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Abstract—Distributed algorithms for averaging have attracted
interest in the control and sensing literature. However, previous
works have not addressed some practical concerns that will arise
in actual implementations on packet-switched communication net-
works such as the Internet. In this paper, we present several imple-
mentable algorithms that are robust to asynchronism and dynamic
topology changes. The algorithms are completely distributed and
do not require any global coordination. In addition, they can be
proven to converge under very general asynchronous timing as-
sumptions. Our results are verified by both simulation and experi-
ments on Planetlab, a real-world TCP/IP network. We also present
some extensions that are likely to be useful in applications.

Index Terms—Asynchronous computation, distributed aver-

aging.

1. INTRODUCTION

HIS PAPER focuses on a distributed iterative procedure

for calculating averages over an asynchronous communi-
cation network. This style of asynchronous computing has seen
a renewed interest in recent years as a consequence of new de-
velopments in low-cost wireless communication and local com-
putation. While asynchronous iterative computing is not new in
itself (see the classic references of Bertsekas and Tsitsiklis [1]
and Lynch [8]), some new twists arise when one attempts to im-
plement such schemes on unstructured, packet-switched, com-
munication networks.

Much recent research has focused on various distributed it-
erative algorithms. Distributed averaging, also known as the
distributed consensus problem, has been studied in the con-
text of vehicle formation control by Fax and Murray (e.g., [4],
[11]). Similar algorithms have been applied to sensor fusion by
Spanos, Olfati-Saber, and Murray ([14], [16]), as well as Xiao,
Boyd, and Lall [20]). Gossip algorithms are algorithms with
communication only between neighbors (which is also what
we mean by “distributed” in this paper). Previous works in the
Gossip algorithm context utilize probabilistic frameworks and
analyze global behavior (see the work of Boyd et al. [2], Kempe
et al. [6], [7], and references therein).

The “agreement algorithm” was proposed in the work of Tsit-
siklis [17] and [18], and it is concerned with letting a distributed
set of processors converge to some common value. It is worth
noticing that a related algorithm for load balancing is also dis-
cussed in [1].
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Averaging serves as a useful prototype for asynchronous it-
erative computations both because of its simplicity, and its ap-
plicability to a wide range of problems. On a sensor network,
one may be interested in the average of physical measurements
over the whole network. In problems that concern vehicle for-
mation, the quantities being averaged can be the coordinates of
the vehicles, and the average can represent the center of mass. A
network of servers may wish to collaboratively calculate the av-
erage process load, in order to implement some load balancing
scheme. A peer-to-peer file-sharing network on the Internet (e.g.
BitTorrent [3], Kazaa [S]) can compute other application-spe-
cific averages of interest.

In principle, one can choose to calculate averages by flooding
the whole network with all the values, or by using structured
message propagation over a known overlay network (e.g. a span-
ning tree). These are both natural methods for solving a dis-
tributed averaging problem, but the former has very large mes-
saging complexity, and the latter requires a structured overlay
network. Further, these require global exchange of information.
While it is not clear that this is necessarily a problem in the
applications we have discussed above, it seems likely that a
scheme involving only local exchange may be desirable.

In many scenarios an exact average is not required, and
one may be willing to trade precision for simplicity. The
scalability, robustness, and fault-tolerance associated with
iterative schemes can be superior in many situations where
exact averaging is not essential. These schemes also resolve the
global exchange problem, as they only require communication
of variables among local neighbors.

In this paper, we will present two iterative algorithms, and
show their convergence in a general asynchronous environment.
Our analysis is verified by simulation and experiments on a real-
world TCP/IP network. In combination, these results show that
the method proposed is both analytically understandable, and
practically implementable.

II. COMPARISON WITH OTHER WORK

Other authors have considered similar iterative mechanisms,
including the work of Xiao and Boyd [19] which examines the
possibility of link weight optimization for maximizing the con-
vergence rate of the algorithm. The issues of asynchronism have
also been studied. An asynchronous time model is analyzed
in Boyd et al. [2] which assumes that each node has a clock
ticking at the times of a Poisson process. In comparison, the
asynchronous model we will use in this paper does not assume
any stochastic properties. Also, we do not assume that neigh-
boring nodes can simultaneously exchange values, as is implicit
in Boyd et al. [2].
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The Push-Sum algorithm (discussed in Kempe et al. [6]) is
a Gossip algorithm that can be used to calculate sums and av-
erages on a network. In the synchronous settings of Push-Sum,
some probabilistic characterization of the convergence rate can
be obtained. The convergence rate of Push-Sum is shown in [6]
to depend on the logarithm of the size of the network. In com-
parison to Push-Sum, our algorithms do not assume a Gossip-
like randomized communication scheme. Instead, we propose
message passing mechanisms to enable communication among
nodes. Also, the convergence rate of our algorithms does not
in general depend on the size of the network, but only on the
algebraic connectivity of the network. These points will be ex-
plained in detail in the later sections.

III. BACKGROUND AND PROBLEM SETUP

Consider a network, modeled as a connected undirected graph
G = (V, E). We refer to the vertices (elements of V) as nodes,
and the edges (elements of F) as links. The nodes are labeled
i = 1,2,...,n, and a link between nodes ¢ and j is denoted
by ij.

Each node has some associated numerical value, say z;,
which we wish to average over the network. We will refer to the
vector z whose 7th component is z;. Each node on the network
also maintains a dynamic variable x;, initially set to the static
value z;. We call z; the state of the node i.

When we wish to show the time dependence, we will use the
notation x; (t). We use the notation x to denote the vector whose
components are the z; terms. Intuitively each node’s state x; (%)
is its current estimate of the average value y ., z;/n. The goal
of the averaging algorithms, is to let all states x;(t) go to the
average Y ., z;/n,ast — o0.

The work of Olfati-Saber and Murray [11] proposes the fol-
lowing discrete-time system as a mechanism for calculating av-
erages in a network:

x(t+1) = x(t) — yLx(t) (1)

where 7 is a stepsize parameter, and L is the Laplacian matrix
associated with the undirected graph G (see, e.g. [10].)
The Laplacian matrix L is defined as

d;, ifi=j
L;; = —1, if thereis alink between 7 and j
0, otherwise

where d; is the degree, or the number of neighbors node ¢ has.
The algorithm (1) can be viewed as an iterative gradient method
for solving the following optimization problem:

1

min ixTLx

x€ER™

s.t. Zl‘ = Zzi.
% i

Therefore, it is not hard to show that this algorithm drives all
states x; to the average, provided the stepsize -y satisfies

0<y<
’y 2dlnax

where dax is the maximum of all the node degrees d;.

t: REPLY message from node j to node i
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Fig. 1. Tllustration of the message-passing scheme.

These results implicitly assume synchronization. Real-world
networks constitute an inherently asynchronous environment
with dynamic network delays; synchronization is impractical
and undesirable. Another problem with the algorithm (1) is that
each node must use exactly the same stepsize. Moreover, the
allowable stepsize bound depends on global properties of the
network. This information is not available locally and therefore
global coordination must be involved.

In the following sections, we will present our algorithms
along with their message passing schemes and convergence
analysis.

IV. ALGORITHM Al

In this section we will introduce our first algorithm Al. At
each node : there is a local stepsize parameter v;, 0 < v; < 1
upon which the node’s computation is based. They do not need
to be coordinated.

The basic “unit” of communication in our scheme is a pair-
wise update between two nodes. We require two (distinguish-
able) types of messages, identified in a header. We refer to these
two types as state messages and reply messages. An update is
initiated whenever a node sends out a state message containing
the current value of its state.

An overview of the message-passing scheme (Fig. 1) that will
enable the pairwise update is as follows:

MP1: At some time, node ¢ initiates a state message
containing its current state value to some other node ;.
At some later time, node j receives this message.
Node 5 implements a local computation based on
the value it receives. It records the result of this
computation in a reply message, and sends this
message back to node .
At some later time, node i receives j’s reply, and
implements a local computation based on the content
of the reply message.

In addition to the message-passing scheme, in order to make
sure that communications between different pairs of nodes
will not interfere, we require that the nodes implement blocking.

MP2:

MP3:
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Whenever anode sends out a state message, itdoes notreply to in-
coming state messages until it receives a reply from the receiver.
Instead, it sends back a negative acknowledgement (NACK)
indicating that it already has a pairwise update in progress. It also
does not initiate any other updates while blocking.

Whenever a node receives a NACK, the update terminates
prematurely with no effect on either of the local variables, and
the node stops blocking. With the blocking mechanism in place,
a pairwise update is specified as follows:

PW1: Node j receives a state message from node z. If it is
blocking, it does nothing and sends a NACK to node <.
Otherwise, it sends a reply message containing the
numerical value +;(z; — ;) to node 4, and then
implements z; < x; + v;(z; — x;).

Node ¢ receives the reply message, and implements
Ty < X — vj(:vi — .’Ej).

PW2:

PW3:

Note that node ¢ does not need to know +y;; all it needs to
know is how much change node 7 has made, which is contained
in the reply message. Also note that at the end of a pairwise
update, node ¢ has exactly compensated the action of node j, in
the sense that the sum of the states is conserved.

For the moment, we do not specify the timing or triggering
for this event; we will propose one possible scheme (imple-
mentation) in Section VI. We will merely make the following
assumption:

Eventual Update Assumption: For any link 75 and any time
t, there exists a later time ¢; > ¢ such that there is an update on
link 27 at time ¢;.

This assumption is very similar to the totally asynchronous
timing model in [1]. It turns out that this very general asyn-
chronous timing assumption is sufficient to guarantee conver-
gence of the state values under algorithm Al. We will show
that any algorithm satisfying the Eventual Update Assumption
and implementing the interaction (with blocking) described in
Section IV must converge to the average.

V. CONVERGENCE OF ALGORITHM Al

Because of the blocking behavior, updates that happen on one
link will never interfere with updates on another. This generates
a property that is very useful for analysis:

With blocking, although updates on different links can
span overlapping time intervals, the resulting state values
of the network at the conclusion of each pairwise update
will be as if the updates were non-overlapping, and there-
fore sequential in time.

Thus, aside from the timing details of when updates are initi-
ated, it is equivalent to consider a sequence of pairwise updates
enumerated in discrete time 7' = {0, 1,2, ...}, and there is only
one update at each time instant. We will do so in the analysis to
follow. The evolution of each state x; under Al can therefore
be understood by considering the following update equations:

zi(t+ 1) = (1 —;)zi(t) +v;m5(t)
xj(t+1) :fiji(t)-i-(l—’yj)wj(t) (2)
ap(t +1) = zi(t),VE # i, ],

where z; is the receiver and thus its local y; is used instead of ;.
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Fig. 2. An example network consisting of four nodes in a “star” topology.

Theorem 1: If the Eventual Update Assumption is satisfied,
the A1 algorithm guarantees that

n

lim z;(t) = %Zzl Vie{l,2,...,n} 3)

t—oo .
=1

i.e., all node states converge to the average of the initial states
of the network.

Similar convergence results can be found in [18] in the con-
text of agreement algorithms. Our proof of Theorem 1 will make
use of the following “potential” function:

P(t)= Y lei(t) - 2;(t)] @
v(i,5)

where the sum is over all n(n — 1)/2 possible pairs (i, 7). For
instance, the potential function for the network in Fig. 2 is

|71 — 2|+ |v1 =23+ |71 =24 |+ |22 — 23|+ | T2 — 24 [+ |T3—74].

It can be shown that the potential function decreases in the
following manner.

Lemma 1: If nodes (4, j) update at time ¢ with node ¢ being
the sender, then at the next time unit ¢ + 1

P(t+1) < P(t) — 2min{y;, 1 — v} |z:(t) — z;(¢)]. (5

Proof: We can see from (2) that besides the term |z; — x|,
n — 2 terms of the form |z — x;| and n — 2 terms of the form
|z; — zk|, k # 4,7 in the potential function P(t), are affected
by the update. We also have

|zi(t + 1) —a;(t+ V)| = [(1 = 29))] [zi(t) = z; ()] . (©)

Now consider the sum of two of the affected terms |z (¢) —
z;(t)| + |zk(t) — x;(t)]. If we look at the relative positions
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of z;(t), z;(t), and x(t) on the real line, then either xy, is in
between x; and x; or it is not. Therefore, aslongas 0 < v; < 1,
it is clear geometrically in both cases that we have

lzk(t+1) —2i(t + )| + |ze(t + 1) — z;(¢ + 1)
<z (t) — i (t)] + |zr(t) — 2 (2)] .

Therefore, together with (4) and (6) we have

P(t+1) = P(t) < [t +1) — (¢ + 1)

= |zi(t) = a;(t)]

< = 2min{y;, 1= 75} |zi(t) — 2;(1)] -

|
The quantity min{~;, 1 —-; } can be thought of as an effective
stepsize for node 7 since a stepsize of .6, say, is equivalent to .4
in terms of reducing the relative difference in absolute value.
Lemma 2: At any time t, there exists a later time ¢ > ¢ such
that at time ¢’ there has been at least one update on every link
since time ¢. Furthermore,

) ro) @

where v* = min; min{~;,1 — v;}

Proof: Without loss of generality, suppose at time ¢ we
have z1(t) < z2(t) < ... < x,(t). We call the n — 1 terms of
the form |z;(t) — z;41(t)], ¢ € {1,2,...,n — 1}, segments of
the network at time ¢. By expanding every term in the potential
function as a sum of segments, we see that the potential function
can be written as a linear combination of all the segments:

n—1

P(t) = (n —i)i|zi(t) — zia(t)] ®)

i=1

We say that a segment |z;(t) — x;41(¢)| at time ¢ is claimed
at time ¢’ > t, if there is an update on a link of nodes r and s
such that the interval [z4(t’), z,.(¢')] (on the real line) contains
the interval [z;(¢), x;(¢)]. For instance, for the network in Fig. 2,
the segments are |3 — 22|, |z2 — z1|, and |21 — z4|, as shown
in Fig. 3. Thus, an update on the link between node 1 and node
3 will claim segments [z3, 22] and [z2, 21].

Clearly by using the Eventual Update Assumption on each
link, the existence of ¢’ is guaranteed. From Lemma 1 it is clear
that whenever a segment is claimed, it contributes a reduction in
the potential function proportional to its size (see (5)). Referring
to Fig. 3, it is clear an update that does not claim a segment can
only leave the segment unchanged or make it larger. Therefore,
no matter when a segment is claimed after time ¢, it will con-
tribute at least 2v*|z;(¢) — z;4+1(¢)| reduction in the potential
function.

Now connectedness of the network implies that for each seg-
ment, there is at least one link such that an update on that link
will claim the segment. Therefore, by time ¢’ all segments will
be claimed. Thus the total reduction in the potential function be-
tween ¢ and ¢’ is at least

n—1
29" ) |zi(t)
i=1

—zip1(t)]-

/"— ~~\
P ~
’ \
, - \
~
//l N \\
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\ 4
\ 4
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~ 7
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Fig. 3. The four node network embedded on the real line according to node
value x;. The bold lines indicate segments, i.e. intervals on the real line sep-
arating two adjacent values. The dashed curves indicate the communication
topology from Fig. 2. Thus, an update on the link between node 1 and node
3 will claim two segments, [x3, 2] and [x2, x1].

It follows that

2 —xiy1(t
:< w@()xﬂo|>ﬂﬂ
(n —a)i|zi(t) — zipa ()]
< M)Hﬂ
where in the last inequality we use the fact that i(n — i) <
n?/4. ]

Proof: (of Theorem 1): Repeatedly applying Lemma 2, we
see that

—xiq1(t)]

lim P(¢) = 0. )

t— o0
Therefore

lim |z;(¢t) — z;(t)| =0 Vi,j.

t—o0

(10)

Now by the conservation property (which can be derived from

(2)

in(t) = Z; vt an
i=1 i=1
we see that
1 n
tli)rgoxl(t) == ;,27 (12)
|
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Fig.4. The graph H for the example network, where the node indices are taken
as the UIDs.

VI. IMPLEMENTATION AND DEADLOCK AVOIDANCE

Any implementation that satisfies the Eventual Update As-
sumption is within the scope of the convergence proof of Al.
However we have not, as yet indicated a specific mechanism
for the update triggering. Caution must be taken because of
the blocking behavior. Without a properly designed procedure
for initiating communication, the system can drive itself into a
deadlock.

Below we present one particular implementation based on a
round-robin initiation pattern, which provably prevents dead-
lock and satisfies the updating assumption. This is by no means
the only way to carry this out, but it has the advantage of being
simple and easy to implement.

Our implementation will be based on a unique identifier
(UID) for each node in the network. The UIDs must be order-
able between different nodes. The UIDs can be obtained, for
example, by mapping the IP addresses of the nodes to unique
natural numbers. Based on these UIDs, we impose an additional
directed graph H = (V, F'), in which an edge points from ¢ to
7 if and only if node j has a higher UID than node <.

This graph has two important properties:

HI1: H has at least one root, i.e. a node with no inbound edges.
H2: H is acyclic.

An example is illustrated for our four-node network in Fig. 4.
This graph essentially defines a sender-receiver relation on each
link.

Our proposed initiation scheme is as follows:

RR1: A node will wait to receive a STATE message from all
of its inbound edges.

After having received at least one message from all its
inbound edges, the node will then sequentially send a
STATE message to each of its outbound edges, ordered
by UID.

Upon completion, it repeats, waiting for all of its
inbound edges and so on.

RR2:

RR3:
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Sample Trajectories from Simulation of A1 on 50-node Network
1

% 1 2 3 4 5 6

x 10*

time ms

Fig. 5. State histories from a simulation of algorithm A1l on a fifty-node net-
work. Round-trip delays on each link were assigned randomly, between 40 (ms)
and 1000 (ms). Note that all states converge towards the average value 0.5.

Lemma 3: The above procedure guarantees that the Eventual
Update Assumption is satisfied.

We will prove this by contradiction. Suppose there is a link 77,
with 7 being the sender, and an interval [¢, co) during which this
link does not carry any message. Then, node ¢« must be waiting
for one of its inbound edges to send, implying the existence of a
node k with a UID lower than that of 4, which is also waiting for
one of its inbound edges to send. Repeating this argument, and
utilizing the fact that H is acyclic, we can find a path of inactive
edges beginning at a root. However, a root has no inbound edges,
and hence must send to all of its outbound edges at some point
in [t, 00). This is a contradiction, and proves the desired result.

VII. SIMULATION OF Al

We have written a discrete event simulator in Java and simu-
lated algorithm A1. Below, we present a simulation of A1 with
50 nodes on a random topology with maximum degree 5. The
stepsizes were chosen to be 0.5 for all nodes and the round-trip
delays on the links were uniformly randomly distributed from
40 (ms) to 1000 (ms). Half of the nodes started with initial states
0 and the others with 1; the target average was therefore 0.5. The
results of this simulation are shown in Fig. 5.

VIII. DYNAMIC TOPOLOGY: JOINING AND LEAVING OF NODES

The Al algorithm we have described is general enough to
accommodate various extensions. In this section we discuss
how to handle dynamic network membership (dynamic network
topology), where new nodes can join the averaging network,
and current nodes can decide to leave or fail gracefully.

On a peer-to-peer network, one may wish to apply the av-
eraging scheme that allows nodes to join and leave at various
points in time. A simple mechanism for doing so is for each
node to maintain an additional variable associated with each
neighbor, denoted by 6;;, which accounts for all the changes
made on behalf of that neighbor. This idea is described in [15].
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Specifically, each time node ¢ and j interact, the net change
in ¢’s state is added to the variable ;. Then, if a node leaves the
network, all its neighbors subtract 6;; from their current states. It
can be shown that this ensures the following conservation prop-
erty: at any given time, the sum of the states x; over any con-
nected component of the network is precisely equal to the sum
of the initial values z;. Thus, after a topology change, the iter-
ative algorithm again begins converging toward the appropriate
average quantity over the new network. Note that this serves as
a reactive mechanism for node failures, since the failing node’s
neighbors can detect its failure and compensate by subtracting
the associated ¢;; terms.

One promising application of the averaging algorithm with
dynamic membership, is counting the number of nodes on a
peer-to-peer network. It is known that due to the transient nature
of peer-to-peer nodes, it is often hard to obtain a good estimate
of the total number of active nodes on the network. Suppose
it can be ensured that one and only one node has set z; = 1,
while all others have set z; = 0. If all nodes are completely
identical, this coordination would be hard to achieve. This is
possible, however, on peer-to-peer networks with a bootstrap-
ping server, since the bootstrapping server can be the special
node with z; = 1. Then the averaging algorithm combined with
the aforementioned dynamic membership handling, can track
the average state of all active nodes 1/n, the reciprocal of the
number of nodes. Each node can therefore have a running esti-
mate of how large the active network size is without any addi-
tional action from the bootstrapping server.

IX. ALGORITHM A2

The blocking behavior for algorithm A1 requires occasional
dropping of packets, which may not be desirable when node
power is a scarce resource. Moreover, it constitutes most of the
coding complexity in the implementation of Al. As an alterna-
tive, we will propose another algorithm, denoted by A2.

In A2, each node 7 makes use of the additional variables 6;;
as described in Section VIII. As described earlier, if there is a
link between nodes ¢ and j, there will be variables 6;; and ¢;;
stored locally with node 7 and node j, respectively.

We will denote the set of all neighbors of node ¢ to be NV;.
The algorithm A2 is specified mathematically in terms of the
x;’s and the 6;;’s as follows in the synchronous environment:

.17,;(t—|—1) :ilii(t)—l-’y,; E 6,](t)—|-27 —il?,;(t)

JEN;

Sij(t+ 1) = 8;5(t) + iy [2j(t) — 24(2)]

13)

where we introduce the additional parameters ¢;;, which are
local stepsizes similar to +;.

Algorithmically, the above update rules require additional
specifications. First of all, each z; is initialized to z; as in
algorithm Al, and each 6;; is initialized to 0. If there is a link
between 4 and j, the parameters ¢;; and ¢;; are set to be equal.
(We will see that one can also just set all ¢’s on the network to
some constant value.)

Second, in order to guarantee convergence to the correct av-
erage, we require the following messaging rules. On each link

1J, we impose a sender-receiver relationship on the variables
0;; and ¢;;. One can use UIDs to obtain this, as described in
Section VL.
MRI1: Every node ¢ sends to every neighbor a STATE message
that contains its current state value x; from time to
time. Each node also, from time to time, executes the
update rule (first equation in (13)) with the information
it has about other state values.
On link ¢j, if 6;; is the sender, it executes the update
rule (second equation in (13)) from time to time.
Whenever §;; executes the update rule, it also sends
to its receiver ¢;; a REPLY message that contains the
value of the change it has made in the value of 6;;. 6;;
will not execute the update rule again until the TCP
ACK of this REPLY message comes back.
If 6;; is the receiver on link 47, it waits for REPLY
messages from 6;; and subtracts the value in the
message from the value of §;;. (Note that the REPLY
message does not directly change the value of x;.)

Notice that the second equation in (13) is general enough
to cover the execution required in MR3. Also, since the §;;
variables are employed, A2 is automatically equipped with
the ability to handle dynamic topologies (as discussed in
Section VIII). All node 7 needs to do is to reset ¢;; to 0 if node
7 leaves the system.

We can now obtain the following property for 6;;, which is
important for A2’s convergence to the correct average.

Lemma 4: For any pair of variables 0;; and ¢;;, at any time
t, there exists a later time ¢’ > ¢ such that

MR2:

MR3:

5 () + 65 (") = 0. (14)
Proof: Initially all 6;;’s are set to 0. According to the mes-
saging rules MR2 and MR3, if 0;; executes the update rule
(second equation in (13)) and changes its value by some amount
at time ¢, the opposite change will be made by ¢;; at some later
time ¢'. Therefore, their sum becomes 0 again. ]
If we consider the vector consisting of all the values of z; and
0i;, (13) can be thought of as an affine mapping on the vector of
states. We will show that the mapping is a contraction mapping,
provided the stepsizes «y; and ¢,; satisfy

{0 < < —d,{i-l
0< (ﬁz’j < %

Notice that the stepsize constraints are local: each node only
needs to know the local degree d; to determine the above step-
size bounds.

In the convergence proof of Al, we have used the fact that
there are no overlapping updates on adjacent links. Therefore,
we can ignore the message-passing details and just consider
each complete pairwise update in a sequence of discrete time in-
stants as in (2). A2 does not impose any blocking constraint and
thus it does not have this property for simple analysis. In order
to prove convergence of A2, we will make use of a general and
powerful framework of asynchronous computation in [1].

We enumerate all these message-passing events in the set 1" =
{0,1,2,...}, and let T% C T be the set of times when &;;



updates its value, and T? C T be the set of times when z;
updates its value. Equations (13) become

/

zi(t+1) =zi(t) + v | X 655 (7

JEN;

)+Zi—$i(t)‘|
ift e1?
zi(t+ 1) =m(t), if t ¢ T°
Bij(t +1) = bij(t) + ¢i [l‘j (T}J) — (ﬁ”)}
if t € T4
L (Sij(t + 1) = 6Z‘j(t), if ¢t ¢ T

where 0 < 'r,fj , T;j , Tfj < t indicate possibly “old” copies of
the variables involved in the update equations. (See [1] for more
details.)

It can be shown that the following asynchronous timing as-
sumption guarantees convergence of all the states to the desired
average value:

Total Asynchronism: (As Defined in [1]): Given any time ¢,
there exists a later time ¢ > 1 such that

() >t 7 (t) >t Vi,j, andt > ts.  (15)
This is in spirit similar to the Eventual Update Assumption for
Al. In general, we have the following asynchronous conver-

gence theorem for A2:
Theorem 2:

under A2 with total asynchronism, provided the stepsizes satisfy

1
{0 STS T (16)
0<¢ij <3
Proof: Tt can be shown that given the stepsize constraints,
the synchronous equations are a contraction mapping with re-
spect to the infinity norm. To illustrate this, consider a simple
case with a two-node network. The synchronous update equa-
tions are

z1(t+1) = z1(t) + 71 [612(F) + 21 — 21(2)]
Zo(t+ 1) = x2(t) + 72 [621(t) + 22 — z2(2)] (17)
012(t + 1) = d12(t) + d12 [w2(t) — z1(2)]
b21(t + 1) = 621(t) + b21 [z1(2) — z2(2)] -
The linear part of the mapping is therefore
I-m 0 7 0
0 I=v 0 =
— 12 P12 1 0 (18)
21 —¢21 0 1

If the stepsize bounds (16) are satisfied, this linear mapping
is strictly diagonally dominant (namely, the magnitude of every
diagonal entry is strictly larger than the sum of the magnitudes
of all the other entries in its row.) In the general case, the x;
row has a diagonal entry of 1 — ~;, d; entries of value -;, and
entries of value 0 otherwise. The ¢;; row has a diagonal entry
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of 1, an entry of value ¢;;, an entry of value —¢;;, and O other-
wise. Therefore, it can be seen that diagonal dominance is true
in general, provided (16) is satisfied. Using Proposition 2.1 of
Section 6.2 in [1], A2 converges under total asynchronism.

Now denote 7, 67; to be the limit points of z; and ¢;;. We
see from the update equations that

* . * oy
i =zi+ Y 05 Vi
JEN;
* gk 1
r; =x; Vi, j.

Therefore

where in the last step we use Lemma 4 to cancel out all the 6
terms. u

X. CONVERGENCE RATE

Analytical characterization of the convergence rate of our al-
gorithms is difficult to obtain due to their general assumptions.
In the case of algorithm A1, the potential function presented in
Section V can serve as a metric for convergence rate. It is shown
in the proof of theorem 1 that this potential function decreases
exponentially in time.

For algorithm A2, however, we do not have any analytical
results for the convergence rate in general. It is worth noting
that the convergence rate of the synchronous algorithm (1) (as
described in Section III) can be characterized analytically. It is
shown in [11] that the convergence rate is related to the second
smallest eigenvalue of the Laplacian matrix. This value is also
known as the Fiedler eigenvalue or the algebraic connectivity of
the graph. We have observed empirically that the convergence
rate of the asynchronous algorithm A2 is similar to that of the
synchronous algorithm (1) with the same average delays.

XI. EXPERIMENTAL RESULTS

We developed an implementation of A2 in a C socket program
and deployed it on the PlanetLab network [12]. We performed
several runs of the algorithm, each time randomly choosing 50
to 100 nodes. Round-trip delays on this network ranged between
tens of milliseconds and one second. Various overlay topologies
were tested, with consistent convergence on the order of a few
seconds.

In each experimental run, every node obtained a list of neigh-
bors from a central server and established TCP connections to its
neighbors. After the topology-formation phase was completed,
the nodes were each sent a message instructing them to begin
the iterative computation with their neighbors. One sample of
these experimental results is shown in Fig. 6.

In this experiment, an overlay network of 100 nodes on
Planetlab was chosen. Half of the nodes started with initial
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Sample Trajectories from A2 Experiments on 100—node Planetlab Network

Network| Run1 | Run2 | Run3 | Run4 | Run5 | Average| Fiedler

| Size Eigen-
value
| 50 7.37 7.34 7.20 7.35 7.01 7.25 1.038
100 7.55 8.42 7.48 7.71 7.69 7.77 1.058
| 250 8.38 8.41 8.26 7.62 7.96 8.12 1.046
500 8.46 8.08 7.97 8.03 8.40 8.18 1.048
1000 7.81 8.29 8.60 8.39 8.10 8.24 1.020

TABLE 1
CONVERGENCE TIME VERSUS NETWORK SIZE

8 9 10
x 108

time us

Fig. 6. Sample histories from an experiment on the PlanetLab network, using
one-hundred nodes and algorithm A2. Round trip times on this network ranged
between tens of milliseconds to approximately one second. Note the rapid con-
vergence of the estimates.

value z; = 0, and the other half with z; = 1; therefore the
target average value was 0.5. Each node was connected to five
random neighbors in the overlay network. The round-trip de-
lays (RTT) on this global overlay network ranged between tens
of milliseconds to roughly half a second. It is worth noticing
how rapid the convergence is: in 10 seconds all state values
converged to within 1% of the average. We believe this is very
promising in many applications.

XII. SIMULATION OF A2

Experiments with more than 100 nodes were not feasible for
us on the PlanetLab network. Therefore, we have written a dis-
crete event simulator in Java and simulated algorithm A2 on
larger network sizes.

The network sizes tested were: 50, 100, 250, 500, and 1000
nodes. For each size, the network topology was chosen such
that each node connected to 5 randomly selected neighbors. The
one-way delay on each link from node ¢ to node 5 was chosen
uniformly randomly between 20 ms and 500 ms. For each net-
work size, there were five runs of simulation with the same con-
nectivity but possibly different link delays in each run. All sim-
ulation started with half the nodes having initial states 0 and the
other half having initial states 1.

In order to see the dependence of the convergence rate on the
network size, we kept track of the amount of time it took for all
node states to converge to within 1% of the target average. We
will call this the “convergence time” for the sake of comparison.
The convergence time (in units of seconds) obtained from our
simulation for each run and each network size is reported in
Table I.

The convergence time is therefore roughly constant regard-
less of the size of the network. Notice that this is consistent
with our discussion on the convergence rate of the synchronous
algorithm in Section X. The convergence rate in general does

not depend on the network size but only on the algebraic con-
nectivity or Fiedler eigenvalue of the topology. The simulation
results suggest that our asynchronous algorithms still perform
very well when the network size is large.

XIII. EXTENSIONS

In addition to the “counting” application we have described
in Section VIII, we will present a few more extensions of the
averaging algorithms in this section.

So far we have assumed that the quantities being averaged
(z;) are static during the executions of our averaging algorithms.
It turns out that one can readily adapt the algorithms to handle
time-varying local variables, z;(t) (details can be found in [15]).
All one need do is to modify the local state x; each time z;
changes. Specifically, every time the local variable changes, ac-
cording to

then the local state is modified according to
T; — T; + Az,

This ensures that at any given time, the sum of the node states
is equal to the sum of the local variables. Each time one of the
z; changes, the iterative algorithm adapts and converges to the
appropriate value.

Instead of just calculating the average of node states, one can
also readily adapt the algorithms to calculate the variance or any
other moment of the distribution of node states. To get the vari-
ance, for example, one simply needs to run another averaging
process on the quantities 27, and the variance can be obtained.

XIV. SUMMARY, CONCLUSION, AND FUTURE WORK

We have presented a class of practically implementable dis-
tributed averaging algorithms that are suitable for communica-
tion networks such as the Internet. Our algorithms do not rely
on synchronization, knowledge of the global topology, or coor-
dination of parameter values.

Our analytical results for Al show that under a mild timing
assumption, the asynchronous message-passing algorithms
can achieve exponential convergence. For the case when the
blocking behavior of Al is undesirable, we have introduced the
algorithm A2, which is free of the blocking requirement and
is also provably convergent under very general asynchronous
timing. The iterative nature of the algorithm renders it robust to
changes in topology.
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We have presented simulations, as well as experimental re-
sults from a real-world TCP/IP network. These results demon-
strate the desired convergence behavior, and show that the al-
gorithms proposed can be implemented robustly in a practical
network.
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