Rheology and ultrasonic properties of Pt$_{57.5}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$ liquid

John S. Harmon, Marios D. Demetriou, and William L. Johnson
Keck Engineering Laboratories, California Institute of Technology, Pasadena, California 91125

(Received 14 February 2007; accepted 29 March 2007; published online 26 April 2007)

The equilibrium and nonequilibrium viscosity and isoconfigurational shear modulus of Pt$_{57.5}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$ supercooled liquid are evaluated using continuous–strain-rate compression experiments and ultrasonic measurements. By means of a thermodynamically-consistent cooperative shear model, variations in viscosity with both temperature and strain rate are uniquely correlated to the variations in isoconfigurational shear modulus, which leads to an accurate prediction of the liquid fragility and to a good description of the liquid strain-rate sensitivity.


The Pt–Ni–Cu–P bulk-glass forming system is known to form one of the toughest bulk metallic glasses to date, characterized by a fracture toughness value of \( \sim 80 \text{ MPa m}^{1/2} \). The inherent toughness of this system is shown to be a consequence of its tendency to undergo extensive shear-band networking prior to fracture. This tendency has been primarily attributed to its high Poisson’s ratio (\( \sim 0.42 \)), which designates that the material favors accommodation of stress by shear. Interestingly, Poisson’s ratios of metallic glasses were recently shown to be directly correlated to the rheology of their undercooled liquid state, and specifically to the liquid fragility. In a recent rheological study it is demonstrated that Pt-based liquid is indeed one of the most fragile metallic glass-forming liquids, which to some extent explains its inherently tough nature. In the present study we employ continuous–strain-rate compression experiments and acoustic measurements in conjunction with a recently developed cooperative shear model to assess the rheology and ultrasonic properties of Pt$_{57.5}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$ liquid under equilibrium and nonequilibrium conditions.

The rheology of the supercooled liquid was assessed using the continuous–strain-rate compression setup described in a previous study. The alloy ingot was prepared by first prealloying Pt (99.9 mass %), Ni (99.9 mass %), and Cu (99.99 mass %) by induction melting, and then alloying P (99.999 mass %) by stepwise furnace heating. The specimens were prepared by first fluxing the alloy with B$_2$O$_3$, and subsequently casting it into 4 mm diameter rods, whose amorphous nature was verified by thermal analysis. The rods were cut and polished to produce 4 mm tall cylindrical specimens.

The typical 2:1 geometric ratio was not adopted here, as the 1:1 ratio was found more appropriate for geometrically constraining the specimens against unusually excessive barreling (possibly related to a high Poisson’s ratio). The compression experiments were performed for an adequate duration to ensure that a steady-state flow stress had been attained. The strain-rate dependent viscosity measured in the temperature range of 473 to 523 K is presented in Fig. 1. The strain-rate dependence exhibits the typical trend observed in other glass forming systems: in the low strain rate limit, viscosity is stabilized at the Newtonian limit characterized by a strain-rate sensitivity exponent of 1.0; in the high strain rate limit, viscosity is stabilized at a non-Newtonian limit characterized by a strain-rate sensitivity exponent of \( \sim 0.1 \).

The isoconfigurational shear modulus at the high-frequency “solidlike” limit is evaluated using ultrasonic measurements along with the density measurements. Shear wave speeds were measured using the pulse-echo overlap setup described previously. Densities were measured by the Archimedes method, as given in the American Society for Testing and Materials Standard C693-93. Measurements were performed \textit{ex situ} on the amorphous specimens at room temperature, after being quenched rapidly from the processing temperature. The isoconfigurational shear moduli at the processing temperatures were then estimated by extrapolating the room temperature measurements using a linear Debye–Grüneisen constant to account for the thermal expansion effect on the shear modulus of the frozen glass. A measured linear Debye–Grüneisen coefficient of \( \sim 13 \text{ MPa/K} \) for Pt$_{57.5}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$ was utilized.

We measured the temperature-dependent equilibrium isoconfigurational shear modulus by performing ultrasonic measurements on relaxed undeformed specimens annealed at temperatures between 472 and 503 K. We also measured the strain-rate dependent nonequilibrium isoconfigurational shear modulus by performing continuous–strain-rate compression experiments on relaxed undeformed specimens annealed at temperatures between 472 and 503 K. We also measured the strain-rate dependent nonequilibrium isoconfigurational shear modulus by performing continuous–strain-rate compression experiments on relaxed undeformed specimens annealed at temperatures between 472 and 503 K.

\[ \frac{\text{Viscosity (Pa s)}}{\text{Strain Rate (s}^{-1})} \]

\[ \begin{array}{cc}
473 \text{ K} & \bigcirc \\
493 \text{ K} & \blacktriangleleft \\
498 \text{ K} & \blacktriangledown \\
503 \text{ K} & \blacktriangledown \\
513 \text{ K} & \blacktriangleleft \\
518 \text{ K} & \\
523 \text{ K} & \\
\end{array} \]

\[ \text{Strain Rate (s}^{-1}) \]

\[ \begin{array}{cc}
10^4 & \rangle \\
10^3 & \rangle \\
10^2 & \rangle \\
10^1 & \rangle \\
10^0 & \rangle \\
10^{-1} & \\
10^{-2} & \\
10^{-3} & \\
10^{-4} & \rangle \\
\end{array} \]

\[ \text{Viscosity (Pa s)} \]

FIG. 1. Viscosity of Pt$_{57.5}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$ at the indicated temperatures and strain rates assessed from continuous–strain-rate compression experiments. Lines are fit to the data using the kinetic balance formulation given in Eq. (4).
shear modulus by performing ultrasonic measurements on specimens deformed at 473 K and strain rates between \(1 \times 10^{-5}\) and \(3.4 \times 10^{-4}\) s\(^{-1}\). The thermal annealing process as well as the deformation process was performed for several Maxwellian relaxation times to ensure that a steady configurational state had been attained, while the succeeding quenching process was performed as rapidly as possible in order to freeze that configurational state. The results for the ultrasonically measured shear modulus corrected for the Debye-Grueneisen effect are presented in Fig. 2 for the equilibrium liquid annealed at the indicated temperatures, and in Fig. 3 for the nonequilibrium liquid deformed at the indicated rates.

In several recent studies,7–9 a thermodynamic link between the isoconfigurational shear modulus \(G\) and viscosity \(\eta\) has been proposed as follows:

\[
G = \frac{T}{T_g} \ln \left( \frac{\eta/\eta_e}{\eta/\eta_e} \right)^q
\]  

(1)

where \(T_g\) is the glass transition temperature, \(\eta_e = 10^{12}\) Pa s is the equilibrium viscosity at \(T_g\), \(G_e\) is the equilibrium shear modulus at \(T_g\), and \(\eta_e\) is the Born limit of viscosity. The exponent \(q\) is defined in previous studies as \(q = n/(n+p)\).8,9 where \(n\) and \(p\) are the reduced “elastic” and “cooperative volume” fragility indices, respectively, which quantify the contributions of isoconfigurational shear modulus and cooperative shear volume to the softening of the shear flow barrier. In a similar analysis for the Zr-based bulk-glass forming liquid6 it was determined that the best correlation between \(G\) and \(\eta\) is obtained when \(n = p\), i.e., \(q = 1/2\). In the present analysis we take \(q = 1/2\) to hold for the \(\text{Pt}_{57.5}\text{Ni}_{5.3}\text{Cu}_{14.7}\text{P}_{22.5}\) liquid as well. For this liquid we also take \(T_g = 489\) K (interpolated value at which \(\eta_e = 10^{12}\) Pa s), \(G_e = 30.5\) GPA (interpolated value at \(T_g\)), and \(\eta_e = 4.55 \times 10^{-5}\) Pa s (taken as the Planck’s limit of viscosity). We can therefore use Eq. (1) to correlate the liquid viscosity evaluated from the mechanical tests to the liquid shear modulus measured acoustically. In Fig. 2 we superimpose the equilibrium shear moduli predicted from Newtonian viscosity data, while in Fig. 3 we superimpose the nonequilibrium shear moduli predicted from non-Newtonian viscosity data. As evidenced from these plots, the liquid viscosity can be very well correlated to shear modulus via Eq. (1).

A proposed thermodynamic relation for the temperature dependence of the equilibrium isoconfigurational shear modulus \(G_e(T)\) can be utilized to fit the experimental data of Fig. 2 and determine the reduced elastic fragility index \(n\) for this liquid. This relation is given by:

\[
G_e(T) = G_e \exp \left[ n \left( 1 - T/T_g \right) \right].
\]

(2)

A fit to the equilibrium data of Fig. 2 yields \(n = 1.29\). Such a high value for the reduced elastic fragility places \(\text{Pt}_{57.5}\text{Ni}_{5.3}\text{Cu}_{14.7}\text{P}_{22.5}\) among the most fragile liquids investigated using this treatment.8,9 Specifically, the Angell fragility \(m\) can be estimated by relating \(m\) to \(n\) using \(m = (1+n/q)\log(\eta/\eta_e)^{4}\), which gives \(m = 59\), a value consistent with the fragilities reported previously for similar Pt-based liquids.

In the context of this analysis, Non-Newtonian flow has been treated as steady nonequilibrium flow governed by a balance between the rate of dissipated mechanical energy density and the rate of barrier crossing events.9 The barrier energy density \(W\) can be related to \(\eta\) and \(G\) as follows:

\[
W = kT \ln \left( \frac{\eta/\eta_e}{\eta/\eta_e} \right) = W_g \left( \frac{G}{G_e} \right)^{1/q}
\]

(3)

where \(W_g = kT_{g} \ln (\eta_e/\eta_g)\) is the equilibrium barrier energy density at \(T_g\). The kinetic balance equation governing non-Newtonian flow is:

\[
-\alpha \frac{n/q}{\Delta \xi_p} \dot{\gamma}^q = \frac{(W - W_g)(W/W_g)^{q} - \gamma G/\eta G}{\gamma G},
\]

(4)

where \(\dot{\gamma}\) is the strain rate, \(\Delta \xi_p\) is the specific heat capacity change at \(T_g\), \(W(T) = W_g \exp \left[ (n/q)(1 - T/T_g) \right]\) is the equilibrium barrier energy density, and \(\alpha\) is a model parameter. This parameter arises from treating the irreversible barrier crossing events as unimolecular Maxwellian relaxation processes, and in essence quantifies the deviation from that assumption.
For Pt\textsubscript{57.5}Ni\textsubscript{5.3}Cu\textsubscript{14.7}P\textsubscript{22.5}, the measured $\Delta c_p=2.56$ MJ/m\textsuperscript{3} can be employed. As shown in Figs. 1 and 3, Eq. (4) is capable of capturing nonequilibrium viscosity and shear modulus data reasonably well over the entire range of strain rates considered, for a parameter value of $\alpha=37$.

In conclusion, by means of continuous-strain-rate compression experiments and ultrasonic measurements we evaluated the equilibrium and nonequilibrium viscosity and isoconfigurational shear modulus of Pt\textsubscript{57.5}Ni\textsubscript{5.3}Cu\textsubscript{14.7}P\textsubscript{22.5} supercooled liquid. By utilizing a thermodynamically-consistent cooperative shear model we correlated the variations in viscosity with both temperature and strain rate to the variations in isoconfigurational shear modulus, which led to an accurate prediction of the liquid fragility and to a good description of the liquid strain-rate sensitivity.

The authors are grateful to G. Ravichandran for providing the loading apparatus, to M. L. Lind for providing the pulse-echo overlap setup, and to J. Schroers for his advice in making the alloy. This work was supported in part by the MRSEC Program of the National Science Foundation under award No. DMR0520565.