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Response of the Bilinear Hysteretic System to Stationary 
Random Excitation 

W. D. Iw.aN ^ND L. D. LUTES 

California Institute of Technology, Pasadena, California 91109 

Time-average statistics of the response of the bilinear hysteretic system to an excitatlou with approxl- 
mately white-power spectral density and approximately Gaussian probability distribution are determined, 
using electronic-analog techniques. Results are presented for the mean-squared amplitude, the power 
spectral density, and the probability distribution of the response. The applicability of the Krylov-Bogoliubov 
method of equivalent linearization to this problem is investigated by comparing predkted and experl- 
tnentally measured values of the mean-squared level of response. 

INTRODUCTION 

N recent years, there has been considerable interest in the application of approximate analytical tech- 
niques to problems of determining the response of non- 
linear systems to stationary random excitation. TM These 
analytical techniques have been used with apparent 
success on a variety of systems, but, in general, there 
has been little information that could be nsed to gauge 
the accuracy of these methods in a given application. 

One of the systems that has been studied in some 
detail by these approximate analytical techniques is 
the so-called bilinear hysteretic system. This system is 
often used as an approximation to the yielding behavior 
of both materials and structures; as such, it has con- 
siderable importance from an engineering point of view. 
Furthermore, the problem of determining the response 
of such a system to a nondeterministic excitation has 
obvious importance in light of the types of loading that 
many modern structures are required to withstand. 
Whether the actual excitation in a given situation will 
approximate a stationary random signal is problematic, 
but certainly substantial knowledge about the general 
behavior of such systems can be obtained by a con- 
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sideration of the stationary problem. From a more 
practical standpoint, this is the only problem that has 
thus far been treated in any detail by analytical 
techniques. 

It is the purpose of the present paper to investigate 
the response of the bilinear hvsteretic oscillator to 
stationary random excitation with a white-power spec- 
tral density and a Gaussian probability distribution, 
using electronic-analog techniques, and then to compare 
these results where possible with the results of one of 
the more widely used approximate analytical tech- 
niques. It is felt that this leads both to a better under- 
standing of the behavior of a system of some practical 
importance and also to a clearer understanding of the 
applicability of certain approximate analytical ap- 
proaches to nondeterministic response problems. 

I. THE SYSTEM 

The equation of motion for a single-degree-of-freedom 
bilinear hysteretic oscillator may be written as 

:i:+ 2•0wo:i'+o•0• e (x) = n (t)/m, (1) 

where m denotes the mass, ,00 is the small-amplitude 
undamped natural circular frequency, •0 is the small- 
amplitude fraction of critical damping, and •(x) is a 
bilinear hysteretic restoring force as shown in Fig. 1. 
Note that •(x) is chosen to have a unit slope for small 
amplitudes and a second slope a. For the present in- 
vestigation, the excitation n (t) is taken to be a station- 
ary random function with a uniform power spectral 
density So and a Gaussian probability distribution. 
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I;t(:. 1. Bilinear hysteretic restoring force. 

A schematic of the electronic analog used to model 
Eq. 1 is shown in Fig. 2. The parameters of the analog 
were chosen in such a manner that the small-amplitude 
natural frequency of the system was approximately 
500 cps and the damping factor could be varied between 
zero and arbitrarily large values. The elastoplastic 
function ½,(x) was generated bv means of a solid state 
flip-flop and holding circuit. The details of this circuit 
and a discussion of the specific equipment nsed in the 
analog are contained in Appendix A. 

Photographs of oscilloscope traces of the elasto- 
plastic function •ci,(x) vs x for several frequencies of 
periodic motion are reprodnced in Fig. 3. These photo- 
graphs show that the function was essentially indepen- 
dent of frequency over the range from 5 to 1000 cps 
and was, in fact, a good approximation to the ideal 
elastoplastic function. The curvature of the sides of the 
hysteresis loop at very low frequencies is due to leakage 
currents, and the overshoot of ½v(x) at initiation of 
yield at high frequency is due to finite switching times 
associated with the circuit. An analysis of the errors 
introduced by these two effects indicates that they are 
negligible for the present study. Further error investiga- 
tion indicates that the circuit described here should 

represent the system of Eq. 1 to within about 2%. 
On the basis of a detailed analysis of the combined 

errors in the analog circuit and in the response measure- 
ments, it is felt that the over-all accuracy of the 
statistical results is within 4%-50-/o, except for certain 
limiting cases of probability distribntion. These ex- 
ceptional cases are discussed later in context. 

II. SYSTEM RESPONSE 

A. Mean-Squared Level of Response 

The mean level is the simplest measure of a random 
signal, but it tells nothing of the variability of the 
signal. in [act, in the present study, the mean levels of 
both excitation and response were zero. One simple 
measure of how much a signal of zero mean valne varies 
from that mean value is the mean-square level of the 
signal. In the present study, the rms level of displace- 
ment a• and the rms level of velocity • were measured 
for the response of the bilinear system. These two 
measures of the response were both time independent. 
However, this [act in itself does not necessarily imply 
that the response was strongly stationary, since the 
probability distribution was, in general, non-Gaussian. 

Figures -t and 5 give the results of the measurements 
of rms response levels for systems with oz= 1,:2 and 1,'21 
and with several values of the damping factor/•0. The 
factor ($0w0)• has been selected as a measure of the 
excitation level, since it is meaningless to talk about 
the rms level of a signal with white-power spectral 
density. The abscissas of the graphs may therefore be 
thought of as representing the ratio of the excitation 
level to the yield force level mw0•I '. The ordinates have 
been made nondimensional by dividing the rms dis- 
placement response by the factor (S0•o)•,/mco0 •, and by 
dividing the nus velocity response by (S•o)*/mo•o. In 
this [oran, the response o[ a linear system would appear 
as a straight horizontal line on the graphs. 

In some mechanical systems where yielding cor- 
responds to straining of ductile members, the ratio 
a•, Y may be an important factor in failure criteria, 
since it is a measure of how much yielding is taking 
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Fl•. 2. Analog circuit for hysteretic oscillator. 
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FIG. 3. Oscillator traces: ,•(z) vs x. 
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I"l(;. 4. Rt•ol-mean-square response levels for syslem wilh a •. (a) Dislfiacement rc.•ponse. (b) Velocity response. 
: Theory. 

- : Analog. 

place. Crid lines for a. T are presented in Figs. 4(a) 
and 5(a) l•r convcnienl reference. The dashed lines 
in Figs. 4 and 5 represent lhe results of an approximate 
analytic solution and are discussed in detail laler. 

The elastophtstic system has often been chosen for 
study by investigators of nonlinear systems because of 
its simplicily and because many physical systems snp- 
posedly act in an approximately elastophtstic manner. 
The elastoplastic system cannot be used in the study of 
stationary response, however, since its response to 
stationary excitation is not a stationary signal, but 
rather warnlets endlessly. The system wilh t•-- 1 21 wits 

chosen to represent a nearly elastoplastic system while 
eliminating the problem of wander. The system with 
or= I 2 was chosen to represent a system with a moder- 
ate nonlineartry. 

B. Power Spectral Density 

Representative results for the power spectral density 
of the response S• are given for the svslem with a- 1 2 
and ,80=0 in Fig. 6(a) and for the system with a= 1 21 
and fl,,=0 in Fig 6(b). The parameter mco,?[S.(co) S]• 

was chosen to represent the power spectral density of 
the ,'esponse of the bilinear systems in a manner that 
allows easy comparison with a linear system. For a 
linear oscillator, this parameter is identical to the well- 
known harmonic-excitation transfer function. How- 

ever, this is generally not true for a nonlinear system, 
since separate solutions to a nonlinear problem do not 
superpose to fOFIll another solution. 

The forms of the spectral density curves in Fig. 6(b) 
show that the response of a severely nonlinear hvsteretic 
oscillator is not, in general, contained in a narrow fre- 
quent 3 band. Figure 7 further illustrates this fact by 
showing plots of displacement response versus time. 
I"or comparison, Cnrve (a) shows the response of a 
linear system with approximately 1% of critical viscous 
dampina. The displacement of this system has a clearIx' 
defined principal frequency and a slowh' varying 
amplitude, as is lypical of a narrow-band signal. Curve 
(b), for a=l 21 and a, I'=I.6, has a fairIx' well- 
defined high-frequency component that looks similar 
to Curve (it), but it also contains it large low-fi'equency 
componenl that gives a wandering effect to the result. 

(a) 

I"*g. 5. Roofmean-square response levels for system with •- 1/21. (a) Dislfiacemem response. d0 Veh)cib' response. ----: Analog. 
• --: Theory. 
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Fro. 6. Response power spectral density for (a) I•0=0, a= • and (b) a= 1/21. 

I.O 2.0 

The response of a system with a= 1/21 and a,/I"= 5.7, 
as shown in Curve (c), shows almost no shnilarity to a 
narrow-band signal. 

The magnitudes of the yield level ore shown for 
Cnrves (b) and (c) of Fig. 7. At an 3- time in the history 
of the motion, the bilinear system can execute oscilla- 
tions of amplitude less than the yield level while acting 
in a purely elastic manner. The high-frequency com- 
ponent in Curve (b) clearly shows such elastic oscilla- 
tions taking place at the natural frequency of the linear 
system. Curve (c) also shows some indication of elastic 
oscillations at the linear system natural frequency, but, 
because of the low yield level, the amplitude of such 

Fro. 7. Time histories of response. 

oscillations is very small as compared to the lower- 
frequency components present in the displacement. 

C. Probability-Distribution Measurements 

The probability that a stationary signal exceeds a 
given level is simply the fraction of the time that the 
signal exceeds that level. Figure 8 shows the results of 
probability-distribution measurements for (a) the 
moderately nonlinear oscillator with a = 1/2 and for (b) 
the nearly elastoplastic oscillator with a= 1/21. The 
scales in these graphs are chosen so that the probability 
distribution of a Gaussian signal plots as a straight line 
and so that only distributions for positive x are shown, 
since those for negative x are identical. It should be 
noted that data points falling below the Gaussian dis- 
tribution line for some arbitrary level k correspond to 
situations where the system response spends more time 
beyond that level than does a Gaussian signal--and 
the converse is true for points above the Gaussian 
distribution line. 

III. DISCUSSION OF ANALOG RESULTS 

Since the characteristics of the response of a linear 
system are well known, it is natural to discuss the 
response of a nonlinear system in terms of how it 
differs from that of a linear system. When the level of 

excitation of a linear system is raised or lowered, the 
levels of all measures of response are raised or lowered 
in direct proportion. Thus, ratios of mean-squared level 
of response to level of excitation, or of power spectral 
densit)' of response to power spectral densit)' of excita- 
tion, are independent of the level of excitation for a 
linear system. Similarly, for a linear system response, 
the probability distribution normalized by the rms level 
of the response is independent of the level of excitation. 

It is immediately apparent from Figs. 4 and 5 that 
the mean-squared level of response for the bilinear 
hysteretic system differs markedly from that of a linear 
system. In particular, for most of the cases considered 
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here, the nns displacement-response ratio exhibits a 
definite minimum for some value of excitation yield 

ratio. Furthermore, in all cases, the rms displacement- 
response ratio is greater for large excitation levels than 
it is for small excitation levels. The rms velocity- 

response ratio also has a minimnm for all cases con- 
sidered, but the low- and high-excitation asymptotes 
are the same. Hence, yielding may either increase or 
decrease the rms displacement-response ratio but 
always acts to decrease (or leave unchanged) the rms 
velocity-response ratio. '['his result is not too surprising 
since the softening-spring effect of the nonlinearitv 
always tends to increase the displacement response 
while the energy dissipation due to yielding tends to 
decrease this response. For large a•/F, the softening- 
spring effect dominates, and the over-all response is 
increased. On the other hand, the velocity response 
reflects oilIx' the damping effect and so is always de- 
creased by yielding. 

From Figs. 4(a) and 5(a), it can be seen that, for 
small viscous damping in the two systems investigated, 
the rms displacement-response ratio is minimized when 
the excitation/yield ratio is such that l<a,/Y<2. For 
the system with a= 1/2 and •0=0 and 0.01, this mini- 
mum response is approximately the same as that of a 
linear system with resonance at coo and having abont 
5% of critical viscous damping. For the system with 
a= 1/21 and •0= 0 and 0.01, the minimum corresponds 
to a linear system with about 2% viscous damping. 

Figures 4(a) and 5(a) also show that the region of 
reduced displacement response is much less for the 
nearly elastoplastic system than for the less severely 
nonlinear system. For the system with a= 1/'2 and 
•0=0.01, the nns dispIacement-response ratio is less 
than or equal to its low excitation valne so long as 
a•/Y<30; however, for the system with a= 1/21 and 
/%=0.01, this is only true when a•/I"<7.5. When 
a=1/21 and •0=0.05, the energy dissipation due to 
yielding is ineffective in reducing the over-all response 
ratio, which increases monotonically from its low ex- 
citation wdue. 

From Figs. 4(b) and 5(b), one sees that the rms 

velocity-response ratio has a minimmn for all cases 
considered. This minimum occnrs generally within the 
range l<al/w0V<2. For the system with a=l/2, the 
minimnn• corresponds to that of a linear system with 
approximately 7% viscous damping, whereas, for 
a= 1//2l, this figure is more like 15%. In every case, 
the rms velocity-response ratio is reduced by yielding, 
as one would expect. 

As a final observation, it may be noted that the 
system with a=l/21 results in considerably more 
rednction in the rms velocity-response ratio than does 
a= 1,/2, whereas the less severely nonlinear system is 
more effective in reducing the rms displacement re- 
sponse. This again is due to the trade off between the 
effects of the softening spring and the hysteretic energy 
dissipation. 

Figure 6 shows how the power spectral density is 
inflnenced by yielding. The primary effect in this case 
is the shifting of the frcqnency at which peak-power 
spectral density occurs from a value of coo for small 
(r,'l' to a value of a"co0 for large (r•/Y. For a= 1/2, this 
shift is relatively small, and the power spectral density 
remains noticeably peaked for all values of a•/Y. 
Hence, the system retains its narrow-band character, 
even with the introduction of yielding. However, for 
a=l/21, the frequency shift is large; for values of 
a,/F between 4 and 9, there was no peak at all. This 
gives rise to the broad-l)and response noted earlier in 
conjunction with Fig. 7. 

When a,/I' is very large, both Figs. 6(a) and 6(b) 
show that the response is quite similar to that of a 
linear system with a natural frequency aicoo. Similarly, 
for a,`/F < 1, the power spectral density resembles that 
of a linear system with a natural frequency w0. How- 
ever, close examination reveals that, in the latter case, 
the low-freqnency spectrnm approaches that of a 
system with resonance at a":w0 instead of coo. This is 
especially noticeable in Fig. 6(b). All of the curves in 
Figs. 6(a) and 6(b) are bonnded. 

Figure 8 gives a further indication of the manner 
in which the response of the bilinear system differs from 
that of a linear system. Two significant trends may be 
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noted from these Figures. The first is that, for large 
a•/Y, the response has a noticeably greater probability 
of being at large displacements, as compared to the 
rms level, than does a linear Gaussian system. For 
example, with a=l/21 and •,./Y=6.4, the bilinear- 
system response spends approximately 0.4% of the 
time beyond 3try, whereas a Gaussian signal spends only 
about a third as much time beyond 3v,. 

The second important trend is that, for a=/¾ small, 
there is a substantially smaller probability of the system 
response being at large amplitudes than for a Gaussian 
distribution. This effect can become quite pronounced, 
as indicated in Fig. 8(b) for a= 1/21 and tr•/F=0.55. 
In this case, the response of the bilinear system spends 
only about 0.3% of the time beyond 2a,, whereas a 
Gaussian signal would spend about seven times as much 
time beyond that level. A similar situation exists for 
the system with a = 1/2. This marked tendency toward 
"amplitude limiting" in the bilinear system with no 
viscous damping is associated with the abrupt initia- 
tion of the hysteretic energy dissipation when the 
response exceeds Y. When viscous damping is intro- 
duced into the system, this effect becomes less signifi- 
cant as seen in the Fig. 8. 

IV. COMPARISON WITH ANALYTIC SOLUTION 

One common approximate analytical method for 
treating nonlinear problems is the Krylov Bogoliubov 
method of equivalent linearization. In this method, two 
parameters, W•,q and /•eq, are chosen so as to minimize 
the mean-squared difference between Eq. 1 and the 
linear equation 

ß •-t- 2/•eqco eq•;-•-co eq•X: n (t)/m. (2) 

Caughey has discussed the application of this method 
to problems of random vibration • and has used the 
technique for the particular problem of a bilinear 
hysteretic oscillator with "small" nonlinearitv.:' The 
assumptions made in obtaining co•q and /•,,q are that 
(1) the response of the nonlinear system is assumed to 
be contained within a narrow frequency band; and (2) 
the probability density of the amplitude of this narrow- 
band response is assumed to be the Rayleigh 
distribution. 

These assumptions lead to expressions for co(.q and 
&q of the form 

and 
X(z-:•+X •z •)(z--1)•e •'•/Xdz (3) 

+(CO0/co,.,q)ø-(1--a)(•-X) •erfc(X-,'), (4) 

* T. K. Caughey, "Random Excitation of a System with Bi- 
linear Hysteresis," J. Appl. Mech. 27, 649-652 (I960). 

where 

X = (S) 

In general, Eq. 3 must be evaluated numerically. How- 
ever, for the case of X large, the as3•nptotic expansion 
below proves helpful: 

(CO &o [8 - 
(0.6043X-•-- O. 2451X -s/•-- O. 1295X-7/•), 

for X>>l. (6) 

After finding CO,.q and j,q, one obtains rms levels of 
response of the "equivalent" linear system from 

= = (7) 

The analog-computer investigations reported in Sec. 
III revealed that the power spectral density of the 
response of the nonlinear hysteretic system often is not 
contained within a narrow frequency band. This is 
particularly true for the nearly elastoplastic system. 
Further, determinations of probability distribution 
showed that the response was not, in general, Gaussian. 
Thus, it is very unlikely that the above technique for 
determining CO,,q and/5•,•, would result in minimizing the 
difference between Eqs. 1 and 2 for such systems. How- 
ever, in some cases, the effects of the difference may be 
negligible even if CO•.q and &q are not chosen so as to 
minimize exactly the mean-squared value of the 
difference. 

The response levels predicted by the Krylov- 
Bogaliubov method are indicated by dashed curves in 
Figs. 4-7. For the system with a=l/2 and 80=0.01, 
the predictions of a= and a• agree within about 10% 
with the analog-computer measurements for all values 
of yield level. The greatest discrepancy is when the 
excitation/yield ratio is in the range from 0.05 to 0.1. 
Figure 8(b) shows that the probability distribution of 
x was noticeably non-Gaussian in this range. For 
example, the probability (x>2.Sv=) for (Sowo)•/'mwoø-Y 
•0.08 was about 0.18% as compared to 0.60% for a 
Gaussian signal. The fact that the predicted values of 
a• and a• did not err by more than 10% for this case 
illustrates the point made above that violation of 
Assumption (1) or (2) does not necessarily result in a 
large error in predicted level of response. For a= 1/2 
and •0=0, the predicted values of a• and tr• agree with 
the analog-computer results within about 15%, when 
the excitation/yield ratio is in the range from 0.1 to 1.7. 
This range corresponds to •,,/¾ varying from about 
20 down to 0.6. The noticeable error of the prediction 
for higher y'ield levels •nay be due to the severe ampli- 
tude limiting indicated in Fig. 8(a) for this system. 

It appears that, for systems with a= 1/2, the above 
equivalent-linearization technique can be used to pre- 
dict both displacement and velocity response within 
about 15%, except when 80 is less than 0.01 and the 
excitation/yield ratio is outside the range of 0.1 to 1.7. 
For most physical systems, values of a•/Y as great as 
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20 could not normall.v be toIerated without failure. 
Thus, for such systems, the only practical limitation 
of the region of applicability of the equivalent-lineariza- 
tion technique for a = 1 2 is that of ve•'v small damping 
and low excitation. 

It shonld perhaps be emphasized that the case of 
•= 12 actually represents at sizeable nonlineartry; that 
the approximate analysis gives such good results for 
this case indicates that the small nonlineartry assump 
tion of the theory is not overly restrictive for this class 

of problem. For a> 1,2, one would anticipate obtaining 
even better results. 

The predicted response is much less satisfactory for 
the nearly elastoplastic system with a= 1/21 than for 
a= 1,/2. 'i'he onl• instances in which the Iheorv accur- 
ately predicts the effect of the nonlinearity on •., as 
shown in Fig. 5(a), is when e,/Y is greater than about 
30. The predicted results also agree with the analog- 
computer results when a•.,/l" is less than 0.3 for the 
systems having viscnus damping; in this case, the 
nonlinearitv has no significant effect on the response. 

When the excitation,yield ratio of the system with 

a= 1/21 is such that •./I' is between 1 and 2, the small- 
nonlineartry theory predicts values of a•. that are only 
about 50% of the wdues determined from the analog 
computer. Note that, for fi•=0.05, the theory fails to 
predict even the general character of the effect of 
yielding on •.. In particular, for •./I'= 1, the theory 
predicts a 38% decrease in •. its compared to a system 
with near-zero excitation, whereas the an;Llog-compntcr 
studies revealed a 22% increase in a• due to yielding. 

The equivalent-linearization technique is somewhat 
more accurate for predicting the velocity response than 
the displacement response of the nearly ehtstoplastic 
system. For •0>0.01, the predicted • is at least 80% 
of that determined from the analog computer for all 
excitation/yiekt ratios; for the system with no viscous 
damping, the predicted •; is at least 7507o of the proper 
value, except for very low excitation. 

For nearIx' elastoplastic systems, it appears that the 
equivalent-linearization technique based on assumptions 

of small nonlineartry may be useful for obtaining a 
rough estimate of the effect of yielding on •ri. However, 
the technique yields useful information about the effect 
of yielding on • only when •./V is greater than 
about 30. 

V. SUMMARY AND CONCLUSIONS 

The results of the analog investigation and the com- 
parison with an approximate analytic solution may be 
summarized as follows. 

© For bilinear hvsterctic systems with low viscous 

damping, the ratios of the mean-squared levels of dis- 
placement and velocity response to the excitation level 
appear to have a definite minimun• for ratios of •r,/F 
and/o-'c%I" between 1 •,nd 2. _•1ol'e generally, yielding 
may either increase or decrease the rms displacement- 
response ratio but always acts to decrease the rms 
wdocity-response ratio. 

© The prilnary effect of yielding on the response- 
power spectral density is to cause a shift in peak fre- 
quency with changing excitation level. In some cases, 
this shift is accompanied by a significant broadening of 
the response peak or even elimination of the peak. 

ß The probability distribution of the bilinear hvsteretic 
system response is strougly influenced by the level of 
excitation and is, in general, noticeably non-Gaussian. 
For low-level excitation and no viscous damping, the 
system exhibits a type of amplitude-limiting behavior. 

ß The Krvlov Bogoliubov apt)roximation technique 
appears to give quite acceptable results for the rms 
response for systems with small to moderate nonlineartry 
(a>_ 1/'2) and small finite viscous damping. However, 
care must be exercised in attempting to apply the 
tcchni(lue to more nearly elastoplastic systems. 
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Appendix A. Details of 

The basic component of the electronic analog used 
in this investigation was a K7-A10 manifold of Philbrick 
model USA-3 universal stabilized amplifiers. A tran- 
sistor switching circuit was used to produce the elasto- 
plastic component of the restoring force; Fig. A-I 
illustrates this circuit. Amplifier No. 4 is the integrator, 
and v0 is the yield voltage. Amplifiers Nos. 1, 3 and 
transistors Q• and Qa compare ½p(.v)/R•C•with •'t• and 
s•vitch the base voltages of transistors Q2 and (,}• to 
produce yielding. V(hen [ ½,,(.•:):RaC,_,[ < v•, the bases of 
Q2 and Q a are maintained at q-7'z and -vz, respectively, 
where z'z is the Zener breakdown voltage of the lN476 
diodes and v0<vz. Thus, both Q._, and Qa are "turned 

Analog Investigation 

off" and amplifier No. 4 is a conventional integrator in 
this instance. '•Vhen the output voltage of No. 4 reaches 
the level v0, the base w>ltage of Q• is switched to the 
level v0. This allows current to flow from emitter to 
collector of Q=, and thus prevents further increase in 
•,,(x)'R tC•. The current through Q• stops, and integra- 
tion on No. 4 proceeds when .½ becomes negative. 
Transistor Q•is similarly switched to bound %, (x)/R•C• 
al the level -- 

A General Radio random-noise generator, type 
1390-B, was used to fnrnish the random exciting signal. 
The output from this equipment is an approximation 
to a white, (;ausskm signal. In the mode of operation 
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that was used, the power spectral density is essentially 
independent of frequency from about 20 000 cps down 
to near 100 cps. Below 100 cps, the power spectral 
density decreases graduMly until at 10 cps, it is down 
1-2 dB. The portion of the random signal contained 
within the frequency band from 0 to 1000 cps is es- 
sentially Gaussian. The higher-frequency components 
have a somewhat uns3nnmetric probability distribu- 
tion, but this can be neglected since the system con- 
sidered in this study did not respond significantly at 
frequencies above 1000 cps [-see Figs. 6(a) and 6(b)•. 

In this study, rras levels •vere measured by using a 
Brtiel and Kj•er random-noise voltmeter, model 2417, 
which has an averaging time that is adjustable from 
0.3 to 100 sec. Because of the well-known beat effect 

resulting from summing signals of nearly the sa•ne fre- 
quency, the amplitude of a narrow-band random signal 
tends to vary with a much lower frequency than the 
center frequency of the process. This low-frequency 
variation necessitates using relatively long averaging 
times in order to measure the true rms level. It can be 

shown that, for a narrow-band random signal with mean 
zero and a bandwidth of 2b rad/sec between half-power 
points, the nonnalized standard error in measuring 

mean-squared level is approximately (bT)-« when an 
averaging time of T sec is used. On the basis, the volt- 
meter used with T= 100 was capable of determining the 
•Tns response levels reported in Figs. 4 and 5 within 
an accuracy of about 2%, except that, for the highest 
point of Curve A in both Figs. 4(a) and 5(a) 
[-(Sowo)•'/mwo•Y=O.017•, the accuracy is limited to 
about 3.5%. 

Measurement of spectral density was accomplished 
by using a Radiometer wave analyzer, model FRA2. 
Experimental determination of the nominal 2-cps band 
of the wave analyzer gave an effective bandwidth of 
4.53 cps. This value is sufficiently small to allow an 
accuracy of about 0.5% for all the experimental points 
presented in Figs. 6(a) and (b). The voltmeter de- 
scribed above was used to measure the •Tns level of the 

signal passing through the wave analyzer. The expected 
error in this measurement is about 1.5ø-/o. 

Probability distributions were obtained by using a 
Quan-Tech Laboratories amplitude-distribution ana- 
lyzer, model 317. An analysis of the probable error 
introduced by using a finite sampling time in determin- 
ing the probability distribution of a stationary signal 
shows that the nonnalized error can be expected to be 
approximately inversely proportional to the square 
root of the product of the sampling time multiplied by 
the probability being dete•Tnined. In this study, it was 
necessary to use an external filter and voltmeter to 
measure the mean output of the Quan-Tech Schmitt 
trigger. An RC filter having a time constant of 25 sec 
was used, and this allowed determination of a prob- 
ability as small as 0.002 within an accuracy of 
about 10%. 

A more detailed discussion of the entire analog system 
is contained in Ref. 6. 

eL. D. Lutes, "Stationary Random Response of Bilinear 
Hysteretic Systems," PhD thesis, Calif. Inst. Technol., Pasa- 
dena, Calif., 1967. 
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