
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996 529

MDS Array Codes with Independent Parity Symbols
Mario Blaum, Senior Member, IEEE, Jehoshua Bruck, Senior Member, IEEE,

and Alexander Vardy, Senior Member, IEEE

Abstruct- A new family of MDS array codes is presenled. The
code arrays contain p information columns and T indelpendent
parity columns, each column consisting of p - 1 bits, where p is a
prime. We extend a previously known construction for 1 he case
T = 2 to three and more parity columns. It is shown that when
r = 3 such extension is possible for any prime p. For larger values
of T , we give necessary and sufficient conditions for our codes to
be MDS, and then prove that if p belongs to a certain class of
primes these conditions are satisfied up to T 5 8. One of the
advantages of the new codes is that encoding and decoding may
be accomplished using simple cyclic shifts and XOR operations
on the columns of the code array. We devellop efficient decoding
procedures for the case of two- and three-column erroirs. This
again extends the previously known results for the case of i i single-
column error. Another primary advantage of our codes is related
to the problem of efficient information updates. We present upper
and lower bounds on the average number of parity bits which
have to be updated in an MDS code over GF (2"), following an
update in a single information bit. This average number is of
importance in many storage applications wlhich require frequent
updates of information. We show that the upper bound obtained
from our codes is close to the lower bound and, most importantly,
does not depend on the size of the code syimbols.

Index Terms- MDS codes, array codes, efficient dwoding,
efficient information updates.

I. INTRODUCTION

HIS work is concerned with maximuim distance separable T @IDS) codes, namely, those codes whose minimum
Hamming distance attains the Singleton bound for a given
length and dimension [IO]. The Reed-Solomon (RS) codes
are a well-known example of MDS codes,. However, with RS
codes, a) the encoding and decoding procedures are performed
as operations over a finite field, and b) an update in it single
information bit requires an update in all the parity symbols
and affects a number of bits in each symbol. Thus (optimal
redundancy is achieved at the expense of a'dditional corriplexity

Manuscript received September 20, 1994; revised November 6 , 1995. Part
of this work was performed while the authors were with IBM Research
Division, Almaden Research Center, San Jose, CA. The research of J. Bruck
was supported in part by the NSF Young Investigator Award CCR-9457811,
by the Sloan Research Fellowship, and by grants from the IBM A!maden
Research Center and the AT&T Foundation. The rl-search of A. Vardy was
supported in part under Grant N00014-9610129 from the Joint Services
Electronics Program. The material in this paper was presented in part at the
IEEE International Symposium on Information Theory, Whistler, BC, Canada,
September 1995, and at the 900th Meeting of the American Mathematical
Society, Chicago, IL, March 1995.

M. Blaum is with IBM Research Division, Almaden Research Center, San
Jose, CA 95120 USA. '

J. Bruck is with the California Institute of Technology, Mail Codi: 136-93,
Pasadena, CA 91125 USA.

A. Vardy is with the Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign, Urbana, IL 61801 USA.

Publisher Item Identifier S 0018-9448(96)01481-2.

in the encoding/decoding procedures as well as in the number
of parity bits affected by an update in an information bit.

These two properties of RS codes are undesirable for certain
channels. First, the fact that encoding/decoding is performed
in a finite field makes it unfeasible to use large symbols, since
the size of the field grows exponentially with the symbol size.
Second, the fact that an update in a single information bit
requires to re-compute most of the parity bits is particularly
undesirable in storage applications where the stored data has
to be frequently updated [121.

In this paper, we present a new family of MDS codes
having the following two properties: a) encoding and decoding
may be accomplished with simple cyclic shifts and XOR
operations on the code symbols, without finite field operations;
and b) an update in an information bit affects a minimal
number of parity bits. One important application of our codes
is in storage systems, such as magnetic tapes and RAID
architectures [2]-[6], [12], [14], where the minimal size of
the redundant storage, efficient encoding/decoding procedures,
as well as the complexity of updating the information are of
crucial importance.

The new codes we construct are based on recent work
in array codes [l], [2], [4], [7], [8]. We assume that the
information is stored in a two-dimensional array of bits.
Henceforth we shall identify the symbols of an MDS code
with the columns of such an array. Thus the errors that can
occur are column errors.

A trivial example of an MDS array code of this type is a
simple parity code that can correct a single-column erasure.
This code is defined by requiring that the last column in the
array is a parity column, given by the exclusive-OR of the
other columns. Indeed, this trivial code is MDS, the parity
column is computed by simple XOR operations, and an update
in a single information bit results in an update in a single
parity bit.

The main contribution of this paper is a generalization of
this simple code to a family of array codes with the following
properties:

P1. The number of parity symbols is one less than the

P2. The parity columns may be computed by means of

P3. Update in an information bit affects, on the average, a

The first nontrivial generalization of the parity code is the
EVENODD code introduced in [2]. The EVENODD code has
columns of size p - 1 for a prime p , and requires two parity
symbols. It can correct one error or two erasures. In the next

distance-the codes are MDS.

simple XOR operations on the information columns.

minimal number of parity bits.

0018-9448/96$05.00 0 1996 IEEE

530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

section, we extend the construction of the EVENODD code to
a family of codes with T parity symbols, where T > 2. By
construction, each of the T parity symbols may depend on the
information symbols, but not on the other parity symbols. This
is what we mean by “independent parity symbols” in the title.
Note that this systematic construction preserves the special
structure of the new MDS codes, which makes it possible to
avoid finite field operations. In contrast, although the codes
of [4] can be also made systematic, this would completely
destroy their structure.

In Section 11, we show that the new codes are always MDS
for r = 3. However, if T > 3 this is no longer true in
general. For larger values of T , we give necessary and sufficient
conditions for our codes to be MDS, and present a table of
the first few values of p which satisfy these conditions. These
conditions are particularly easy to evaluate if p is such that
2 is primitive in GF(p). In fact, we prove that in this case
our codes are MDS up to T 5 5 for all p # 3, and up to
T 5 8 for all p @ {3,5,11,13,19,29}. In Section I11 we
develop decoding algorithms for the new family of codes,
for the case of two and three symbol errors (T = 4 and
T = 6, respectively). Notably, these algorithms do not require
finite field operations. Instead, they may be easily implemented
using only cyclic shifts and XOR operations on the columns
of the error-corrupted array. This, in a sense, extends the
algorithms of [4] which are applicable only for the case of a
single symbol error. Finally, Section IV deals with upper and
lower bounds on the average number of parity bits affected
by an update in a single information bit. We show that the
upper bound derived by using our codes is not far from the
trivial lower bound, and, in fact, the trivial lower bound is
unattainable. In particular, for our codes the average number
of bits in each parity symbol that are affected by an update in
an information bit does not depend on the size of the symbols.
Thus our codes are indeed suitable for use with very large
symbols.

11. A NEW FAMILY OF MDS ARRAY CODES

Let p 2 3 be a prime. We shall deal throughout with
(p - 1) x n binary arrays A = [a,,], where az3 is the ith bit in
the gth column, for z = 0 ,1 , . . . ,p -2 and j = 0,1 , . . . , n - 1.
Unless otherwise stated, we assume that n = p +-r, where
T is the number of parity symbols (or columns). This yields
the largest possible length for our codes. Analogous results for
n < p + T may be immediately obtained by shortening. Write

A = (ao,al,...,an-l)

where ao,al,.~.,an-l E GF(2p-l) are the columns of A.
We shall assume that the columns a,, a,, . . . ,gp-l are the
information symbols, while the remaining columns are the
parity, or redundancy, symbols. The problem, then, is how
to compute the redundant part from the information part, so
that the properties Pl-P3 are satisfied.

A. Dejkition of the New Codes

The array codes of [4] were shown therein to be equivalent
to the RS codes of length p , with operations taken modulo

the polynomial
X P - 1

2-1 + .P-2 + . . ’ + n: + 1. MP(Z) = - - z p - 1 -

The polynomial Al.(.) is not necessarily irreducible and,
hence, these codes are not defined over a field, but rather over
the ring of polynomials of degree 5 p - 2 modulo Alp (z).

In terms of the (p - 1) x n array A = (a,,a,,
we shall view each column a, in the array as a
modulo Mp(x). It is also convenient to assume that the array
has an imaginary row of zeros, which makes it a p x n array. A
cyclic shift of a column in such array, that is, a multiplication
by x modulo x p - 1, can cause the bit corresponding to the
last row to be nonzero. However, in this case, the arithmetic
modulo Mp(x) forces to take the complement of the shifted
column, restoring the zero in the last position. As in [4], we
shall use the notation

a(.) = ap-2ap--2 + . . . + ala + a0
to denote a polynomial modulo M p (z) . Thus u(a)b(a) de-
notes polynomial multiplication modulo Alp (.)
multiplication of polynomials is written as a(z)b(
notation, we have the following definition.

Dejinition: A linear code A (p , r) of length n = p + r and
dimension p = n - T over the ring of binary polynomials of
degree 2 p - 2 modulo Alp(x) is defined by:

where
P - 1

u,+,(a) = @a3Za,(a), f o r j = 0 , 1 , . . . , r - 1 (1)
2=0

and @ stands for summation modulo 2.

Here the first p columns of A are arbitrary information
symbols, while the last T columns uP(a) , u,+l (a) , . . . ,
u,+,-l(cr) are the parity symbols. Equation (1) specifies
how the parity columns of A should be computed from
the information columns. Note that the parity symbols

, uP+r--l (a) depend on the information
symbols, but not on each other. Thus we refer to these parity
symbols as independent.

The fact that the parity symbols in (1) are independent
is the major difference between our codes and those of [4].
This difference is crucial with respect to efficient information
updates, or equivalently, with respect to property P3 specified
in the introduction. Referring to (l), it is easy to see that
updating a single bit in the information part would in most
cases require updating a single bit in each of the parity
symbols. In contrast, for Reed-Solomon codes as well as for
the array codes introduced in [4], updating a single bit in the
information part would usually require updating most of the
bits in the redundancy part. This could be quite undesirable
for many applications, and in particular for reliable storage of
data which requires frequent updates [121.

BLAUM et al: MDS ARRAY CODES WITH INDEPENDENT PARITY SYMBOLS 531

B. The MDS Property

This subsection is organized as follows. First we prove
in Proposition 2.2 that the codes A(p,r) defined by (1)
are indeed MDS for r 5 3. The first case where A (~ , T)
is not necessarily MDS is for T = 4. In Proposition 2.3
we prove a simple necessary and sufficient condition for
A (p , 4) to be MDS, and then provide an example where this
condition is not satisfied. Next, we generalize the approach
of Proposition 2.3 to derive similar necessary and sufficient
conditions for increasing values of T . Using these conditions,
we compile a table of the first few values of p for which
our codes are MDS, up to r 5 8. Furthermore, we show in
Proposition 2.8 that if T 5 8 and p > 29 is such that 2 is
primitive in GF(p), then the codes A (p , r) are MIX. The
latter property allows us to construct MDS codes over very
large alphabets, indeed.

Lemma 2.1 (c$ [4]): Elements of the form a' and ai + a3
are invertible modulo Mp(x). In other words, if i $ j (modp)
then

gcd(xZ,Mp(x)) = gcd(zz +x3 ,MP(x)) = 1.

Observe that in the ring of polynomials modulo Mp(x),
multiplying an arbitrary polynomial a(tx) by a power of a
corresponds to a cyclic shift, possibly followed by complemen-
tation of all the coefficients of .(a). Hence, a systematic parity
check matrix for the code A (p , r) , defined in the 131-evious
subsection, is given by:

1 1 ...

def

(2)

Equation (2) along with Lemma 2.1 is all we need to show
that our codes are MDS for r 5 3.

Proposition 2.2: The minimum distance of A(p, T) is equal
to T + 1 for T 5 3.

Proof: The claim of the proposition is trivially true for
T = 1. To see that it is true for T = f! note that if exactly
one of the information symbols in the array A is nonzero
then both parity symbols are nonzero by (1). If there are
exactly two nonzero information symbols a, (a) and a3 (a) ,
then at least one of the parity symbols is nonzero, since
up (a) = a, (a) + a3 (a) = 0 implies a3 (CY) = a, (a) and hence

ap+l(a) = aZa2(a) + aJa3(a) = (aZ + aJ)a,(a) # 0

in view of Lemma 2.1.
It remains to consider the case T = 3. We have to show

that a square matrix M consisting of any three coliumns of
the parity-check matrix H (p , 3) of S t (p , 3) , given by (2), is
nonsingular. Note that if M does not contain any of the last
three columns of H (p , 3) , then it is a Vandermonde matrix
whose determinant is given by

where io, 21, i2 are distinct nonnegative integers 5 p - 1. In
view of Lemma 2.1, det M # 0 and hence M is nonsingular. If
M contains one or more of the last three columns of H(p, 3) ,
then expanding the determinant about these columns we again
obtain a Vandermonde matrix. In particular this is true for the
column [010It since for a prime p 2 3 and i = 0,1, . . . , p - 1
the third row entries a2, are all distinct. U

Note that the proof of Proposition 2.2 is quite similar
to the proof of the well-known fact that triply extended
Reed-Solomon codes are MDS [lo, p. 3261. It is also
well known that it is not possible to further extend the
Reed-Solomon codes in this way. However, the sequence of
elements 1, a, a', . . . , ap-l in the ring of binary polynomials
modulo M p (x) is quite different from the sequence of elements
l , ,B,pz,- . . ,pq- ' in thefieldGF(q) = GF(2p-l), wherepis
primitive in GF (4). Indeed, 1, a, a2, . . . , a p - l contains only
a small fraction of all the elements of the ring. Thus we have
the following proposition.

Proposition 2.3: The code A (p , 4) is MDS if and only if
the polynomial 1 + xkl + xkz has no common factors with
Mp(z) , that is

gcd(Mp(x), 1 + xkl + x k 2) = 1

for all 1 5 IC1 < IC2 5 p - 1.
Proof: According to (2), the parity check matrix for

A (P , 4) is
1 1 0 0 0 1

11 a3 a6 .. . a 3 (p - l) 0 0 0 11

We need to consider a square matrix consisting of any four
columns of H(p ,4) . It may be readily seen, using arguments
similar to those of Proposition 2.2, that such a matrix cannot
be singular unless it contains one of the columns [0100It or
[0010It but not both. This leads to the following two cases:

r l 1 1 01

We have

detM1 = (azo + aZ1)(aZ0 + aZ2)(aZ1 + aZ2)

detM2 = (azo + az1)(aZo + aZ2)(aZ1 + a'*)

. (a20+21 + a20+Z2 + a21+Z2)

. (azo + a21 + (2 2 2) .

(3)

(4)

By Lemma 2 1, the first three factors in both (3) and (4)
are invertible in the ring of polynomials modulo Mp(x).
Thus the matrices M I and MZ are nonsingular if and only
if the polynomials f l (x) = zzo+zI + x20+'2 + xz1+2? and
f2(x) = xZo +xzl +IC'? have no common factors with Mp(x).
Without loss of generality, assume that 20 < 2 1 < 22. Further,

532 EEE TRANSACTIONS ON INFORMATION THEORY, VOL 42, NO 2, MARCH 1996

set k l = il-io and k2 = +io, in which case 1 5 kl <
k2 5 p - 1. Then f1(z) = zzo+zl(l + xkz-‘1 + z k z) and
f2(x) = xZo(1+xCk1+xk2) . Yet when k1 and k2 vary through
all the possible values both 1 +zkl +xk2 and 1 + I C ’ ~ - ~ ~ +xkz

0
The condition of Proposition 2.3 is particularly easy to

evaluate when p is such that 2 is primitive in GF(p), as
exhibited by the following corollary.

Corollary 2.4: If 2 is a primitive element in GF (p) and
p # 3, then A(p,4) is MDS.

ProoJ In this case M p (x) is irreducible over GF (2)
(cf. [lo, p. 1971). Thus, gcd(Mp(x) , l + xkl + zkz) # 1
if and only if 1 + xhl + zk2 is divisible by Mp(x) . Since

U
What happens for those primes for which 2 is not primitive

in GF(p)? For some of them, A (p , 4) still has minimum
distance 5. However, for certain values of p , there exist
integers 1 5 i l < i 2 5 p -1 such that

g c d (l + z Z 1 + x z 2 , M p (z)) # 1.

In these cases, according to the proof of Proposition 2.3,
J?l(p,4) contains a codeword of weight 4 whose nonzero
entries are in locations 0,z1, i 2 , and p + 2. For example, for
p = 7, the following is a codeword of weight 4 in A(7,4):

range through the same polynomials.

1 5 k1 < kz 5 p - 1, this only happens for p = 3.

It is easy to see how the argument of Proposition 2.3 may
be extended for values of r greater than 4. Obviously A(p, r)
is MDS if and only if every T X T submatrix of H (p , r) is
nonsingular. Any such submatrix M corresponds to a binary
vector U of length p+r and weight r , where the nonzero
entries of U indicate the columns of H (p , r) contained in M .
Let us write U = (u’lv), where Q is of length T and (. I .)
denotes concatenation. Clearly, the indicator vector Q cor-
responds to the redundant part of the codeword. Hence if
- U = 0 then M is a Vandermonde matrix and is therefore
nonsingular. Thus we need to consider the 2’ - 1 classes of
polynomials corresponding to the nonzero values of 3. For
each such value of g we may compute the determinant g(a)
of the corresponding matrix M and then check whether the
polynomials g(z) and Mp (z) have common factors.

In fact, the number of different classes of polynomials g(z)
that we actually need to check is much less than 2’ - 1. As
we have seen in Proposition 2.3, for r = 4 we only need to
consider one polynomial rather than 24 - 1 = 15. In general,
we have

Theorem 2.5: The total number v(r) of different classes
of polynomials that have to be checked, in order to establish
whether A (p , r) is MDS, is upper-bounded by

?‘-3 + 2rww+1 - T (T - 1) - 1 (5)

where ~ (n) denotes the number of divisors of n different
from 1.

The proof of Theorem 2.5 is deferred to the Appendix.
Indeed, the upper bound of Theorem 2.5 is still exponential
in r. However, since we are primarily interested in small
values of T corresponding to the high-rate codes, the difference
between (5) and 2‘ - 1 is quite significant. In particular, (5)
yields the following upper bounds on the first few values

T 1 4 5 6 7 8

of I/(?-):

v(r) I 1 3 8 16 34

The resulting polynomials g(x) are shown in Table I1 for
r = 4,5,6. These polynomials were obtained by computing
the determinant of the corresponding submatrices of H (p , r) ,
and then factoring out those terms that are invertible modulo
Mp(z) by Lemma 2.1.

Once all the polynomials g(x) have been computed, it
may be checked by direct computer search whether there
exists an assignment of values for k l , k 2 ,
gcd(g(x),M,(z)) # 1 for a given prime p . It follows from
the foregoing discussion that the code A (p , r) is MDS if and
only if no such assignment exists for all the V (T) polynomials
g(x) corresponding to the given value of T . Some of the values
of r and p for which the codes A (p , T) were found to be MDS
using this procedure are listed in Table I.

Indeed, as we have seen in Corollary 2.4, the condition
gcd(g(z),Mp(z)) # 1 is particularly easy to evaluate if
Mp (x) is irreducible over GF (a), which happens if and only if
2 is a primitive element in GF (p) . Thus we have the following
generalization of Corollary 2.4.

Theorem 2.6: If 2 is a primitive element in GF (p) , then:

a) The codes A (p , 4) and A (p , 5) are MDS for all p # 3.
b) The codes A (p , 6) are MDS for all p # 3,5,13.
c) The codes A (p , 7) are MDS for all p # 3,5,11,13.
d) The codes A (p , 8) are MDS for all p # 3,5,11,13,19,29.

Proof: We illustrate the proof for the case r = 5. The
three polynomials g1 (x) , g2 (z), 93 (x) that we need to consider
are given in Table I. Note that each of these polynomials has an
even number of terms and, hence, is divisible by x - 1. Since
Mp(x) is irreducible and (x - l) M p (x) = 2”-1, it follows that
gcd(g;(x),Mp(x)) # 1 if and only if g2(z) Omod(xp-1).
To evaluate gz(z) modulo xp- 1 it would suffice to take the
exponents of the terms in gi(x) modulo p . Thus clearly

gZ(x) = 1 + zkl + xk2 + zk3 $ 0 mod (xp-1).

Further

gI(z) = l+xkl+zkz +xZk1 +x2k2 +zk1+k2 0 mod (zp-1)

if and only if the set of exponents { 0, IC1 , k ~ , 2k1,2k2, k l + k2}
may be partitioned into three pairs {a , b } , { e , d } , and { e , f }
such that

U e b c = d e f (modp).

Any such partition leads to a system of equations in kl , I C 2 , k3
modulo p . It is easy to see that none of these systems of

BLAUM et a1 MDS ARRAY CODES WITH INDEPENDENT PARITY SYMBOLS

‘ Symbol size Redundancy

P r = 4 r = 5 r = 6 r = 7 r = 8

3 0 0 0 0 0

5 0 0 0 0 0

7 e 0 e e 0

11 0 0 0 e 0

533

73 0 0 0 It
79 0 0 0 0

a3 0 0 0 0 0

89 0 e e 0 0

97 0 0 0 0

101 0 0 0 0 0

103 0 0 0 0

107 0 0 0 0 0

109 0 0 0 0 0

113 0 0 0 0 0

TABLE I
SOME VALUES OF p AND T FOR WHICH A(p, T) IS MDS

o-The code is MDS ; .-The code is not MDS
Those primes p for which Mp(z) is irreducible are set in boldjace.

29
31
37
41
43
47
53
59
61
67
71

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

equations has a feasible solution, unless p = 3. For instance

kl + k2 0
2k2 = k1

2k1 k2

leads to 3k1
Similarly, for

0 (modp), which is only possible if 17 = 3.

g3(2) = z k : + X ~ Z + z k 3 + z k l + k 2 + , ~ ; ~ l + k 3 + x k ~ t k 3

we obtain

IC2 + IC3 IC1
k1 +IC3 IC2

k-1 +k-2 k3

implying 2kl F 0 (modp), which is a contradiction. This
establishes part a). To prove b), c), and d) we enumerate
for each T = 6,7,8 over the U(.) test polynomials gi(z)
corresponding to the given value of T . If gi(x) was obtained
by computing a determinant of order m arid contains an even

number t of terms, then the complexity of checking all the
possible partitions of the set of exponents ig gz(x) is O(tm-l).
Referring to Table I11 for the values of m and t, we see that
this may be done in a reasonable time on a contemporary
computer.

It remains to deal with those cases where the number of
terms in gz(x) is odd. These cases may be settled using the
following lemma.

Lemma 2.7: If g(x) has an odd number t of terms and p > t
then gcd (g(x), Mp(x)) = 1, provided M p (z) is irreducible.

xn modMp(x) = xn mod (z” - 1)

Proofi Evidently

unless n is of the form qp - 1, in which case

= - x ~ - - 2 + z + 1 mod M,(z).

Now let g’(z) be the polynomial consisting of all those
terms in g(x) that have the form x 4 P - l for some q, and let
g”(z) = g(z) - g’(x). Note that, by the foregoing argument,
evaluating g”(x) modulo Mp(x) is the same as evaluating
g’’(x) modulo (x” - 1). Furthermore, g(x) E 0 mod Mp(x)
if and only if

g/’(x) g’(z) mod Mp(x). (6)

If the number of terms in g/(z) is even, then g’(z) e 0
mod Mp(x) and (6) becomes

g”(x) = 0 mod (x” - 1). (7)

However, (7) implies that (x - 1) divides g”(z) which is
impossible since the number of terms in g’’(x) is odd in this
case. Hence the number of terms in g’(z) must be odd and
(6) becomes

g”(z) (8)

Clearly, (8) can be satisfied only if g”(z) contains at least
p - 1 terms. But then the total number of terms in g(x) must

0
It follows from Lemma 2.7 in conjunction with Table I11

that we only need to check the test polynomials with an odd
number of terms up to p 5 121. Referring to Table I completes

0

We note that it would be hardly possible to extend the
method of proof of Theorem 2.6 for values of T significantly
greater than 8, since the complexity of the proof increases
exponentially with T . However, it is the low-redundancy MDS
codes corresponding to the first few values of T that are of
importance for most applications [3], [6], [12], [14]. The
result of Theorem 2.6 enables us to easily construct low-
redundancy MDS codes d(p,r) for very large values of the
symbol-alphabet size p .

xpP2 + xp-’ + . . . + z + 1 mod (z” - 1).

be at least (p - 1) + 1 = p .

the proof of the theorem.

111. DECODING ALGORITHMS
In this section we present decoding methods for correcting

two- and three-symbol errors using the MDS array codes of
Section 11. Notably, the proposed decoders do not require
finite field operations. Instead, the only operations performed

534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

TABLE II
TEST POLYNOMIALS FOR T = 4,5,6.

Four parity columns (r = 4)

m (x) = 1 + xk1 + xb
Five parity columns (r = 5)

Six parity columns (r = 6)

in these decoders are cyclic shifts, bitwise exclusive-OR, and
the operation of testing for cyclic equivalence between two
binary vectors. In terms of the number of such operations, the
decoding complexity is O(p) for two errors and O(p2) for
three errors.

Before we proceed with decoding two and three errors
with A (p , 4) and A(p, 6), respectively, let us briefly consider
correcting a single error with A (p , 2) . For this case, the parity-
check matrix, as defined by (2), is

Let B = [bZ3] be the error-corrupted array. Write

B = (~ O (~) , ~ l (~) , . . . , ~ ~ + l (~))

and assume that at most one column is in error. Now, define
the horizontal and diagonal syndromes by

P

so(a) = @ bz(a) (10)
z=o

P - 1

Sl(Q) = bp+l(Q) (1 1)

Assuming that the jth column is in error, and that the error
value is e(a), we obtain

SO(Q) = e(&) (12)
SI(&) = a3e(ac) (13)

provided 0 5 j 5 p - 1. Combining (12) and (13), we have

Hence, the location in error is given by the first integer j
satisfying (14). If no such j exists and one of SO(Q), s l (a)
is nonzero, then there is an error in the corresponding parity
column.

A. Correcting Two Symbols in Error

j th syndrome with respect to the parity-check matrix (2) by
We start with some notation. As in (10) and (€1), define the

for j = 0 , l , . . . , T- 1 (15)

BLAUM et a1 MDS ARRAY CODES WITH INDEPENDENT PARITY SYMBOLS

TABLE I11
THE ORDER m AND THE NUMBER OF TERMS t

IN THE TEST POLYNOMIALS FOR T = 4,5 ,6 ,7 ,8
The polynomiak are represented by thc set of zero

positionsinv(a1 = 0, uz,...,um-l, a, = 7-1).

T polynomial m t

4 (0,1,3) 3 3

3 10
3 9
4 10
4 12
4 18
4 13
,5 5
5 10

3 15
3 3
4 20
4 I9
4 28
4 38
4 28
5 15
5 20
5 40
5 35
5 31
5 20
6 6
6 15
6 20

=

r polynomial m t -
8 (0,1,7) 3 21

(0,2',7) 3 15

(0,1,2,7) 4 35
(0,1,3,7) 4 28
(0,1,4,7) 4 38
(0,1,5,7) 4 52
(0,1,6,7) 4 67
(0,2,3,7) 4 50
(0,2,4,7) 4 36
(0,2,5,7) 4 49
(0,3,4,7) 4 54

(0,1,2,4,7) 5 35
(0,1,2,5,7) 5 71
(0,1,2,6,7) 5 1.05
(0,1,3,4,7) 5 80
(0,1,3,5,7) 5 60
(0,1,3,6,7) 5 85

(0,2,31,5,7) 5 50
(0,2,3,6,7) 5 65

(0,1,2,3,4,7) 6 21
(0,1,2,3,5,7) 6 30
(0,1,2,3,6,7) 6 75
(0,1,2,4,5,7) 6 75

(0,1,2,5,6,7) 6 '111
(0,1,3,4,5,7) 6 69
(0,1,3,4,6,7) 6 'I21
(0,2,3,4,5,7) 6 31

(0,1,2,3,4,5,7) 7 7
(0,1,2,3,4,6,7) 7 21
(0,1,2,3,5,6,7) 7 35

(O,I,7) 3 18

(0,1,21,3,7) 5 35

(0,2,3,4,7) 5 lL20

(0,1,2,4,6,7) 6 66

-

where B = &(a), bl(a), . . . , bP+.-1(ct)) is the received
array, and all the operations are modulo Mp(x) . As in (14),
the decoding algorithms presented in the sequel heavily rely
on the operation of testing whether for some 0 _< k 5 p-1
we have U(.) = akb(a). If such a relation holds we say that
the polynomials a(a) and b(a) are cyclically equivalent and
denote U(.) G b(a). An efficient technique for establishing
cyclic equivalence may be found in Shiloach [15]. Note that,
in view of Lemma 2.1, if .(a) = b (a) there exists a unique
integer I C , such that .(a) = akb(a) and 0 5 k 5 p-1.

We now describe a procedure for correcting up to two
symbol e r r w using the codes A(p,r) for T 2 4. Indeed, we
assume throughout that p and T are sac11 that the minimum

would suffice to correct only those errors that occurred in
the information part. Let SO (a) , SI (a) , 92 (a) , s3 (a) be the
syndrome values as defined in (15). The following algorithm
finds the error locations, provided no more than two errors
have occured.

distance of s l (p , r) is 2 5. Since A(P,T) is systematic, it

535

Algorithm 3.1 :
1) If at least two of the syndromes so(a),sl(a),s2(a),

s3(a) are zero, declare no errors in the information and
stop. Otherwise initialize I t -1.

2) Set I t 1 + 1. If I = p declare that more than two errors
occurred and stop.

3) Compute:

4) If at least two of the polynomials y , (a) and y , (a) in
(16) are zero and these polynomials are consecutive,
namely j = z + 1 (mod 4), declare a single error in
the information, at position 1, and stop.

5) If y2(a) $ p ~ (a) goto 2). Otherwise, let IC be such that

6) If y 3 (a) $ akyyz(a) goto 2). Otherwise, declare errors

Note that multiplication by a modulo M P (z) is essentially
a cyclic rotation, possibly followed by complementing all the
bits of the result. We will refer to such operation as rotation
modulo MP(x) . Thus in the worst case the computational
complexity of Algorithm 3.1 is 5p rotations modulo MP(x),
9p + 4 vector additions and/or comparisons, and p tests for
cyclic equivalence using [151. Furthermore, the computation
of the syndromes SO (a) , s 1 (a) , s2 (a) , s3 (a) requires about 4p
rotations modulo M P (x) and vector additions.

We presently show the correctness of Algorithm 3.1. In the
following we assume that r symbol errors have occurred.

Proposition 3.1: Algorithm 4.1 produces the true error lo-
cations, provided T 5 2.

Pro08 Assuming r 5 2, it is obvious that there are no
errors in the information part if and only if at least two of the
syndromes are zero. Thus step I) of the algorithm is correct,
and we need to distinguish between three cases.

Case 1: A single symbol error el(a) at position il in the
information part. The syndrome values are given by

Y 2 (4 = a"yl(a).

at positions I and k , and, stop.

Case 2: A single symbol error e l (a) at position il in the
information part and a single error in the redundancy part.
Here some three syndrome values are given by (17) and the
other one is arbitrary.

Case 3: Two symbol errors el(a) and e2(a) at positions i l
and i z in the information part, The syndrome values are

536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

Let us consider Case 3 first. In this case, for 1 = il we have
in step 3) of the algorithm

yl(a) = azlel(a) + a22e2(a) + a21el(a) + ailez(a)

y2(a) = aZ21el(a) + a2Qez(a) + a21+z1el(a)

= az2e2(a) + at1e2(a)

+ aZ2+z1 eda)

y s (a) = ~ ~ ~ ~ 1 e ~ (a) + a3~2e2(a) + a2z++z1e1(a)
= aZzze2(a) + a22+z1eZ(a)

4.) + a222+21

= c1i~~2e~(a) + a222+z1e2(a)

Hence, for k = i2

akyl(a) = aZ22e2(a) + a22+z1eZ(a) = yz(a)
aky2(a) = a322e2(a) + a222+z1ez(a) = y3(a)

Thus Algorithm 3.1 would correctly declare errors at locations
I = il and k = 22 . It remains to be verified that no other values
of 1, k # 2 1 , iz can be obtained as output of the algorithm.
Assume to the contrary that thkre are two such values I and k .
Define &(a) by the equation yl(a) = a'&(a) + ake"z(a),
or equivalently

S l (Q) + a'so(a) &(a) =
a' + a k

Note that &,(a) is well-defined since (a' + a') is invertible
mod A&(%) in view of Lemma 2.1. Further define &(a) =
SO (a) - E2 (a) . Using the relations between y1 (a) , y-2 (a) , y3 (a)
and the syndromes, along with the fact that

y1(a) = a%z[a) + a"z(a>

Y Z (Q) = a"&)

y3(a) = akyz(a)

it may be easily verified that the errors &(a) and &,(a) at
positions 1 and k produce the same syndrome values as the
errors el(a) and eZ(a) at positions i l and 22. This clearly
contradicts the fact that the minimum Hamming distance of
A@,r) is 2 5 . Hence, the algorithm decodes correctly if
we are in Case 3. Finally, if we are in Case 1 then for
1 = 2.1 we have yl(a) = y ~ (a) = y3(a) = y 4 (a) = 0,
while if we are in Case 2 then for 1 = il at least two
consecutive polynomials in (16) are zero. Furthermore, if some
two consecutive polynomials in (16) are zero for some 1, we
can always construct an error pattern consisting of a single
error in position I in the information, and possibly a single
error in the redundancy, which produces the syndrome values
SO (a) , SI (a) , s2 (a) , s3 (a) . An argument similar to the above
can be now employed to show that Algorithm 3.1 correctly

0

Once the error locations have been found using Algorithm
3.1, the error values may be determined as follows. In case
of a single error'at position I , the error value is given by
el(a) = c?sh(a), where sh(a) is any "redundancy-error
free" syndrome. For instance, if yz(a) = y3(a) = 0 are the
two consecutive polynomials in step 4) of Algorithm 3.1, we

terminates at step 4) with 1 = il.

may always take h = j-1. In case of two errors at positions
I and k , the error values are

Notice that the inverse of (a' + a k) exists by Lemma 2.1, and
may be computed as follows.

Lemma 3.2 (c$ (41): Let

p - 2

z=o

For any 5 f 1 (modp), the coefficients of the unique solution
w--2

for

4.) 6(a) = ~

a1 + ak

are given by'
23-1

for j = 1 , 2 , - . . ,p - l , and b,-l = 0.
ExampEe 3.1: Consider the code A(5,4). Assume that the

all-zero is the original codeword, and that the error-corrupted
array is given by:

B =

Calculating the syndromes as in (15) we obtain

S0(Q) = l + a 2 + a 3 = (1011)
s l (a) = 1 f a 3 = (1001)
s2(a) = a+a-2+a3 = (0111)
sg(a) = a2 = (0010) .

y1(a) = %(a) +SO(Q) = (0 0 1 0)
y2(a) = sz(a) + % (a) = (1 1 1 0)
y3(a) = S3(Q) + S 2 (Q) = (0 1 0 1)
y4(a) = s3(a) +so(a) = (1 0 0 1) .

Algorithm 3.1 starts with 1 t 0 at step 3). In this case we have

Clearly yz (a) f y1 (a) , so the algorithm goes back to step 2)
where I t 1. For 1 = 1 we have

y1(a) = s1(a) +aso(a) = (0011)
yz(a) = sz(a)+as1(a) = (1100)
y3(a) = S 3 (Q) +asz(a) = (1110)
y4(a) = s 3 (a) +a3so(a) = (1100).

Now y2(a) = a3y1(a) and y3(a) = a3y2(a). Hence the al-
gorithm correctly declares that the errors occurred in positions
1 and 3. These errors are corrected using (18) and Lemma 3.2.

'The notation (z)~ is used throughout this paper to denote the unique
integer z', such that z' E z (modp) and 0 5 z' 5 p - 1.

BLAUM et al: MDS ARRAY CODES WITH INDEPENDENT PARITY SYMBOLS

~

531

TABLE IV

(Here .(a) and &(a) are arlitrary values of the errors in the redundancy part.)
ALGORITHM 4.2-sINGLE ERROR IN THE bFORMATION

Error positions

TABLE V

(Here e(a) is an arbitrxy value of the error in the redundancy part.)
ALGORITHM 4.;!-'bO ERRORS IN THE INFORMATION

Y z (a) Y 3 (4 y4(a) . Error positions

0 0 0 0
d+'e(a) 0 0 0

(a3 +a')e(a) aJ+le(a) 0 0
e (a) ('a3 + a')e(a) d+ 'e (a) 0

0 e (@) (ai ++(a) B+'e(a)
0 0 e (a) (d +a')e(a)
0 0 0 4 4

B. Correcting Three Symbols in Error

The algorithm for correcting up to r = 3 symbol errors with
A (p , T-) for r 2 6 is in principle similar to Algorithm 3.1.
As before, let s j (a) for j = 0,1, . . . , 5 be the syndromes
with respect to H (p , r) , computed as in (15). The following
algorithm produces the error locations.

Algorithm 3.2:
1) If at least three of the syndromes so(a),sl(a),sz(a),

s3(a), s*(a), sg(a) are zero, declare no errors in the
information and stop. Otherwise, initialize 1 + -1.

2) Set I c I + 1. If I = p declare that more than three
errors occurred and stop. Otherwise, compute

Z1(Q) = Sl(Q) + aZs0(a)
z2((.) = s2(a) +ah(.)
Z 3 (Q) = S3(Q) +ah((.)
24(a) = s4(a) + a2s3(a)
Z.5(") = %(a) + aLL(a)

3) If the polynomials z l (a) , ZZ(Q), z3(a), x q (a) , x g (a) are
as given in Table IV declare a single error in the
information, at position I , and stop. Otherwise, initialize
j + -1.

53s IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 42, NO 2, MARCH 1996

4) Set j t j + 1. If j = 1 goto 2). Otherwise, compute

Yl(a) = z2(a) + aJz1(QI)

y2(a) = x3(a) + Q 3 2 2 (Q)

y3(a) = z4(a) + a3z3(Q)
Y 4 (Q) = z 5 (a) + ajx4(4

5) If the polynomials y1 (a) , y2 (a) , ~3 (a) , 94 (a) are as
given in Table V declare two errors in the information,
at positions j and 1, and stop.

6) If y2 (a) 8 y l (a) goto 4). Otherwise, let k be such that

7) If either y S (a) #aky2(a) or y4(a) # aky3(a) goto 4).
Otherwise, declare three errors at positions j , k , and I ,
and stop.

Note that the table lookup at steps 3) and 5) of the
algorithm may be avoided at the expense of some additional
computations. Consider for instance step 3). Clearly, there is
a single error in the information if and only if some four out
of the six syndromes sO(a) , s l (a) , s2(a), s3(a), s~(Q) , s5(a)

are appropriate rotations of each other mod Mp(x) , while the
other two are arbitrary. Comparing a polynomial

y2 = akyl(a).

.(a) = sJa) + aks,(a)

to zero is equivalent to testing whether s3 (a) is a kth rotation
of s Z (a) modulo M p (z) . Hence, instead of the table lookup in
step 3) we could proceed as follows. Compute

z1(a) = s1(a) + also(a)
z2(a) = s2(a) + a h (a)
X S (Q) = s3(a) + a1s2(a)
z4(a) = s4(a) + a1s3(a)
z5(a) = s5(a) + aZs4(a)
&(a) = s g (a) + a5h3(a).

(19)

If at least five of the polynomials in (19) are zero, declare a
single error at position 2 and stop. Otherwise, if at least three
of the polynomials in (19) are zero, compute

z7(a) = S3(Q) + a32sO(a)
xs(a) = s ~ (Q) + a31s1(a) (20)
~ ~ (0) = s 5 (a) + Q ~ ~ s ~ (Q) .

If at least one of the polynomials in (20) is zero declare a
single error at position 1 and stop. Otherwise, if exactly two
polynomials z,(a) and q (a) in (19) are zero and j - i
1 , 3 (mod 6) then compute zh(a) , where k = 7 + (z) ~ ,
according to (20). If z k (a) = 0 declare a single error at
position 1 and stop. Otherwise, initialize j t -1 and go to
step 4).

The table lookup at step 5) of Algorithm 3.2 could be
rendered into computations in a similar fashion.

The computations in (19) and (20) are best explained in
terms of a graph in Fig. 1, where vertices are the six syndromes
and edges labeled z, are either present or not according as
z ; (a) = 0 or z,(a) # 0 in (19) and (20). Clearly, there is
a single error at position 1 if and only if the resulting graph
contains a connected subgraph with four vertices.

Fig. 1. Relations between the syndromes in Algorithm 4.2.

Proposition 3.3: Algorithm 4.2 produces the true error lo-
cations, provided at most three symbol errors have occurred.

The proof of Proposition 3.3 involves considering the var-
ious cases of errors in the information part and in the redun-
dancy part. It is, in principle, similar to the proof of Proposition
3.1 and is therefore omitted.

Note that most computations in Algorithm 3.2 are of the
same type. In fact, Algorithm 3.2, as well as Algorithm 3.1,
may be carried out using only three kinds of operations

?
testing for cyclic equivalence: .(a)

0 rotate and add: c(a) t .(a) + akb(a)
* comparison with zero: .(a) 2 0.

b(a)

Each of these operations is readily implementable in special-
purpose hardware. The worst case complexity of Algorithm
3.2, not including the syndrome computation and the table
lookup, is given by i p (p - 1) tests for cyclic equivalence,
p (3 p + 2) rotate-and-add operations, and p (p - 1) + 5 compar-
isons with 0. In the same terms, the worst case complexity of
Algorithm 3.1 is p tests for cyclic equivalence, 5p rotate-and-
add operations, and 51, + 4 comparisons with 0.

Once the error locations have been computed, the error
values may be reconstructed as follows. In case of a single
error at position I, we have el(a) = a-lhsh(a), where sh(a)
is any of the four connected vertices in Fig. 1. In case of two
errors at positions j and 1, we have

a - (+ l) j z z 0 ff

eZ(t.1 = a-i’ (s , (a) + a2Je2(a))

where i E {1,2,3,4} is such that y,[a) = 0, and the division
in (21) is computed as in Lemma 3.2. In case of three errors
at positions j , k , 1, we employ the results of [4] to arrive at

(21) el(a) = a j + al

Yl(a)
(a k + a”(ak + ai)

el(a) =

z ~ (Q) + (ak + a’)el(a)
a3 + a1 .2(‘.) =

e3(a) = SO(^) + el(a) + e2(a).

and

This completes the error-correction procedure.

BLAUM et al: MDS ARRAY CODES WITH INDEPENDENT PARITY SYMBOLS 539

Finally, it is worth mentioning that Algorithm 3.2 in effect
amounts to p successive invocations of a slightly modified ver-
sion of Algorithm 3.1 with z ~ (Q) , z ~ (Q) , . . . , xg(a) substituted
for the syndrome values. This provides a way to extend our
approach to the correction of an arbitrary number of errors.
In order to correct T symbol errors with ,4(p,r) for T 2 27,
compute for each 1 = O , l , . - . , p - 1

21(a) = s1(a) + a"o(a)
"2(.) = S2(Q) + &(a)

and substitute z ~ (Q) , z ~ (Q) , . . . , zzT-l(a) for the syndrome
values into an appropriately modified version of the decoder
for A (p , r-2) . However, the complexity of such a decoding
scheme is obviously 0 (p T - ') . At present we do not have a
technique which would allow to avoid exponential complexity
and finite field operations at the same time. Nevertheless, for
the small values of T = 2 and 7 = 3 the proposed decoding
algorithms are quite feasible.

Iv . OPnMALITY OF THE UPDATES

In this section we address the issue of updating the parity (or
redundancy) symbols following an update in the information.
Let C be a systematic linear (n, k) code over GF (2"), and
assume that the symbols of C are represented as binary m-
tuples. We define q(C) to be the average number of parity
bits affected by a change in a single information bit in C.
More precisely, for any g = (co, c1, . . . , cn - 1) E C let wt (c2)
denote the Hamming weight of the ith symbol in c regarded
as a binary m-tuple, and let

k-1

5 = {(CO,Cl,...,Cn-1) E c : W t (C Z) = l } (22)
2=0

be a subset of C consisting of all the codewords that contain
a single nonzero entry in the information part. Then

n-1

This parameter q(C) is of crucial importance in storage iippli-
cations that require frequent updates of information. Indeed,
in such applications it is desirable to use codes for which
q(C) is as small as possible. This is precisely the property P3
mentioned in the Introduction.

Herein we prove upper and lower bounds on q (C) for
MDS codes over GF(2"). In particular, we show that if
C = A(p,r) , with symbols of size p-1, then q(C) is . upper-
bounded by 2r - 1. It follows, therefore, ithat for our codes
q(C) does not depend on the size of the symbols. In contrast,
it is shown that for Reed-Solomon codes, as well as for the
MDS codes of Blaum and Roth [4], q(C) increases linearly
with the symbol size. Thus our codes are indeed more suitable
for use with very large symbols.

Proposition 4.1: For C = A (p , r) , we have

2(r-1)

P
q(C) 2r - 1 - -.

Proof: Consider column 0 in any codeword of A (p , r) .
If any one of the p - 1 bits in this column is changed, we
need to make exactly r updates-one in each parity symbol.
Therefore, column 0 requires a total of (p - 1). updates.
Now consider column I , where 1 5 1 5 p-1. For each of
the p - 1 information bits in this column we shall count
the number of parity bits that are affected by a change in
that bit. Consider first the r - 1 information bits in entries
((- i l - l) p , l) for i = l , 2 , . . . , r - 1. Since p is prime we
have (-il-l)p # (-jl-l)p for all 1 _< i < j I r-1,
which implies that all these entries are distinct. When entry
((- iZ- l)p , 1) is changed, one has to to update all the p - 1
bits in parity column p + i , as well as one bit in each of the
parity columns p + j for j = 0,1, . . . , i - 1, i + 1, . . . , r - 1.
This gives a total of (r - l)(p + r - 2) updates for these T - 1
information bits. The remaining p - r bits in the Zth column
require r updates each. Thus the total number of updates for
all the bits in column 2 is (r - 1) (p + r - 2) + r (p - r) . Since
1 # 0, but otherwise arbitrary, we may now compute

P - 1
(P - 1). + c [(. - l) (P + 7- - 2) + r(P - 7-11

= 2 r -
2(r-1)

1--. U
P

For instance, if r = 1 then q(C) = 1 which corresponds
to the trivial parity code, and is obviously optimal. For
C = A (p , 2) we have q(C) = 3 - 2 / p M 3. In general, for
A (p , r) the average number of updates can be approximated
by q(C) M 2r - 1, which indeed does not depend on the size
of the symbols.

However, is 2r - 1 optimal for MDS codes with the
parameters of A(p,r)? A trivial lower bound for an MDS
code C with minimum distance r + 1 is q(C) 2 r, since a
change in any information bit must affect all r parity symbols.
It is an interesting open problem to narrow the gap between
the upper and lower bounds r 5 q(C) 5 2r - 1 for MDS
codes with the parameters of A (p , r) . We presently show that
the lower bound is unattainable for r 2 2.

Proposition 4.2: Let C be an MDS code with symbols of
size p - 1 bits, having at least p information symbols and r
parity symbols, where r 2 2. Then q(C) > r.

Proof: We will assume that q(C) = T and reach a
contradiction. W.1.o.g. suppose that the number of information
symbols is p , and let S be the subset of C as defined in (22).
Clearly, IS(= p (p - 1). It is also clear that for every codeword
in S none of the r parity symbols is zero, since otherwise the
minimum distance of C would be 5 7'. Moreover, since we
assume that q(C) = r, each parity symbol in every codeword
of S has weight exactly 1. Hence, there are at most (p - 1)2
distinct ways to choose the first two parity symbols in a
codeword of S. Since IS1 = p (p - 1) > (p - 1)' it follows
that there are some two codewords U , g E S which coincide in

540 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

the first two parity symbols. But then the Hamming distance
between and 2 is at most T , contradicting the assumption
that the minimum distance of C is T + 1. 0

The proof of Proposition 4.2 is based on the fact that the
number of information symbols is sufficiently large relative to
the size of the symbols, and applies to both linear and nonlinear
codes. Next we show that for linear MDS codes we cannot
have q(C) = r even if there are only two information symbols.
This claim is slightly stronger than that of Proposition 4.2.

Proposition 4.3: Let C be a linear MDS code having at
least two information symbols and r parity symbols, where
T 2 2. Then q(C) > r.

Proofi Again, we assume that 7(C) = r and reach a
contradiction. Let the first two symbols in each codeword of
C be information symbols, and define

SO = { (C O , ~ 1 , . . . , ~ ~ - 1) E C : wt (CO) == 1 and wt(c,) = 0
for z = 1 , 2 , . . . , n -~ - l }

for z = 0 , 2 , 3 , . . . , n-T-1 }
Si = { (CO, ~ 1 , . . . , ~ ~ - 1) E C : Wt (~ 1) 1 and wt (c,) 1 0

If (CO, c1, . . . , cnL1) and (eh, c;, . . . , cLP1) are any two code-
words in SO then clearly

CL-, # Cn-rr cd-r+l # cn-r+l,. ' . 1 cl-1 # en-1

since the minimum distance of SO is r+l. Furthermore, by the
assumption q(C) = T it follows that

wt (cnpr) = wt (cn-r+l) = . ' . = wt (Cn-1) = 1

for any (CO, c1,. . . , cn-l) E SO. Hence

SO = cc = (l,Q,Q,...,Q,~,l,...,~) --
n-r CE S O r

where Q , l denote the all-zero and all-one binary columns,
respectively. By a similar argument

31 = E. = (0,l,0,0,..~,0,l,l...,1). --
n-r GESl r

But then by linearity of C we have

so $ 2 , = (l,l,Q,Q,. . . ,Q) E c
which contradicts the fact that the minimum distance of C is
r S l L 3 . 0

We note here that, although Proposition 4.3 is stronger
than Proposition 4.2, the proof technique of Proposition 4.2
can be used to show that in any sufficiently long MDS code
q(C) must increase linearly with the symbol size. Consider,
for instance, Reed-Solomon codes over GF (2") with O(Zm)
information symbols. Then the size of the set S C C as defined
in (22) is O(m2"). Now assume that q(C) 5 X where X does
not depend on m. Then the number of ways to choose the
first two parity symbols in a codeword of S is upper-bounded
by O(m2'), which is less than O(m2") for any constant X
and sufficiently large m. Hence, as in the proof of Proposition
4.2, we arrive at a contradiction with the minimum distance
property of the code. This implies that in Reed-Solomon codes
with O(2") information symbols q(C) must increase with the

symbol size. A more careful counting argument along the same
lines shows that in fact q(C) increases linearly with the size
of the symbols. This follows essentially from the fact that for
n 4 CO we have

for any sublinear function g (n) .
As shown above, the fact that for Reed-Solomon codes the

average number of parity updates is high follows simply from
the fact that these codes are long relative to the size of their
symbols. However, if the number of information symbols in
a code G is small relative to its symbol size, this does not
necessarily mean that q(C) will be low. Consider, for instance,
the MDS array codes of Blaum and Roth [4]. These codes have
symbols of size p - 1 and contain r information symbols less
than the codes A(p,r) . Thus each codeword is a (p-1) x p
binary array where the last T columns may be taken as the
parity symbols. Assume for the time being that r = 2 and
let uP-2(a), up- l (a) denote the parity columns. It may be
shown that if a single information bit in column J and row i
is updated, where 0 5 j 5 p-3 and 0 5 i 5 p-2, then the
parity columns must be recomputed as follows:

up-2(QI) + up-2(a) + aZfl + at+2 + . ' ' + a2+3+1

Uppl (Q) + up-l(QI) + at + QZ+l + . . ' + a 2 + 3 + l (23)

with all operations taken modulo M P (z) . Using (23) and
averaging over all i , j we find that q(C) = $ p + 1. Thus it
follows that in the Blaum-Roth codes v(C) increases linearly
with the symbol size, even though the codes of [4] are shorter
than our codes. In fact, it was this shortcoming of the codes
of Blaum and Roth [4] that originally motivated us to develop
the codes presented in this paper. The new codes combine
the advantages of the Blaum-Roth codes (MDS, encoding and
decoding without finite field operations) with low v(C).

V. CONCLUSIONS
We have presented a new family of MDS array codes whose

codewords are (p-1) x (p+r) binary arrays with r independent
parity columns, where p 2 3 is a prime number. This family
extends previously known results of [2], [4] for T = 2. We
proved that the new codes are MDS for r 5 3, and gave
necessary and sufficient conditions for these codes to be MDS
for T 2 4. Using these conditions, we have shown that the
new codes remain MDS up to r 5 8 if p > 29 is such that
2 is primitive in GF (p) . Decoding procedures which do not
require finite field operations were presented for up to three
symbol errors, extending the previously known results of [4]
for the case of a single symbol error. Finally, we developed
upper and lower bounds on the average number of parity bits
affected by an update in an information bit, showing that for
our codes this number does not depend on the symbol size.
This property makes the new codes mOre suitable for use
in storage applications requiring large symbols and frequent
data updates, such as M I D architectures and/or holographic
recording [171, than the conventional Reed-Solomon codes or
the array codes of Blaum and Roth [4].

BLAUM et al: MDS ARRAY CODES WITH INDEPENDENT PARITY SYMBOLS 541

Lemma A.2: W.1.o.g. it may be assumed that vT-l = 0, or
equivalently, that a , = T - 1.

Proofi If v,-1 = 1 then expanding about the columns
corresponding to the nonzeros in 2 produces a determinant
which does not contain any entries from the last row of
H (p , r) . Such a determinant corresponds to the case r’ < r ,

U
For example, the vectors g = (01001) and g = (00101)

for T = 5 correspond to (3) and (4), respectively, already
considered for T = 4.

Note that an argument similar to Lemma A.l implies that

and must have been already considered earlier.

D(a1,a2,. . . ,a,; ao , i1 , . . . , im- l)

D(a1 ,a2 , . . . ,am; O,kl,...,k,-l)

is invertible modulo MP(x) if and only if so is

where k, = a, - io and

APPENDIX
This appendix contains the proof of Theorem 2.5, which

gives an upper bound on the number of different classes of
polynomials that must be checked to establish whether .A(p, T)

is MDS. Recall that A (p , T) is MDS if and only if every T X T

submatrix of H (p , r) is nonsingular. Any such submatrix M
corresponds to a binary vector U = (U’ I g) of length p + r
and weight r, where the nonzero entries of U indicate the
columns of H (p , r) contained in M.The vector g of length
T corresponds to the redundant part of the codeword, and
we only need to consider the case where g is nonzero, since
otherwise M is a Vandermonde matrix.

We shall write 2 = (vo,v1, . . . , uT- l) and let

0 5 a1 < a2 < .., < a, 5 r-l

be the positions of zeros in g, where m = r - wt (2). Thus
we essentially deal with determinants of ithe type

def
D(a1, u2,. . . , a,; i o , 2 1 , . ’ . , 2,-.1) =

where 0 5 io < i l < . ‘ . < i,-l 5 p - 1 are the positions
of the information columns. Determinants of the type (24)
are known in the literature (cf. [I l l , [16]) as alternarits and
have been shown to be nonzero over the field of real numbers
[13]. For the treatment of altemants over the field of complex
numbers see [9]. However, it appears that the results of [9],
[1 11, [131 are not applicable for polynomials modulo AdP (x).

LemmaA.1: W.1.o.g. it may be assumed that WO =. 0, or
equivalently, that a1 = 0.

Proof: Expanding A4 about the columns corresponding
to the nonzeros in g we obtain the detemiinant

D(a1, ~ 2 , ” . ,am; i o , 21, .. . , L l)

as defined in (24). Now

D(a1, u2,. . . ,a,; i o , . . . ,&-I) =

- - aalzo . . . a a ~ z m - l D(0, u2-a1,. . . , a , -a1; io,. . . , & - I)

D(a1,u2,. . . ,a,; iO,il, . ..,&-I)

D(0, a2-a1,. . . , a,-a1; a o , i 1 , . . . , im- l) .

(v L , ~ i , . . . , v ; - ~) withwh=O. 0

Hence, in view of Lemma 2.1

is invertible modulo MP(x) if and only if so is

However, this determinant corresponds to some vector g’ =

Referring to (2), it is trivial to see that if .A(p, T ’) is nolt MDS
for some T’ < T then A (p , r) is surely not MDS. Therefore,
when checking whether for a certain prime p our codes are
MDS we will consider the values of T in increasing order.
If for a certain value of p we find an r such that A (p , r)
is not MDS, we may eliminate this value of p from further
consideration. In this context we have the following lemma.

1 < k l < k 2 < . . . < k , - l ~ p - l .

We use this fact in the following lemma, showing that the
number of different cases we need to consider may be further
reduced.

Lemma A.3: If the vectors 2 and ‘U‘ are reflections of each
other,thatisvi =v,-l -, forallj=O,l,...,r-l,thenonly
one of these vectors need be considered.

Proofi Let U ; , U ; , . . . , U:, denote the positions of zeros
in 2‘. Then

D(ai,ab, . . - , a i ; O , k l , . . . , km- l) =
- - a(T-l)kla(T-l)h2 . . . &-l)km-l

. D(a1, a2, . . . , am; O , P - ~ I , . . ,p-km-l)

(25)

where we have used the fact that U: = (T-1) - U , for all j.
Indeed, in the ring of polynomials modulo M P (x) we have

x p a - 1 (x - l)Mp(iC)(&-l)P + & - Z I P + . . . + 1)
OmodMp(x).

Hence a P a 3 = 1 and therefore
a (~ - l) h a a , (~ - h) = a ~ a , a (~ - l - - a ,) h - - aaik i

This establishes (25). Observe that when k1, k2, . . . , k,-1
range through all the possible values so do their complements
(P - kl), (P - k2) , . . . , (P - k,). Hence

D(al ,a2, .. . ,am; 0, k1, .. . , km-1)

D(a1, a2, ... ,a,; O,p-k1, .. . ,p-km-l)

and

enumerate over the same polynomials. 0
It follows from Lemmas A.l and A.2 that the number of

different vectors that need be checked for each T does not
exceed 2r-2 - 1. Lemma A.3 further eliminates half of the
remaining vectors that are nonpalindromic, that is, not equal
to their reflections. Since the number of nonzero binary palin-
dromes of length r - 2 is given by 2r(‘-2)/21 - 1, we conclude
that Lemma A.3 eliminates precisely (2r-2 - 2r(T-2)/21) / 2

542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

vectors. Hence, we are left with Y-’ + 2 r(-2)/21 - 1 cases REFERENCES
to consider.

Finally, we can eliminate the cases in which

D(0, a2 , . . . , r-1; 0, k l , . . . , km-l)

is a Vandermonde determinant. This happens whenever a2

divides a, = r-1, and the determinant is given by

D(0, u2,2a2, . . . , r-1; 0, k l , ‘ . . , km-l)

where m stands for (r - l) /u z . Therefore, for each T , we
can further eliminate ~ (r - 1) cases, where ~ (n) denotes
the number of divisors of n different from 1. For instance,
for r = 7 there axe three Vandermonde determinants of
this type: D(0,2,4,6; 0, k l , k 2 , k ~) , D(O,3,6; 0 , k ~ , k z) , and
D(O,6; 0 , k l) . They correspond to the three divisors of 6,
namely 2, 3, and 6.

Combining this argument with Lemmas A.l, A.2, and A.3,
we conclude that the number of different cases to consider is
at most

.(.) 5 r3 + 2r(r-2)/21-1 - 7 (r - - 1) - 1.

This is precisely the upper bound on v(r) given in Theo-
rem 2.5.

ACKNOWLEDGMENT

The authors wish to thank M. Eberhardt for his contribution
to Section I1 of this paper. They are also grateful to the
anonymous referees for comments which helped improve the
presentation of this paper. A. Vardy wishes to thank Hagit
Itzkowitz for her invaluable help.

[l] M. Blaum, “A class of byte-correcting array codes,” IBM Res. Rep. RJ
5652 (57151), May 1987.

[2] M. Blaum, J. Brady, J. Bmck, and J. Menon, “EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, pp. 192-202, 1995.

[3] M. Blaum, H. Hao, R. Mattson, and J. Menon, “A coding technique for
double disk failures in disk arrays,” U S . Patent 5 271 012, Dec. 1993.

[4] M. Blaum and R. M. Roth, “New array codes for multiple phased burst
correction,” IEEE Trans. Inform. Theory, vol. 39, pp. 66-77, 1993.

[5] T. Fuja, C. Heegard, and M. Blaum, “Cross parity check convolutional
codes,” IEEE Trans. Inform. Theory, vol. 35, pp. 1264-1276, 1989.

[6] G. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson,
“Coding techniques for handling failures in large disk arrays,” Rep.
UCB/CSD 881477, Dec. 1988.

[7] R. M. Goodman, R. J. McEliece, and M. Sayano, “Phased burst error
correcting array codes,” IEEE Trans. Inform. Theory, vol. 39, pp.
684-693, 1993.

[8] R. M. Goodman and M. Sayano, “Size limits on phased burst error
correcting array codes,” IEE Elect. Lett., vol. 26, pp. 55-56, 1990.

[9] W. Ledermann, Introduction to Group Characters. Cambridge, UK:
Cambridge Univ. Press, 1977.

[lo] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. New York: North-Holland, 1977.

[l l] T. Muir, A Treatise on the Theory of Determinants. New York Dover,
1960.

[12] D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for redundant ar-
rays of inexpensive disks,” in SIGMOD Int. Conf on Data Management,
(Chicago, IL, 1988), pp. 109-116.

2131 G. P6lya and G. Szego, Aufgaben und Lehrsatze aus der Analysis.
Berlin, Germany: Springer, 1954.

[14] P. Prusinkiewicz and S. Budkowski, ‘‘A double track error-correction
code for magnetic tape,” IEEE Trans. Comput., vol. C-19, pp. 642-645,
June 1976.

[15] Y. Shiloach, “A fast equivalence-checking algorithm for circular lists,”
Inform Proc. Lett., vol. 8, pp. 236-238, 1979.

[16] H. Van de Vel, “Numerical treatment of a generalized Vandermonde
system of equations,” LinearAlgebru AppL, vol. 17, pp. 149-179, 1977.

[17] A. Vardy, M. Blaum, P. H. Siegel, and G. T. Sincerbox, “Conservative
arrays: multi-dimensional modulation codes for holographic recording,”
IEEE Trans. Inform. Theory, vol. 42, no. 1, pp. 227-230, Jan. 1996.

