experiment, but the statistical accuracy
of the data was not sufficient to verify the annihilation
correction experimentally.

Finally, we must consider the possibility that beta
particles reach the detector by penetrating through the
aperture baffle which defines the ring focus and the
baffle defining the acceptance solid angle. Such pen-
etration will effectively increase the accepted momentum
interval by a factor 1 + \(aE \) where \(a \) depends upon the
geometry and composition of the baffles. This quantity
is estimated\(^{10} \) to be 2.4\times 10^{-4} (MeV)\(^{-1} \) which gives a
spurious energy dependence of about 0.3% per MeV
for each of the two shape factors. In view of the mag-
nitude of this correction, the absolute shape factors
cannot be taken with any confidence. However, the positron
penetration is only about 5% greater than the electron
penetration so the quantity \(A + 8A \) is increased by only
0.02% per MeV.

The nonlinearity of this correction requires a re-
examination of several points, namely the comparison
of the \(B^{12} \)- and \(N^{12} \)-shape factors in slightly different
energy regions and the computation of the \(N^{12} \) branching
fraction to the 7.6-MeV state of \(C^{12} \). It is appropriate
here to point out that theoretical estimates\(^{21} \) of Coulomb,
finite nuclear size, and other higher-order corrections
predict a curvature of the shape factors of the same
magnitude as the slit penetration effect but opposite
sign. Taken together, the curvatures then essentially
cancel as is suggested experimentally by the \(B^{12} \) data.
If we suppose that either correction may have been in-
correctly estimated by a factor of two, then the existence
of these nonlinearities introduces an uncertainty of
(±0.3%) in the 7.6-MeV branching fraction and a net
uncertainty of ±0.16% per MeV in \(A + 8A \). If \(N^{12} \) data
above 8.0 MeV is used, the disparity in energy of the
data compared is increased but the 7.6-MeV branching
fraction has no influence, altogether giving an uncer-
tainty of ±0.12% per MeV. If we select only data in
the range 8.5 to 10.5 MeV, which is then free of both
uncertainties in the 7.6-MeV branching fraction and in
nonlinear effects (since we now can compare data at
the same energy and the curvatures then cancel in the
ratio) we obtain for \(A + 8A \) the value 1.30 ± 0.41.

Summary

The \(B^{12} \)-shape factor has an energy dependence of
(1.82 ± 0.09)% per MeV while the \(N^{12} \)-energy depen-
dence is (0.60 ± 0.08)% per MeV if the value of 3.0% is
used for the 7.6-MeV branching fraction, or
0.52 ± 0.20% per MeV if only \(N^{12} \) data insensitive to
this branch is used, giving (1.22 ± 0.13)% and
(1.30 ± 0.23)% per MeV, respectively, for \(A + 8A \). The
absolute values of the individual shape factors may suf-
fer from important systematic corrections, however
these corrections are not expected to appear signifi-
cantly

\(^{21} \) M. Morita, Phys. Rev. 113, 1584 (1959); and J. Bernstein

Table II. Errors (standard deviation).

<table>
<thead>
<tr>
<th>Source</th>
<th>Error in A + 8A (% per MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>0.13 (^a) \quad 0.22 (^b) \quad 0.41 (^c)</td>
</tr>
<tr>
<td>Calibration</td>
<td>0.00</td>
</tr>
<tr>
<td>(B^{12}) end-point energy</td>
<td>0.00</td>
</tr>
<tr>
<td>(N^{12}) end-point energy</td>
<td>0.15 (^a) \quad 0.27 (^b) \quad 0.22 (^c)</td>
</tr>
<tr>
<td>4.4-MeV branching of (B^{12}) decay</td>
<td>0.00</td>
</tr>
<tr>
<td>4.4-MeV branching of (N^{12}) decay</td>
<td>0.04 (^a) \quad 0.01 (^b) \quad 0.02 (^c)</td>
</tr>
<tr>
<td>7.6-MeV branching of (B^{12}) decay</td>
<td>0.00</td>
</tr>
<tr>
<td>7.6-MeV branching of (N^{12}) decay</td>
<td>0.14 (^a) \quad 0.00 (^b) \quad 0.00 (^c)</td>
</tr>
<tr>
<td>Background correction</td>
<td>0.04</td>
</tr>
<tr>
<td>HD(^+) contamination of He(^+) beam</td>
<td>0.02</td>
</tr>
<tr>
<td>Backscattering</td>
<td>0.00</td>
</tr>
<tr>
<td>Annihilation</td>
<td>(N^{12})</td>
</tr>
<tr>
<td>Nonlinear corrections</td>
<td>0.16 (^a) \quad 0.12 (^b) \quad 0.00 (^c)</td>
</tr>
<tr>
<td>Net Error</td>
<td>0.31 (^a) \quad 0.37 (^b) \quad 0.47 (^c)</td>
</tr>
<tr>
<td>Value of A + 8A</td>
<td>1.30 \quad 1.38 \quad 1.38</td>
</tr>
</tbody>
</table>

\(^a\) Error if (3.0 ± 0.4)% used for the 7.6-MeV \(N^{12} \) branching fraction.
\(^b\) Error if \(N^{12} \) data below 8.5 MeV discounted.
\(^c\) Error if \(B^{12} \) and \(N^{12} \) data compared in energy region 8.5—10.5 MeV.
in the ratio and consequently have small effect on the quantity $A + \delta A$. A value of $(1.30 \pm 0.41)\%$ per MeV for $A + \delta A$ results if the analysis is further restricted to data in the energy region 8.5 to 10.5 MeV. The uncertainties are only the statistical standard deviations, and therefore we must include the known systematic errors and corrections discussed in the preceding section and listed in Table II. This finally yields for $A + \delta A$ the experimental values $(1.30 \pm 0.31)\%$, $(1.38 \pm 0.37)\%$, and $(1.38 \pm 0.47)\%$ per MeV. These values are all in agreement with the CVC theory prediction of $1.10 \pm 0.17\%$ per MeV and not in agreement with the Fermi theory estimate of about 0.10% per MeV.

Since the first value has the smallest error and represents the most extensive use of the available data, we select $(1.30 \pm 0.31)\%$ as being the result of our experiment.

It is interesting to note that the relatively strong energy dependence of the B^{el}-transition matrix element accounts for the failure of Hornyak and Lauritsen22 to observe a B^{el} branch to the 4.4-MeV state of C^{12}, and in fact gives a Fermi plot that is slightly concave downwards as can be seen in Fig. 10.

As remarked above, there is reason to doubt the absolute shape factors. In this respect it should be noted that the large average shape factor observed $(1.18\%$ per MeV) does not seem to be indicated21 theoretically.

ACKNOWLEDGMENTS

The authors are indebted to Professor T. Lauritsen, Professor C. A. Barnes, Professor W. A. Fowler, Professor H. A. Weidenmuller, Professor U. Hauser, and Professor F. Boehm for valuable discussions. Two earlier experiments in this laboratory22 by H. Hilton and V. Soergel, and H. Hilton and C. Van der Leun provided much of the groundwork which made the present experiment possible. One of us (Mayer-Kuckuk) would like to thank the Deutsches Bundesministerium für Atomkernenergie for financial support and the Kellogg Laboratory for its hospitality.

22 W. F. Hornyak and T. Lauritsen, Phys. Rev. 77, 160 (1950). For further analysis of their data, see N. W. Tanner, Phil. Mag. 1, 47 (1956).