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Research Notes

Nearly Free Molecular Flow
Through an Orifice

Roppam NARASIMHA
Guggenheim Aeronautical Laboratory,
California Institute of Technology,
Pasadena, California
(Received April 4, 1960)

HE problem of the flow through an orifice is a very
interesting one in fluid mechanics, as it promises
to be one of the few configurations which can be investi-
gated over virtually the whole range of possible motions.
For this reason Liepmann! has recently made measure-
ments of the mass flow through an orifice at what are
practically infinite pressure ratios, through a range of
Knudsen numbers covering the transition from continuum
to free molecule flow. The mass flow rate per unit area
in the Knudsen limit (i.e., at high K = \,/R where A\,
is the mean free path at upstream infinity and R is the
radius of the hole) is well known from kinetic theory to be
m = $pié1 where p, is the density and ¢, the mean molecu-
lar speed at upstream infinity. The purpose of this note
is to estimate the effect on m of a Knudsen number K
that is not so large.
In steady flow, and in the absence of any external
forces, Boltzmann’s equation for the distribution function
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where V is the velocity of the molecules, and G and L are
the ‘gain’ and ‘loss’ operators on f. As the mass flow
through the orifice (Fig. 1) is given by

o= m [ (<o) Dy, @

where m is the mass of each molecule, our aim is to cal-
culate the perturbation on the free-molecule distribution
fowhen e = K-t = R/A, is a small quantity but not zero.
To tackle Eq. (1) directly seems a rather hopeless task,
but we can write it along the center-line of the orifice as
an ordinary differential equation

v.(df/dz) = G(f) — L(f). )

We obtain an approximate solution f* of this equation by
an iteration procedure suggested by Willis.? We replace
G(f) and L(f) by G(f°) and L(f*), and solve Eq. (3) for
ftat z = 0. This gives us, writing v, = —uv,,

§ %ﬁ{exp - ./:,;%dz”}dz’. )

This integral is still too difficult to evaluate exactly, so
we use the approximations for G(f*) and L(f%) suggested
by Krook’s models:

e =0 = f
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where (® being the gas constant)
n = f £ Dv,u° = 55 f £)v Dy,
I = 5o = qm | fOF = Dy, ©®

are, respectively, the number density, the mean velocity,
and the temperature in free molecule flow, and are known.
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We choose A = &/ (n:\1) so that the number of collisions
when the distribution is Maxwellian agrees with the
number suggested by Krook’s model. The distribution f°
at any point is just a Maxwellian everywhere in velocity
space except in the ‘vacant cone’ formed by the orifice
at the point, so from Eq. (6)

n° = n, cos’ (a/2), u’ = —u,’ = & sin’® (a/2),
2sin* o

g =31[1-m] !

where tan & = (R/z) (Fig. 1). Substituting these results
into Eq. (4) we get after a little reduction
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where
9. = (%) <%1) exp (—8"),
g:(2', V) = exp {268%.u, + (B, — B0}, (9
P ey [ GR A
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The functions g1, g. rapidly approach unity as (z/R)
increases, but H, the mean free path term, has a charac-
teristic distance A,. Hence we can write Eq. (8) correct
to O(e) as

fr= fl(fl/klva)[R fo ) (919: — 1) d'/R)

+ fm o d(z’/)\l)],

where f, is the (Maxwellian) distribution at infinity. The
second integral above, to O(e), can be shown to be

[ THAE) = 0./e) + 3B,

and so we get

 FRC )

The correction to f is thus of the first order in ¢, and there
is a contribution from the variation of A near the orifice
which cannot be neglected. The integral in Eq. (10) has
been numerically evaluated and gives for f!:

fl = fill + 8e/7V.){—0.490 + 0.3987V,
+ 0.032V.° + 0.004V,* + 0.00044V,* + ---}],
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Fia. 2. Comparison of experimental data with the calculation,
Re =~ 2.5 (R/\1).

Va = 81),,/7['6-1 .

One may get a very crude estimate of the mass flow now
by using Eq. (2), assuming that the distribution function,
on other rays, has the same value as above. One should
expect this result to be a little too high, as the radial
component of the mean velocity is smaller at other
positions than on the center-line. Carrying out the com-
putation for what it is worth, we get

m = (p,/4)(1 + 0.26R/N,).

Figure 2 shows this relation plotted with the experimental
data of Liepmann.! The agreement is reasonable, but the
accuracy of theory or measurements is not great enough
for more refined comparisons.

Investigations into the problems of orifice flow are
being continued, and it is hoped that a fuller account
will be published in the near future.

This work was supported by the Office of Naval Re-
search.
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Viscous Dissipation of Shallow
Water Waves
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FOR a free surface gravity wave in a nonviscous incom-
pressible fluid, the total energy is conserved and is
proportional to the square of the wave amplitude a. In
the case of a wave in shallow water, i.e., one whose wave-
length A is very much greater than the water depth A,
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