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ABSTRACT

The present work investigates the dynamics of the
three-dimensional, unsteady flow of a bubbly mixture in a
cylindrical duct subject to a periodic pressure excitation at
one end. The results are then applied to the case of the
idealized pressure excitation generated by the rotor stage of
a turbomachine with the objective of understanding the
dynamics of an inlet or discharge duct filled with bubbly
liquid. The flow displays various regimes (subsonic,
supersonic and super-resonant), with radically different
propagation characteristics. Depending on the dispersion
of the gaseous phase in the bubbly mixture and the
angular speed of the turbomachine, the dynamic effects due
to the bubble response can be significant, and the flow no
longer behaves as a homogeneous barotropic fluid, as is
commonly assumed. Examples are presented to illustrate
the influence of various flow parameters.

1. INTRODUCTION

The dynamics of liquid/gaseous mixtures in ducts
are relevant to a-number of technological applications. For
example, potentially dangerous instabilities can occur in
pumping systems operating with bubbly or cavitating
liquids. Typical in this respect, but in no way unique, are
modern cryogenic liquid propellant rockets where, for
obvious weight limitations, the propellant storage
pressure is kept close to the saturation value. This
inevitably increases the danger of vaporization, which
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routinely occurs as cavitation in the propellant feed
turbopumps, but often extends also to the supply lines,
with the development of a bubbly two-phase mixture. In
this case, the highly increased compliance of the flow
makes it quite susceptible to fluid dynamic oscillations
and can be responsible for the onset of operational
instabilities of the turbopump similar to rotating stali and
surge phenomena commonly observed in compressors
(Brennen, 1994). In turm, when coupled with
turbomachine operation or thrust generation through flow
asymmetries or propellant flux perturbations, these
oscillations often develop into potentially catastrophic
resonant phenomena, ranging from rotordynamic
instabilities of the turbopumps to the onset of POGO
instabilities of the entire propulsion system (Rubin 1966,
Zielke 1969). The occurrence and, consequently, the
prediction and control of these phenomena are crucially
dependent on the unsteady dynamic response of the two-
phase liquid/gaseous mixture in the flow lines. The
reaction of a large number of bubbles, with non-negligible
inertia, dissipation, and compliance, to the pressure in the
mixture can lead to significant changes of the flow
velocity, and therefore of the same pressure field that is
ultimately responsible for driving the bubble response.
Even at relatively low void fractions, this complex
interaction mechanism drastically modifies the
propagation of disturbances in the bubbly mixture and the
spectrum of the internal oscillations of the flow.

This paper reports on an extension of previous
research (d'Agostino and Brennen 1983, 1988, 1989,
d’Agostino, Brennen and Acosta 1988) on the dynamics of
bubbly and cavitating flows. In particular it makes



reference to the paper by d’Agostino, Brennen and Acosta
(1983) in which the expression for the natural frequency of
a cloud of bubbles was first derived. The linear
perturbation approach used in those previous analyses is
applied to the more complex case of the three-dimensional
unsteady flow of a bubbly mixture in a cylindrical duct
subject to a periodic pressure excitation at one end.
Despite the inherent limitations of the linear
approximation, we are confident that this analysis
illustrates some of the dynamic properties and fundamental
phenomena of real bubbly liquids and contributes to the
understanding of the flow instabilities occurring in several
important engineering applications.

2. BASIC EQUATIONS AND LINEARIZATION

We address the problem of the simultaneous
solution of the fluid dynamic equations for the two phases
with the relevant interaction terms. For a detailed
discussion of the governing equations the reader is referred
to the paper by d’Agostino and Brennen (1988).

The continuity and momentum equations of the
two phases are linearized to the first order in time-
harmonic fluctuations (indicated by the tilde) of frequency
@ 2 0 and complex representations:

R-R,=Re™ and B-B,=pe™

from their unperturbed values (subscript o). In the above
relations # is the fluid velocity, p is the pressure, R is
the bubble radius and B is the bubble concentration per
unit liquid volume. The same approach applied to the
momentum and energy conservation equations for a
bubble containing a perfect gas of uniform properties leads
to modelling each individual bubble as an harmonic
oscillator ( d’Agostino and Brennen 1988, Prosperetti
1984). This procedure yields the following Helmholtz
equation for p:

Vp+k*(w)p=0

with the free-space wave number ,K , determined by the
dispersion relation:
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Here c, () is the complex and dispersive (frequency
dependent) speed of propagation of an harmonic
disturbance of angular frequency @ in the free bubbly

mixture, ¢ = (dp/dp)" is the speed of sound in the liquid,
o is the void fraction, u is the viscosity of the liguid and
p its density; A is the effective damping coefficient
(Prosperetti, 1984) while

2 p2
wh =2t - 2 ang o, = Ll
pRo pRa 3a(1 - a)

are, respectively, the natural frequency of oscillation of a
single bubble at isothermal conditions in an unbounded
liquid with surface tension S (Plesset and Prosperetti
1977, Knapp et al. 1970) and the low-frequency sound
speed in a free bubbly flow with incompressible liquid
(@0 — 0 and ¢ — ).

3. DYNAMICS OF A BUBBLY FLOW
CYLINDRICAL DUCT

IN A

We address the problem of a three-dimensional
unsteady flow in a cylindrical duct of length L and radius
a, with rigid walls and arbitrary pressure excitation at the
entrance, x = 0. We first examine the simpler case of a
semi-infinite duct (L — +e0) whose relevant boundary
conditions are | _, ~ dp/or| _ =0, together with the
radiation condition at x = 0, the regularity of the solution
on the centerline, and its periodicity in the azimuthal
direction. Then a duct of finite length is examined and the
radiation condition is substituted by the appropriate
boundary condition at x = L, As an example, we consider
the case of a duct connected to a constant pressure
reservoir, so that p|_, =~0. By standard methods
(Lebedev, 1965), the separable solutions (normalized, for
convenience, atx=0) of the above problems are
respectively found to be:
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Prn(@) = J,,,( n )exp{i(imz? — ot + xk, )}
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sin[(L - x)k, ]
sin[Lk, |

Pun(0) = J,_( a,,;r )exp{i(imz? -or)}

(or their complex conjugates), where J, is the Bessel
function of the first kind of integer order m20, «,,, is
the n-th non-negative root of J.(z)=0,the axial wave

number is defined as k, =\,k’(a))—a,f,_,, /a* and the

principal branch of the complex square root is chosen. We
consider, in particular, the solution for the idealized
excitation generated by a turbomachine with N blades
(angular speed 2) located at the duct entrance (x =0).
Neglecting, for simplicity, the azimuthal component of
the blade force, the pressure excitation is 27/N -periodic
in the rotating angular coordinate ¥’ =1 - with
assigned, Fourier decomposable distribution:

P(r,9")= Zc, (r)e™”

where:
c,(r)= -[Z:v P(r,9t)e™ % d’

and, from the momentum balance of the duct fluid,
c, =0. Here s is the harmonic index of the Fourier
decomposition, sN is the azimuthal mode number and
sNQ is the blade excitation frequency. Exploiting the
linear nature of the problem, the corresponding solution is
formally expressed, both for the finite and infinite length
duct, by the Fourier-Bessel series:

B, (I5N€2))
(V)

p 22 :N.u"

s=—ovon=0

with the upper (lower) conjugate solution valid for >0
(s < 0) and coefficients:

2 ¢
Gop = ;Tjo rey(r)dr=0

_ 2_[: ’C.(’)Jm(“m My /a)dr
@ (1- 2N oy, ) T ()

The remaining variables are readily obtained from the
linearized governing equations. The entire flow has
therefore been determined in terms of the material
properties of the two phases, the geometry of the duct, the

for s,n+0,0
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nature of the excitation, and the assigned quantities: R,,
p,and .

4. RESULTS AND DISCUSSION

To illustrate the phenomena manifest in this

solution we choose a particular problem involving a duct
of radius a=0.15m and length. L =1 m, containing air
bubbles (R, =0.001m, y =14, y; =0.0002 m*/s) in
water  (p =1000 kg/m p =0.001 Ns/m?,
§ =0.0728 N/m, ¢ =1485 m/s) at atmospheric pressure
p, =10° Pa. In addition, in most cases the parameter
3a(1-a)a®/R? is assigned and the void fraction ¢ is
determined accordingly.

We now consider in some detail the general
features of the propagation of disturbances through the
duct. Note, first of all, that the solution for a semi-infinite
duct is simply harmonic in ¥, ¢ and, in complex sense,
also in x, while its behavior in the radial direction is
expressed by Bessel functions of integer order m, scaled
through the factors a,,/a in order to satisfy the
kinematic boundary condition at the duct radius. The first
few radial mode shapes are illustrated in Figures 1 and 2
for m=0,1. In particular, the solution for m=n=0
corresponds to plane axial waves. The undamped axial
mode shapes are purely sinusoidal. They are modified, in a
complex way, by the inclusion of damping through the
axial wave number, whose real and imaginary parts
respectively determine the axial wave length and
attenuation rate. The axial modes shape will then be
significantly dependent on the flow regime.
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Figure 1. Radial mode shapes J, ( o7 [a ) as a function
of r/a for the fundamental azimuthal harmonic (m =0)
and several radial mode numbers 7 =0,1,2,3.
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Figure 2. Radial mode shapes J; (@,,r/a) as a function of
r/a for the first azimuthal harmonic (m =1) and several
radial mode numbers n =0,1,2,3.

The real and imaginary parts of the axial wave number are
generally different from the free-space values Re(k) and
Im(k) because of the presence of the duct boundaries,
except for the simple case of plane axial waves where
a,.. = 0, vanishes. The behavior of k, is more readily
illustrated in the absence of damping (when the argument
of the square root is real) as shown in Figures 3 and 4 for
the sample case of m =1 and n =0 (a,;, =1.8412). Then
the axial wave number is either real or purely imaginary
depending on the sign of k*(@)-aZ,[a*, with a first
regular transition at the cut-off frequencies:

_ 2 Ip2
w,i,:mﬁ,/(uw(l ozz)a /R,)

Crnp

and a second, singular transition at the natural frequency
@;, of an individual bubble in an infinite liquid (bubble
resonance condition), where k*(@) has a simple pole.
Notice that the cut-off frequencies are never greater than
@y, and, for any given azimuthal harmonic m, increase
with the radial mode number ». In addition, the cut-off
frequencies depend on the phase dispersion parameter
3a(1-a)a®/R? as shown in Figure 5 for several values
of m in the simple case of n =0. Note that a similar
dispersion parameter occurs in all bubble cloud analyses
(d’ Agostino and Brennen, 1983, 1988,1989; Kumar and
Brennen 1990). When this parameter is of order unity or
larger, the lower cut-off frequencies are significantly
smaller than the bubble resonance frequency; when it is
less than unity the cut-off frequencies are contained in a
narrow range only slighlty below bubble resonance
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frequency.

As a result of the higher cut-off frequencies for the
higher radial modes, appreciable wave-like propagation of
m-lobed azimuthal excitation sources takes place when the
frequency, @, falls between the cut-off frequency @,,, of
the fundamental radial mode (n =0) and the bubble
resonance frequency @ = @g,. When applied to the
pressure ficld generated by a turbomachine with N blades
and angular speed £2, this condition implies:

ZNZQZ
a2, <k2(sNQ)a? = ~———g? = s*N?M?
sN,0 ( )a C:l(SNQ) N
or
Ono
M, >
NZ SN

where @, /sN is the cut-off value of the blade tip Mach
number M,, = a/c,, (sNQ) relative to the propagation
speed of the harmonic disturbances with angular frequency
@ =sNQ actually induced by the rotation of the
turbomachine.
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Figure 3. Real part Re(k.a) of the normalized axial wave
number as a function of the square of the reduced
frequency, w/o,,, with (d) and without (1) damping for
the fundamental radial mode of the first azimuthal
harmonic (m=1, n=0, a,,=0,=18412) and
3a(l-a)a*[R: =1.

The values of @y, /sN are always slightly supersonic and
approach unity as the azimuthal mode number sN tends to
infinity. Therefore, in more familiar terms, effective
propagation of the disturbances generated by a
turbomachine operating with bubbly flow in a cylindrical
duct is limited to the excitation from supersonic rotors not
exceeding the bubble resonance condition (sNQ2 < @,,).
This phenomenon is in line with well-established results



for compressible non-dispersive barotropic fluids (Tyler &
Sofrin 1962, Benzakein 1972), and may have important
implications with reference to the onset and stability of
rotating cavitation in the suction lines of pumping
systems operating with bubbly or cavitating flows.
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Figure 4. Imaginary part Im(k,a) of the normalized axial
wave number as a function of the square of the reduced
frequency, w/®,,, with (d) and without () damping for
the fundamental radial mode of the first azimuthal
harmonic (m=1, »=0, e,,=0a,,=18412) and
3a(l-a)a®/R? =1.

The inclusion of damping (see Figures 3 and 4)
makes the axial wave number k, (and therefore also the
cut-off frequency ®,,,) complex and eliminates the
singularity at @ = @,,, thereby blurring to some extent
the transitions between the three propagation regimes.
Energy dissipation also increases the typical frequencies of
the flow, effectively damping the higher resonant modes.

From the relevant expression of p note that free
oscillations (a,,, =0) of bubbly flows in finite-length
ducts can only occur when sin[k,(@)L]=0 (where I is a
positive integer), a condition that, together with the
dispersion relation, determines the natural frequencies
®,,, and mode shapes p,, ;. The natural frequencies
®,.,; always lie between the corresponding cut-off
frequencies @,,, and @,,, increase with the axial mode
number /, and converge to @y, as L — +eo. Just like the
cut-off frequencies, the natural frequencies decrease with
the parameter 3a(1—-oz)a® /R?, as illustrated in Figure 6
for the lower values of / in the simple case of n =0
(fundamental radial mode). They can be appreciably
smaller than @,, when this parameter is of order unity or
larger.

The relative amplitudes of the pressure and bubble
radius oscillations in a semi-infinite duct are shown in
Figures 7 and 8 as a function of the normalized frequency
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for the fundamental radial mode (n =0) of the lowest
azimuthal harmonics (m=0,1,2,3) with
3a(1-a)a*/R? =1, corresponding to a=0.15m and
R, =0.001 m.
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Figure 5. Normalized cut-off frequency @2, /w}, as a
function of the phase dispersion parameter
3a(1-a)a® [R? for the fundamental radial mode (n =0)
of the lower azimuthal harmonics (m =1,2,3).
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Figure 6. Normalized natural frequency ®2,,/®}, as a
function of the phase dispersion parameter
3a(1-a)a®[R? for the fundamental radial mode (n =0)
of the first azimuthal harmonic (m=1) and axial mode
numbers (/ =1,2,3).

The corresponding results for a finite-length duct are also
shown in Figures 9 and 10. Appreciable oscillations are
only observed for the fundamental and first azimuthal
harmonics. Oscillations corresponding to the duct natural
frequencies , as expected, are roughly concentrated in the
frequency range from the lower cut-off frequency @, , (the



cut-off frequency for plane axial wave is zero) to the
bubble resonance frequency @, , as a consequence of the
rather large value of the phase dispersion parameter
3a(1-a)a®/R?. Notice the amplitude of the flow
oscillations in the finite-length duct due to the resonance
peaks, which are clearly absent in the case of the semi-
infinite duct. Further computation has shown that higher
azimuthal harmonics start showing appreciable
oscillations when the length of the duct is decreased. The
same trend has been observed when increasing the radius
of the chamber for a given duct length. The observed
behaviour shows the key role played by the non-
dimensional parameter a/ L in the dynamics of a bubbly
flow in a cylindrical duct.

Finally it is worth mentioning that, because of the
functional dependence of the natural frequencies, the peaks
corresponding to the same natural modes of oscillation
have been observed to occur at different frequencies
moving towards the origin at higher values of
3a(1-a)a*/R? . Farthermore the maximum amplitudes
of the bubble radius decreases with the phase dispersion
parameter owing to the greater compliance of the flow,
This phenomenon is consistent with experimental
observations in travelling bubble cavitating flows (Arakeri
& Shanmuganathan 1985; Marboe, Billet & Thomson
1986; Arakeri & Shanmuganathan 1985; Ceccio &
Brennen 1990) and, for the particular geometry under
consideration, may have significant implications on noise
generation, cavitation damage in pumping systems
operating with bubbly and cavitating flows
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Figure 7. Normalized amplitude of the pressure
oscillations |i7,,,_o (o )I/lﬁ,,w 0 )I as a function of the
reduced frequency, w/a,, , for the fundamental radial mode
(n =0) of the lowest azimuthal harmonics (m =0,1,2,3)
in a semi-infinite duct with 3a(1 -a)a*/R? =1.
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5. CONCLUSIONS

The results of this study reveal a number of
important effects occurring in bubbly and cavitating flows
in cylindrical ducts as a consequence of the strong
coupling between the local dynamics of the bubbles and
the global behavior of the flow. The propagation of
disturbances along the duct is significantly modified by
the large reduction of the sonic speed, which becomes
both complex (dissipative) and dispersive (frequency
dependent). Additional modifications are introduced by the
the boundaries, which determine the excitation modes and
their cut-off frequencies, and, in finite length ducts, the
natural frequencies and shapes of free motions.
Appreciable wave-like propagation of each excitation
mode along the duct is limited to the frequency range
between cut-off and bubble resonance conditions, and,
except for plane waves, is characteristic of supersonic (but
sub-resonant) flows, as defined by d’Agostino, Brennen
and Acosta (1988). In finite-length ducts, the same
frequency range also contains the infinite set of natural
frequencies of the resonant modes. The different
propagation properties of subsonic, supersonic and super-
resonant flows are due to the relative importance of
pressure and inertial forces in the bubble dynamics at
different excitation frequencies, as already outlined in
previous papers (d’ Agostino and Brennen, 1988).

In duct flows excited by a turbomachine, only the
perturbations from supersonic rotors propagate effectively
and are potentially capable of becoming self-sustained
when effectively reflected by the downstream boundary
condition. Given the low sonic speed of bubbly mixtures,
the cut-off conditions can readily be exceeded in fast, high-
performance turbopumps when the phase dispersion
parameter is sufficiently high. This phenomenon is
therefore potentially relevant to surge-like auto-
oscillations and rotating cavitation instabilities in
pumping systems operating with bubbly flows (Brennen,
1994).

Viscous and thermal dissipation in the dynamics
of the bubbles usually dominate the other contributions to
the damping. In the present context, energy dissipation
eliminates the resonance singularities, effectively damping
the highest natural modes. The spectral response of the
flow is therefore dominated by the lowest resonant modes,
whose amplitudes and distribution crucially depend on the
phase dispersion parameter 3x(1— a)a®/R? . The increase
of this parameter causes a substantial reduction of the
bubble response peaks owing to the greater compliance of
the flow, and a parallel reduction in the corresponding
frequencies.

The length to radius ratio of the duct also plays an
important role in the dynamics of this kind of flow.



Higher modes display stronger oscillations as the aspect
ratio L/a of the duct increases and the peak frequencies are
strongly shifted towards lower values of @/, .
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Figure 8. Normalized amplitude of the bubble radius
oscillations I o (@ )|/|R (0 )| as a function of the square
of the reduced frequency, @/w,, , for the fundamental radial
mode (n=0) of the lowest azimuthal harmonics
(m=0,1,2,3) in a semi-infinite duct with
3a(l1-a)a*/R? =1 and 3a(1- a)L* [R} = 44.4.

The present theory has been derived under fairly
restrictive linearization assumptions and therefore is not
expected to provide a quantitative description of unsteady
bubbly flows in cylindrical ducts, except in the acoustical
limit. Bubble radius perturbations are often large in
technical applications, and the flow velocity can be
comparable to the sound speed in the bubbly mixture.
Therefore the most crucial limitations of the present
theory are the linearization of the bubble dynamics and the
neglect of the mean flow velocity, while the assumption
of small velocity perturbations is likely to be more widely
justified.
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Figure 9. Normalized amplitude of the pressure
oscillations | Po(@ )I /|P,..o () )[;s a function of the square
of the reduced frequency, o/w,,, for the fundamental radial
mode (n=0) of the lowest azimuthal harmonics
(m=0,1,2,3) in a finite-length duct with
3a(1-a)a*/R? =1 and 3a(1 - @)L*/R; = 44.4.
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Figure 10. Normalized amphtude of the bubble radius
damped oscillations IRmo (®)|/|R,.0(0)] as a function of
the square of the reduced trequency, w/w,,, for the
fundamental radial mode (n =0) of the lowest azimuthal
harmonics (m=90,1,2,3) in a finite-length duct with
3a(1-a)a’/R? =1 and 3a(l- @)L*[R? = 44.4.
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