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Abstruct- A new family of MDS array codes is presenled. The 
code arrays contain p information columns and T indelpendent 
parity columns, each column consisting of p -  1 bits, where p is a 
prime. We extend a previously known construction for 1 he case 
T = 2 to three and more parity columns. It is shown that when 
r = 3 such extension is possible for any prime p. For larger values 
of T ,  we give necessary and sufficient conditions for our codes to 
be MDS, and then prove that if p belongs to a certain class of 
primes these conditions are satisfied up to T 5 8. One of the 
advantages of the new codes is that encoding and decoding may 
be accomplished using simple cyclic shifts and XOR operations 
on the columns of the code array. We devellop efficient decoding 
procedures for the case of two- and three-column erroirs. This 
again extends the previously known results for the case of i i  single- 
column error. Another primary advantage of our codes is related 
to the problem of efficient information updates. We present upper 
and lower bounds on the average number of parity bits which 
have to be updated in an MDS code over GF (2"), following an 
update in a single information bit. This average number is of 
importance in many storage applications wlhich require frequent 
updates of information. We show that the upper bound obtained 
from our codes is close to the lower bound and, most importantly, 
does not depend on the size of the code syimbols. 

Index Terms- MDS codes, array codes, efficient dwoding, 
efficient information updates. 

I. INTRODUCTION 

HIS work is concerned with maximuim distance separable T @IDS) codes, namely, those codes whose minimum 
Hamming distance attains the Singleton bound for a given 
length and dimension [IO]. The Reed-Solomon (RS) codes 
are a well-known example of MDS codes,. However, with RS 
codes, a) the encoding and decoding procedures are performed 
as operations over a finite field, and b) an update in it single 
information bit requires an update in all the parity symbols 
and affects a number of bits in each symbol. Thus (optimal 
redundancy is achieved at the expense of a'dditional corriplexity 
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in the encoding/decoding procedures as well as in the number 
of parity bits affected by an update in an information bit. 

These two properties of RS codes are undesirable for certain 
channels. First, the fact that encoding/decoding is performed 
in a finite field makes it unfeasible to use large symbols, since 
the size of the field grows exponentially with the symbol size. 
Second, the fact that an update in a single information bit 
requires to re-compute most of the parity bits is particularly 
undesirable in storage applications where the stored data has 
to be frequently updated [ 121. 

In this paper, we present a new family of MDS codes 
having the following two properties: a) encoding and decoding 
may be accomplished with simple cyclic shifts and XOR 
operations on the code symbols, without finite field operations; 
and b) an update in an information bit affects a minimal 
number of parity bits. One important application of our codes 
is in storage systems, such as magnetic tapes and RAID 
architectures [2]-[6], [12], [14], where the minimal size of 
the redundant storage, efficient encoding/decoding procedures, 
as well as the complexity of updating the information are of 
crucial importance. 

The new codes we construct are based on recent work 
in array codes [l], [2], [4], [7], [8]. We assume that the 
information is stored in a two-dimensional array of bits. 
Henceforth we shall identify the symbols of an MDS code 
with the columns of such an array. Thus the errors that can 
occur are column errors. 

A trivial example of an MDS array code of this type is a 
simple parity code that can correct a single-column erasure. 
This code is defined by requiring that the last column in the 
array is a parity column, given by the exclusive-OR of the 
other columns. Indeed, this trivial code is MDS, the parity 
column is computed by simple XOR operations, and an update 
in a single information bit results in an update in a single 
parity bit. 

The main contribution of this paper is a generalization of 
this simple code to a family of array codes with the following 
properties: 

P1. The number of parity symbols is one less than the 

P2. The parity columns may be computed by means of 

P3. Update in an information bit affects, on the average, a 

The first nontrivial generalization of the parity code is the 
EVENODD code introduced in [2]. The EVENODD code has 
columns of size p -  1 for a prime p ,  and requires two parity 
symbols. It can correct one error or two erasures. In the next 

distance-the codes are MDS. 

simple XOR operations on the information columns. 

minimal number of parity bits. 

0018-9448/96$05.00 0 1996 IEEE 



530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996 

section, we extend the construction of the EVENODD code to 
a family of codes with T parity symbols, where T > 2. By 
construction, each of the T parity symbols may depend on the 
information symbols, but not on the other parity symbols. This 
is what we mean by “independent parity symbols” in the title. 
Note that this systematic construction preserves the special 
structure of the new MDS codes, which makes it possible to 
avoid finite field operations. In contrast, although the codes 
of [4] can be also made systematic, this would completely 
destroy their structure. 

In Section 11, we show that the new codes are always MDS 
for r = 3. However, if T > 3 this is no longer true in 
general. For larger values of T ,  we give necessary and sufficient 
conditions for our codes to be MDS, and present a table of 
the first few values of p which satisfy these conditions. These 
conditions are particularly easy to evaluate if p is such that 
2 is primitive in GF(p). In fact, we prove that in this case 
our codes are MDS up to T 5 5 for all p # 3, and up to 
T 5 8 for all p @ {3,5,11,13,19,29}. In Section I11 we 
develop decoding algorithms for the new family of codes, 
for the case of two and three symbol errors (T = 4 and 
T = 6, respectively). Notably, these algorithms do not require 
finite field operations. Instead, they may be easily implemented 
using only cyclic shifts and XOR operations on the columns 
of the error-corrupted array. This, in a sense, extends the 
algorithms of [4] which are applicable only for the case of a 
single symbol error. Finally, Section IV deals with upper and 
lower bounds on the average number of parity bits affected 
by an update in a single information bit. We show that the 
upper bound derived by using our codes is not far from the 
trivial lower bound, and, in fact, the trivial lower bound is 
unattainable. In particular, for our codes the average number 
of bits in each parity symbol that are affected by an update in 
an information bit does not depend on the size of the symbols. 
Thus our codes are indeed suitable for use with very large 
symbols. 

11. A NEW FAMILY OF MDS ARRAY CODES 

Let p 2 3 be a prime. We shall deal throughout with 
( p -  1) x n  binary arrays A = [a,,], where az3 is the ith bit in 
the gth column, for z = 0 ,1 , .  . . ,p -2  and j = 0,1 , .  . . , n - 1. 
Unless otherwise stated, we assume that n = p +-r, where 
T is the number of parity symbols (or columns). This yields 
the largest possible length for our codes. Analogous results for 
n < p + T may be immediately obtained by shortening. Write 

A = (ao,al,...,an-l) 

where ao,al,.~.,an-l E GF(2p-l) are the columns of A.  
We shall assume that the columns a,, a,, . . . ,gp-l are the 
information symbols, while the remaining columns are the 
parity, or redundancy, symbols. The problem, then, is how 
to compute the redundant part from the information part, so 
that the properties Pl-P3 are satisfied. 

A. Dejkition of the New Codes 

The array codes of [4] were shown therein to be equivalent 
to the RS codes of length p ,  with operations taken modulo 

the polynomial 
X P - 1  

2-1 + .P-2 + . . ’ + n: + 1. MP(Z) = - - z p - 1  - 

The polynomial Al.(.) is not necessarily irreducible and, 
hence, these codes are not defined over a field, but rather over 
the ring of polynomials of degree 5 p - 2 modulo Alp (z). 

In terms of the ( p - 1 ) x n  array A = (a,,a,, 
we shall view each column a, in the array as a 
modulo Mp(x). It is also convenient to assume that the array 
has an imaginary row of zeros, which makes it a p x n  array. A 
cyclic shift of a column in such array, that is, a multiplication 
by x modulo x p  - 1, can cause the bit corresponding to the 
last row to be nonzero. However, in this case, the arithmetic 
modulo Mp(x) forces to take the complement of the shifted 
column, restoring the zero in the last position. As in [4], we 
shall use the notation 

a(.) = ap-2ap--2 + .  . . + ala + a0 
to denote a polynomial modulo M p ( z ) .  Thus u(a)b(a)  de- 
notes polynomial multiplication modulo Alp (.) 
multiplication of polynomials is written as a(z)b(  
notation, we have the following definition. 

Dejinition: A linear code A ( p ,  r )  of length n = p + r and 
dimension p = n - T over the ring of binary polynomials of 
degree 2 p - 2 modulo Alp(x) is defined by: 

where 
P - 1  

u,+,(a) = @a3Za,(a), f o r j = 0 , 1 , . . . , r - 1  (1) 
2=0 

and @ stands for summation modulo 2. 

Here the first p columns of A are arbitrary information 
symbols, while the last T columns uP(a) ,  u,+l ( a ) ,  . . . , 
u,+,-l(cr) are the parity symbols. Equation (1) specifies 
how the parity columns of A should be computed from 
the information columns. Note that the parity symbols 

, uP+r--l ( a )  depend on the information 
symbols, but not on each other. Thus we refer to these parity 
symbols as independent. 

The fact that the parity symbols in (1) are independent 
is the major difference between our codes and those of [4]. 
This difference is crucial with respect to efficient information 
updates, or equivalently, with respect to property P3 specified 
in the introduction. Referring to (l), it is easy to see that 
updating a single bit in the information part would in most 
cases require updating a single bit in each of the parity 
symbols. In contrast, for Reed-Solomon codes as well as for 
the array codes introduced in [4], updating a single bit in the 
information part would usually require updating most of the 
bits in the redundancy part. This could be quite undesirable 
for many applications, and in particular for reliable storage of 
data which requires frequent updates [ 121. 
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B. The MDS Property 

This subsection is organized as follows. First we prove 
in Proposition 2.2 that the codes A(p,r) defined by (1) 
are indeed MDS for r 5 3. The first case where A ( ~ , T )  
is not necessarily MDS is for T = 4. In Proposition 2.3 
we prove a simple necessary and sufficient condition for 
A ( p ,  4) to be MDS, and then provide an example where this 
condition is not satisfied. Next, we generalize the approach 
of Proposition 2.3 to derive similar necessary and sufficient 
conditions for increasing values of T .  Using these conditions, 
we compile a table of the first few values of p for which 
our codes are MDS, up to r 5 8. Furthermore, we show in 
Proposition 2.8 that if T 5 8 and p > 29 is such that 2 is 
primitive in GF(p), then the codes A ( p , r )  are MIX. The 
latter property allows us to construct MDS codes over very 
large alphabets, indeed. 

Lemma 2.1 (c$ [4]): Elements of the form a' and ai + a3 
are invertible modulo Mp(x). In other words, if i $ j (modp) 
then 

gcd(xZ,Mp(x)) = gcd(zz +x3 ,MP(x ) )  = 1. 

Observe that in the ring of polynomials modulo Mp(x), 
multiplying an arbitrary polynomial a(tx) by a power of a 
corresponds to a cyclic shift, possibly followed by complemen- 
tation of all the coefficients of .(a). Hence, a systematic parity 
check matrix for the code A ( p , r ) ,  defined in the 131-evious 
subsection, is given by: 

1 1 ... 

def 

(2) 

Equation (2) along with Lemma 2.1 is all we need to show 
that our codes are MDS for r 5 3. 

Proposition 2.2: The minimum distance of A(p, T )  is equal 
to T + 1 for T 5 3. 

Proof: The claim of the proposition is trivially true for 
T = 1. To see that it is true for T = f! note that if exactly 
one of the information symbols in the array A is nonzero 
then both parity symbols are nonzero by (1). If there are 
exactly two nonzero information symbols a, ( a )  and a3 (a) ,  
then at least one of the parity symbols is nonzero, since 
up ( a )  = a, ( a )  + a3 ( a )  = 0 implies a3 (CY) = a, ( a )  and hence 

ap+l(a) = aZa2(a) + aJa3(a) = (aZ + aJ)a,(a) # 0 

in view of Lemma 2.1. 
It remains to consider the case T = 3. We have to show 

that a square matrix M consisting of any three coliumns of 
the parity-check matrix H ( p , 3 )  of S t ( p , 3 ) ,  given by (2), is 
nonsingular. Note that if M does not contain any of the last 
three columns of H ( p , 3 ) ,  then it is a Vandermonde matrix 
whose determinant is given by 

where io, 21, i2 are distinct nonnegative integers 5 p - 1. In 
view of Lemma 2.1, det M # 0 and hence M is nonsingular. If 
M contains one or more of the last three columns of H(p,  3 ) ,  
then expanding the determinant about these columns we again 
obtain a Vandermonde matrix. In particular this is true for the 
column [010It since for a prime p 2 3 and i = 0,1, . . . , p -  1 
the third row entries a2, are all distinct. U 

Note that the proof of Proposition 2.2 is quite similar 
to the proof of the well-known fact that triply extended 
Reed-Solomon codes are MDS [lo, p. 3261. It is also 
well known that it is not possible to further extend the 
Reed-Solomon codes in this way. However, the sequence of 
elements 1, a,  a', . . . , ap-l  in the ring of binary polynomials 
modulo M p ( x )  is quite different from the sequence of elements 
l , ,B,pz,- . . ,pq- '  in thefieldGF(q) = GF(2p-l), wherepis 
primitive in GF (4). Indeed, 1, a, a2, . . . , a p - l  contains only 
a small fraction of all the elements of the ring. Thus we have 
the following proposition. 

Proposition 2.3: The code A ( p ,  4) is MDS if and only if 
the polynomial 1 + xkl + xkz has no common factors with 
Mp(z ) ,  that is 

gcd(Mp(x), 1 + xkl + x k 2 )  = 1 

for all 1 5 IC1 < IC2 5 p - 1. 
Proof: According to (2), the parity check matrix for 

A ( P , 4 )  is 
1 1 0 0 0 1  

11 a3 a6 .. . a 3 ( p - l )  0 0 0 11 

We need to consider a square matrix consisting of any four 
columns of H(p ,4 ) .  It may be readily seen, using arguments 
similar to those of Proposition 2.2, that such a matrix cannot 
be singular unless it contains one of the columns [0100It or 
[0010It but not both. This leads to the following two cases: 

r l  1 1 01 

We have 

detM1 = (azo + aZ1)(aZ0 + aZ2)(aZ1 + aZ2)  

detM2 = (azo + az1)(aZo + aZ2)(aZ1 + a'*) 

. (a20+21 + a20+Z2 + a21+Z2 ) 

. (azo + a21 + ( 2 2 2 ) .  

( 3 )  

(4) 

By Lemma 2 1, the first three factors in both ( 3 )  and (4) 
are invertible in the ring of polynomials modulo Mp(x). 
Thus the matrices M I  and MZ are nonsingular if and only 
if the polynomials f l ( x )  = zzo+zI + x20+'2 + xz1+2? and 
f2(x)  = xZo +xzl +IC'? have no common factors with Mp(x). 
Without loss of generality, assume that 20 < 2 1  < 22. Further, 
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set k l  = il-io and k2 = +io, in which case 1 5 kl < 
k2 5 p -  1. Then f1(z) = zzo+zl(l + xkz-‘1 + z k z )  and 
f2(x)  = xZo(1+xCk1+xk2) .  Yet when k1 and k2 vary through 
all the possible values both 1 +zkl +xk2 and 1 + I C ’ ~ - ~ ~  +xkz 

0 
The condition of Proposition 2.3 is particularly easy to 

evaluate when p is such that 2 is primitive in GF(p), as 
exhibited by the following corollary. 

Corollary 2.4: If 2 is a primitive element in GF ( p )  and 
p # 3, then A(p,4) is MDS. 

ProoJ In this case M p ( x )  is irreducible over GF (2) 
(cf. [lo, p. 1971). Thus, gcd(Mp(x) , l  + xkl + zkz )  # 1 
if and only if 1 + xhl  + zk2 is divisible by Mp(x) .  Since 

U 
What happens for those primes for which 2 is not primitive 

in GF(p)? For some of them, A ( p , 4 )  still has minimum 
distance 5. However, for certain values of p ,  there exist 
integers 1 5 i l  < i 2  5 p -1  such that 

g c d ( l + z Z 1  + x z 2 ,  M p ( z ) )  # 1. 

In these cases, according to the proof of Proposition 2.3, 
J?l(p,4) contains a codeword of weight 4 whose nonzero 
entries are in locations 0,z1, i 2 ,  and p + 2. For example, for 
p = 7, the following is a codeword of weight 4 in A(7,4): 

range through the same polynomials. 

1 5 k1 < kz 5 p -  1, this only happens for p = 3. 

It is easy to see how the argument of Proposition 2.3 may 
be extended for values of r greater than 4. Obviously A(p, r )  
is MDS if and only if every T X T  submatrix of H ( p ,  r )  is 
nonsingular. Any such submatrix M corresponds to a binary 
vector U of length p+r and weight r ,  where the nonzero 
entries of U indicate the columns of H ( p ,  r )  contained in M .  
Let us write U = (u’lv), where Q is of length T and ( .  I . ) 
denotes concatenation. Clearly, the indicator vector Q cor- 
responds to the redundant part of the codeword. Hence if 
- U = 0 then M is a Vandermonde matrix and is therefore 
nonsingular. Thus we need to consider the 2’ - 1 classes of 
polynomials corresponding to the nonzero values of 3. For 
each such value of g we may compute the determinant g(a)  
of the corresponding matrix M and then check whether the 
polynomials g(z) and Mp (z) have common factors. 

In fact, the number of different classes of polynomials g(z) 
that we actually need to check is much less than 2’ - 1. As 
we have seen in Proposition 2.3, for r = 4 we only need to 
consider one polynomial rather than 24 - 1 = 15. In general, 
we have 

Theorem 2.5: The total number v(r )  of different classes 
of polynomials that have to be checked, in order to establish 
whether A ( p ,  r )  is MDS, is upper-bounded by 

?‘-3 + 2rww+1 - T ( T - 1 )  - 1 (5) 

where ~ ( n )  denotes the number of divisors of n different 
from 1. 

The proof of Theorem 2.5 is deferred to the Appendix. 
Indeed, the upper bound of Theorem 2.5 is still exponential 
in r. However, since we are primarily interested in small 
values of T corresponding to the high-rate codes, the difference 
between (5)  and 2‘ - 1 is quite significant. In particular, (5) 
yields the following upper bounds on the first few values 

T 1 4 5 6 7  8 

of I/(?-): 

v(r )  I 1 3 8 16 34 

The resulting polynomials g(x) are shown in Table I1 for 
r = 4,5,6.  These polynomials were obtained by computing 
the determinant of the corresponding submatrices of H ( p ,  r ) ,  
and then factoring out those terms that are invertible modulo 
Mp(z )  by Lemma 2.1. 

Once all the polynomials g(x) have been computed, it 
may be checked by direct computer search whether there 
exists an assignment of values for k l ,  k 2 ,  
gcd(g(x),M,(z)) # 1 for a given prime p .  It follows from 
the foregoing discussion that the code A ( p ,  r )  is MDS if and 
only if no such assignment exists for all the V ( T )  polynomials 
g(x) corresponding to the given value of T .  Some of the values 
of r and p for which the codes A ( p ,  T )  were found to be MDS 
using this procedure are listed in Table I. 

Indeed, as we have seen in Corollary 2.4, the condition 
gcd(g(z),Mp(z)) # 1 is particularly easy to evaluate if 
Mp ( x )  is irreducible over GF (a), which happens if and only if 
2 is a primitive element in GF (p ) .  Thus we have the following 
generalization of Corollary 2.4. 

Theorem 2.6: If 2 is a primitive element in GF ( p ) ,  then: 

a) The codes A ( p ,  4) and A ( p ,  5) are MDS for all p # 3. 
b) The codes A ( p ,  6) are MDS for all p # 3,5,13. 
c) The codes A ( p ,  7) are MDS for all p # 3,5,11,13. 
d) The codes A ( p ,  8) are MDS for all p # 3,5,11,13,19,29. 

Proof: We illustrate the proof for the case r = 5. The 
three polynomials g1 ( x ) ,  g2 (z), 93 ( x )  that we need to consider 
are given in Table I. Note that each of these polynomials has an 
even number of terms and, hence, is divisible by x - 1. Since 
Mp(x)  is irreducible and ( x - l ) M p ( x )  = 2”-1, it follows that 
gcd(g;(x),Mp(x)) # 1 if and only if g2(z) Omod(xp-1). 
To evaluate gz(z) modulo xp- 1 it would suffice to take the 
exponents of the terms in gi(x) modulo p .  Thus clearly 

gZ(x) = 1 + zkl  + xk2  + zk3 $ 0 mod (xp-1). 

Further 

gI(z) = l+xkl+zkz +xZk1 +x2k2 +zk1+k2 0 mod (zp-1) 

if and only if the set of exponents { 0, IC1 , k ~ ,  2k1,2k2, k l  + k2} 
may be partitioned into three pairs {a ,  b } ,  { e ,  d } ,  and { e ,  f }  
such that 

U e b  c = d e f (modp). 

Any such partition leads to a system of equations in kl , I C 2 ,  k3 
modulo p .  It is easy to see that none of these systems of 
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‘ Symbol size Redundancy 

P r = 4  r = 5  r = 6  r = 7  r = 8  

3 0 0 0 0 0 

5 0 0 0 0 0 

7 e 0 e e 0 

11 0 0 0 e 0 

533 

73 0 0 0 It 
79 0 0 0 0 

a3 0 0 0 0 0 

89 0 e e 0 0 

97 0 0 0 0 

101 0 0 0 0 0 

103 0 0 0 0 

107 0 0 0 0 0 

109 0 0 0 0 0 

113 0 0 0 0 0 

TABLE I 
SOME VALUES OF p AND T FOR WHICH A(p, T )  IS MDS 

o-The code is MDS ; .-The code is not MDS 
Those primes p for which Mp(z) is irreducible are set in boldjace. 

29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

equations has a feasible solution, unless p = 3. For instance 

kl + k2 0 
2k2 = k1 

2k1 k2 

leads to 3k1 
Similarly, for 

0 (modp), which is only possible if 17 = 3. 

g3(2 )  = z k :  + X ~ Z  + z k 3  + z k l + k 2  + , ~ ; ~ l + k 3  + x k ~  t k 3  

we obtain 

IC2 + IC3 IC1 
k1 +IC3 IC2 

k-1 +k-2  k3 

implying 2kl F 0 (modp), which is a contradiction. This 
establishes part a). To prove b), c), and d) we enumerate 
for each T = 6,7,8 over the U(.) test polynomials gi(z) 
corresponding to the given value of T .  If gi(x) was obtained 
by computing a determinant of order m arid contains an even 

number t of terms, then the complexity of checking all the 
possible partitions of the set of exponents ig gz(x) is O(tm-l). 
Referring to Table I11 for the values of m and t, we see that 
this may be done in a reasonable time on a contemporary 
computer. 

It remains to deal with those cases where the number of 
terms in gz(x) is odd. These cases may be settled using the 
following lemma. 

Lemma 2.7: If g(x )  has an odd number t of terms and p > t 
then gcd (g(x), Mp(x)) = 1, provided M p ( z )  is irreducible. 

xn modMp(x) = xn mod (z” - 1) 

Proofi Evidently 

unless n is of the form qp - 1, in which case 

= - x ~ - - 2  + z + 1 mod M,(z). 

Now let g’(z) be the polynomial consisting of all those 
terms in g(x) that have the form x 4 P - l  for some q, and let 
g”(z) = g(z) - g’(x). Note that, by the foregoing argument, 
evaluating g”(x) modulo Mp(x)  is the same as evaluating 
g’’(x) modulo (x” - 1). Furthermore, g(x )  E 0 mod Mp(x) 
if and only if 

g/’(x) g’(z) mod Mp(x). (6) 

If the number of terms in g/(z) is even, then g’(z) e 0 
mod Mp(x) and (6) becomes 

g”(x) = 0 mod (x” - 1). (7) 

However, (7) implies that (x - 1) divides g”(z) which is 
impossible since the number of terms in g’’(x) is odd in this 
case. Hence the number of terms in g’(z) must be odd and 
(6) becomes 

g”(z) (8) 

Clearly, (8) can be satisfied only if g”(z) contains at least 
p - 1 terms. But then the total number of terms in g(x )  must 

0 
It follows from Lemma 2.7 in conjunction with Table I11 

that we only need to check the test polynomials with an odd 
number of terms up to p 5 121. Referring to Table I completes 

0 

We note that it would be hardly possible to extend the 
method of proof of Theorem 2.6 for values of T significantly 
greater than 8, since the complexity of the proof increases 
exponentially with T .  However, it is the low-redundancy MDS 
codes corresponding to the first few values of T that are of 
importance for most applications [3], [6], [12], [14]. The 
result of Theorem 2.6 enables us to easily construct low- 
redundancy MDS codes d(p,r)  for very large values of the 
symbol-alphabet size p .  

xpP2 + xp-’ + . . . + z + 1 mod (z” - 1). 

be at least (p - 1) + 1 = p .  

the proof of the theorem. 

111. DECODING ALGORITHMS 
In this section we present decoding methods for correcting 

two- and three-symbol errors using the MDS array codes of 
Section 11. Notably, the proposed decoders do not require 
finite field operations. Instead, the only operations performed 
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TABLE II 
TEST POLYNOMIALS FOR T = 4,5,6. 

Four parity columns (r = 4) 

m ( x )  = 1 + xk1 + xb 
Five parity columns (r = 5) 

Six parity columns ( r  = 6) 

in these decoders are cyclic shifts, bitwise exclusive-OR, and 
the operation of testing for cyclic equivalence between two 
binary vectors. In terms of the number of such operations, the 
decoding complexity is O(p)  for two errors and O(p2) for 
three errors. 

Before we proceed with decoding two and three errors 
with A ( p ,  4) and A(p, 6), respectively, let us briefly consider 
correcting a single error with A ( p ,  2 ) .  For this case, the parity- 
check matrix, as defined by (2), is 

Let B = [bZ3]  be the error-corrupted array. Write 

B = ( ~ O ( ~ ) , ~ l ( ~ ) , . . . , ~ ~ + l ( ~ ) )  

and assume that at most one column is in error. Now, define 
the horizontal and diagonal syndromes by 

P 

so(a) = @ bz(a )  (10) 
z=o 

P - 1  

Sl(Q) = bp+l(Q) (1 1) 

Assuming that the jth column is in error, and that the error 
value is e(a), we obtain 

SO(Q) = e(&)  (12) 
SI(&) = a3e(ac) (13) 

provided 0 5 j 5 p - 1. Combining (12) and (13), we have 

Hence, the location in error is given by the first integer j 
satisfying (14). If no such j exists and one of SO(Q),  s l ( a )  
is nonzero, then there is an error in the corresponding parity 
column. 

A. Correcting Two Symbols in Error 

j th  syndrome with respect to the parity-check matrix (2) by 
We start with some notation. As in (10) and (€1), define the 

for j = 0 , l  , . . . , T-  1 (15) 
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TABLE I11 
THE ORDER m AND THE NUMBER OF TERMS t 

IN THE TEST POLYNOMIALS FOR T = 4,5 ,6 ,7 ,8  
The polynomiak are represented by thc set of zero 

positionsinv(a1 = 0, uz,...,um-l, a, = 7-1). 

T polynomial m t 

4 (0,1,3) 3 3 

3 10 
3 9  
4 10 
4 12 
4 18 
4 13 
,5 5 
5 10 

3 15 
3 3  
4 20 
4 I9 
4 28 
4 38 
4 28 
5 15 
5 20 
5 40 
5 35 
5 31 
5 20 
6 6  
6 15 
6 20 

= 

r polynomial m t - 
8 (0,1,7) 3 21 

(0,2',7) 3 15 

(0,1,2,7) 4 35 
(0,1,3,7) 4 28 
(0,1,4,7) 4 38 
(0,1,5,7) 4 52 
(0,1,6,7) 4 67 
(0,2,3,7) 4 50 
(0,2,4,7) 4 36 
(0,2,5,7) 4 49 
(0,3,4,7) 4 54 

(0,1,2,4,7) 5 35 
(0,1,2,5,7) 5 71 
(0,1,2,6,7) 5 1.05 
(0,1,3,4,7) 5 80 
(0,1,3,5,7) 5 60 
(0,1,3,6,7) 5 85 

(0,2,31,5,7) 5 50 
(0,2,3,6,7) 5 65 

(0,1,2,3,4,7) 6 21 
(0,1,2,3,5,7) 6 30 
(0,1,2,3,6,7) 6 75 
(0,1,2,4,5,7) 6 75 

(0,1,2,5,6,7) 6 '111 
(0,1,3,4,5,7) 6 69 
(0,1,3,4,6,7) 6 'I21 
(0,2,3,4,5,7) 6 31 

(0,1,2,3,4,5,7) 7 7 
(0,1,2,3,4,6,7) 7 21 
(0,1,2,3,5,6,7) 7 35 

(O,I,7) 3 18 

(0,1,21,3,7) 5 35 

(0,2,3,4,7) 5 lL20 

(0,1,2,4,6,7) 6 66 

- 

where B = &(a),  bl(a), . . . , bP+.-1(ct)) is the received 
array, and all the operations are modulo Mp(x) .  As in (14), 
the decoding algorithms presented in the sequel heavily rely 
on the operation of testing whether for some 0 _< k 5 p-1 
we have U(.) = akb(a). If such a relation holds we say that 
the polynomials a(a) and b(a) are cyclically equivalent and 
denote U(.) G b(a). An efficient technique for establishing 
cyclic equivalence may be found in Shiloach [15]. Note that, 
in view of Lemma 2.1, if .(a) = b ( a )  there exists a unique 
integer I C ,  such that .(a) = akb(a) and 0 5 k 5 p-1. 

We now describe a procedure for correcting up to two 
symbol e r r w  using the codes A(p,r) for T 2 4. Indeed, we 
assume throughout that p and T are sac11 that the minimum 

would suffice to correct only those errors that occurred in 
the information part. Let SO (a ) ,  SI (a ) ,  92 ( a ) ,  s3 ( a )  be the 
syndrome values as defined in (15). The following algorithm 
finds the error locations, provided no more than two errors 
have occured. 

distance of s l ( p , r )  is 2 5. Since A(P,T) is systematic, it 
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Algorithm 3.1 : 
1) If at least two of the syndromes so(a),sl(a),s2(a), 

s3(a) are zero, declare no errors in the information and 
stop. Otherwise initialize I t -1. 

2) Set I t 1 + 1. If I = p declare that more than two errors 
occurred and stop. 

3) Compute: 

4) If at least two of the polynomials y , (a )  and y , (a )  in 
(16) are zero and these polynomials are consecutive, 
namely j = z + 1 (mod 4), declare a single error in 
the information, at position 1, and stop. 

5 )  If y2(a) $ p ~ ( a )  goto 2). Otherwise, let IC be such that 

6) If y 3 ( a )  $ akyyz(a) goto 2). Otherwise, declare errors 

Note that multiplication by a modulo M P ( z )  is essentially 
a cyclic rotation, possibly followed by complementing all the 
bits of the result. We will refer to such operation as rotation 
modulo MP(x) .  Thus in the worst case the computational 
complexity of Algorithm 3.1 is 5p  rotations modulo MP(x), 
9p + 4 vector additions and/or comparisons, and p tests for 
cyclic equivalence using [ 151. Furthermore, the computation 
of the syndromes SO ( a ) ,  s 1 (a ) ,  s2 (a ) ,  s3 ( a )  requires about 4p 
rotations modulo M P ( x )  and vector additions. 

We presently show the correctness of Algorithm 3.1. In the 
following we assume that r symbol errors have occurred. 

Proposition 3.1: Algorithm 4.1 produces the true error lo- 
cations, provided T 5 2. 

Pro08 Assuming r 5 2, it is obvious that there are no 
errors in the information part if and only if at least two of the 
syndromes are zero. Thus step I)  of the algorithm is correct, 
and we need to distinguish between three cases. 

Case 1: A single symbol error el(a) at position il in the 
information part. The syndrome values are given by 

Y 2 ( 4  = a"yl(a). 

at positions I and k ,  and, stop. 

Case 2: A single symbol error e l ( a )  at position il in the 
information part and a single error in the redundancy part. 
Here some three syndrome values are given by (17) and the 
other one is arbitrary. 

Case 3: Two symbol errors el(a) and e2(a) at positions i l  
and i z  in the information part, The syndrome values are 
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Let us consider Case 3 first. In this case, for 1 = il we have 
in step 3) of the algorithm 

yl(a) = azlel(a) + a22e2(a) + a21el(a) + ailez(a) 

y2(a) = aZ21el(a) + a2Qez(a) + a21+z1el(a) 

= az2e2(a) + at1e2(a) 

+ aZ2+z1 eda)  

y s ( a )  = ~ ~ ~ ~ 1 e ~ ( a )  + a3~2e2(a) + a2z++z1e1(a) 
= aZzze2(a) + a22+z1eZ(a) 

4.) + a222+21 

= c1i~~2e~(a)  + a222+z1e2(a) 

Hence, for k = i2 

akyl(a)  = aZ22e2(a) + a22+z1eZ(a) = yz(a) 
aky2(a) = a322e2(a) + a222+z1ez(a) = y3(a) 

Thus Algorithm 3.1 would correctly declare errors at locations 
I = il and k = 22 .  It remains to be verified that no other values 
of 1, k # 2 1 ,  iz can be obtained as output of the algorithm. 
Assume to the contrary that thkre are two such values I and k .  
Define &(a)  by the equation yl(a)  = a'&(a) + ake"z(a), 
or equivalently 

S l ( Q )  + a'so(a) &(a)  = 
a' + a k  

Note that &,(a) is well-defined since (a' + a') is invertible 
mod A&(%) in view of Lemma 2.1. Further define &(a)  = 
SO ( a )  - E2 (a ) .  Using the relations between y1  ( a ) ,  y-2 (a) ,  y3 ( a )  
and the syndromes, along with the fact that 

y1(a) = a%z[a) + a"z(a> 

Y Z ( Q )  = a"&) 

y3(a) = akyz(a)  

it may be easily verified that the errors &(a) and &,(a) at 
positions 1 and k produce the same syndrome values as the 
errors el(a) and eZ(a)  at positions i l  and 22. This clearly 
contradicts the fact that the minimum Hamming distance of 
A@,r)  is 2 5 .  Hence, the algorithm decodes correctly if 
we are in Case 3. Finally, if we are in Case 1 then for 
1 = 2.1 we have yl(a)  = y ~ ( a )  = y3(a) = y 4 ( a )  = 0, 
while if we are in Case 2 then for 1 = il at least two 
consecutive polynomials in (16) are zero. Furthermore, if some 
two consecutive polynomials in (16) are zero for some 1, we 
can always construct an error pattern consisting of a single 
error in position I in the information, and possibly a single 
error in the redundancy, which produces the syndrome values 
SO ( a ) ,  SI ( a ) ,  s2 ( a ) ,  s3 (a ) .  An argument similar to the above 
can be now employed to show that Algorithm 3.1 correctly 

0 

Once the error locations have been found using Algorithm 
3.1, the error values may be determined as follows. In case 
of a single error'at position I ,  the error value is given by 
el(a) = c?sh(a), where sh(a)  is any "redundancy-error 
free" syndrome. For instance, if yz(a)  = y3(a) = 0 are the 
two consecutive polynomials in step 4) of Algorithm 3.1, we 

terminates at step 4) with 1 = il. 

may always take h = j-1. In case of two errors at positions 
I and k ,  the error values are 

Notice that the inverse of (a' + a k )  exists by Lemma 2.1, and 
may be computed as follows. 

Lemma 3.2 (c$ (41): Let 

p - 2  

z=o 

For any 5 f 1 (modp), the coefficients of the unique solution 
w--2 

for 

4.) 6(a) = ~ 

a1 + ak 

are given by' 
23-1 

for j = 1 , 2 , - . .  ,p - l ,  and b,-l = 0. 
ExampEe 3.1: Consider the code A(5,4). Assume that the 

all-zero is the original codeword, and that the error-corrupted 
array is given by: 

B =  

Calculating the syndromes as in (15) we obtain 

S0(Q)  = l + a 2 + a 3  = (1011)  
s l (a )  = 1 f a 3  = (1001)  
s2(a) = a+a-2+a3 = (0111)  
sg(a) = a2 = (0010) .  

y1(a) = %(a)  +SO(Q) = ( 0 0  1 0 )  
y2(a) = sz(a)  + % ( a )  = ( 1 1 1 0 )  
y3(a) = S3(Q) + S 2 ( Q )  = (0 1 0  1) 
y4(a)  = s3(a) +so(a )  = (1 0 0 1 ) .  

Algorithm 3.1 starts with 1 t 0 at step 3). In this case we have 

Clearly yz ( a )  f y1 ( a ) ,  so the algorithm goes back to step 2)  
where I t 1. For 1 = 1 we have 

y1(a) = s1(a) +aso(a)  = (0011)  
yz(a) = sz(a)+as1(a) = (1100)  
y3(a) = S 3 ( Q )  +asz(a)  = (1110)  
y4(a) = s 3 ( a )  +a3so(a) = (1100). 

Now y2(a) = a3y1(a) and y3(a) = a3y2(a). Hence the al- 
gorithm correctly declares that the errors occurred in positions 
1 and 3. These errors are corrected using (18) and Lemma 3.2. 

'The notation (z)~ is used throughout this paper to denote the unique 
integer z', such that z' E z (modp) and 0 5 z' 5 p - 1. 
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TABLE IV 

(Here .(a) and &(a) are arlitrary values of the errors in the redundancy part.) 
ALGORITHM 4.2-sINGLE ERROR IN THE bFORMATION 

Error positions 

TABLE V 

(Here e( a) is an arbitrxy value of the error in the redundancy part.) 
ALGORITHM 4.;!-'bO ERRORS IN THE INFORMATION 

Y z ( a )  Y 3 ( 4  y4(a) . Error positions 

0 0 0 0 
d+'e(a) 0 0 0 

(a3 +a')e(a) aJ+le(a) 0 0 
e ( a )  ('a3 + a')e(a) d+ 'e (a )  0 

0 e ( @ )  (ai ++(a) B+'e(a) 
0 0 e (a )  (d +a')e(a) 
0 0 0 4 4  

B. Correcting Three Symbols in Error 

The algorithm for correcting up to r = 3 symbol errors with 
A ( p ,  T-) for r 2 6 is in principle similar to Algorithm 3.1. 
As before, let s j (a)  for j = 0,1, . . .  , 5  be the syndromes 
with respect to H ( p , r ) ,  computed as in (15). The following 
algorithm produces the error locations. 

Algorithm 3.2: 
1) If at least three of the syndromes so(a),sl(a),sz(a), 

s3(a),  s*(a),  sg(a) are zero, declare no errors in the 
information and stop. Otherwise, initialize 1 + -1. 

2) Set I c I + 1. If I = p declare that more than three 
errors occurred and stop. Otherwise, compute 

Z1(Q) = Sl(Q)  + aZs0(a) 
z2((.) = s2(a) +ah(.) 
Z 3 ( Q )  = S3(Q) +ah( ( . )  
24(a) = s4(a) + a2s3(a) 
Z.5(") = %(a)  + aLL(a) 

3) If the polynomials z l ( a ) ,  ZZ(Q), z3(a),  x q ( a ) ,  x g ( a )  are 
as given in Table IV declare a single error in the 
information, at position I ,  and stop. Otherwise, initialize 
j + -1. 
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4) Set j t j + 1. If j = 1 goto 2). Otherwise, compute 

Yl(a) = z2(a) + aJz1(QI) 

y2(a) = x3(a) + Q 3 2 2 ( Q )  

y3(a) = z4(a) + a3z3(Q) 
Y 4 ( Q )  = z 5 ( a )  + ajx4(4 

5 )  If the polynomials y1 ( a ) ,  y2 ( a ) ,  ~3 ( a ) ,  94 ( a )  are as 
given in Table V declare two errors in the information, 
at positions j and 1, and stop. 

6) If y2 ( a )  8 y l  ( a )  goto 4). Otherwise, let k be such that 

7) If either y S ( a )  #aky2(a)  or y4(a) # aky3(a) goto 4). 
Otherwise, declare three errors at positions j , k ,  and I ,  
and stop. 

Note that the table lookup at steps 3) and 5 )  of the 
algorithm may be avoided at the expense of some additional 
computations. Consider for instance step 3). Clearly, there is 
a single error in the information if and only if some four out 
of the six syndromes sO(a) ,  s l (a) ,  s2(a), s3(a), s~(Q) ,  s5(a) 

are appropriate rotations of each other mod Mp(x) ,  while the 
other two are arbitrary. Comparing a polynomial 

y2 = akyl(a).  

.(a) = sJa )  + aks,(a) 

to zero is equivalent to testing whether s3 ( a )  is a kth rotation 
of s Z ( a )  modulo M p ( z ) .  Hence, instead of the table lookup in 
step 3) we could proceed as follows. Compute 

z1(a) = s1(a) + also(a) 
z2(a) = s2(a) + a h ( a )  
X S ( Q )  = s3(a) + a1s2(a) 
z4(a) = s4(a) + a1s3(a) 
z5(a) = s5(a) + aZs4(a) 
&(a)  = s g ( a )  + a5h3(a). 

(19) 

If at least five of the polynomials in (19) are zero, declare a 
single error at position 2 and stop. Otherwise, if at least three 
of the polynomials in (19) are zero, compute 

z7(a) = S3(Q) + a32sO(a) 
xs(a) = s ~ ( Q )  + a31s1(a) (20) 
~ ~ ( 0 )  = s 5 ( a )  + Q ~ ~ s ~ ( Q ) .  

If at least one of the polynomials in (20) is zero declare a 
single error at position 1 and stop. Otherwise, if exactly two 
polynomials z,(a) and q ( a )  in (19) are zero and j - i 
1 , 3  (mod 6) then compute zh(a) ,  where k = 7 + ( z ) ~ ,  
according to (20). If z k ( a )  = 0 declare a single error at 
position 1 and stop. Otherwise, initialize j t -1 and go to 
step 4). 

The table lookup at step 5) of Algorithm 3.2 could be 
rendered into computations in a similar fashion. 

The computations in (19) and (20) are best explained in 
terms of a graph in Fig. 1, where vertices are the six syndromes 
and edges labeled z, are either present or not according as 
z ; (a)  = 0 or z,(a) # 0 in (19) and (20). Clearly, there is 
a single error at position 1 if and only if the resulting graph 
contains a connected subgraph with four vertices. 

Fig. 1. Relations between the syndromes in Algorithm 4.2. 

Proposition 3.3: Algorithm 4.2 produces the true error lo- 
cations, provided at most three symbol errors have occurred. 

The proof of Proposition 3.3 involves considering the var- 
ious cases of errors in the information part and in the redun- 
dancy part. It is, in principle, similar to the proof of Proposition 
3.1 and is therefore omitted. 

Note that most computations in Algorithm 3.2 are of the 
same type. In fact, Algorithm 3.2, as well as Algorithm 3.1, 
may be carried out using only three kinds of operations 

? 
testing for cyclic equivalence: .(a) 

0 rotate and add: c(a)  t .(a) + akb(a) 
* comparison with zero: .(a) 2 0. 

b(a) 

Each of these operations is readily implementable in special- 
purpose hardware. The worst case complexity of Algorithm 
3.2, not including the syndrome computation and the table 
lookup, is given by i p ( p  - 1) tests for cyclic equivalence, 
p ( 3 p +  2) rotate-and-add operations, and p ( p  - 1) + 5 compar- 
isons with 0. In the same terms, the worst case complexity of 
Algorithm 3.1 is p tests for cyclic equivalence, 5p  rotate-and- 
add operations, and 51, + 4 comparisons with 0. 

Once the error locations have been computed, the error 
values may be reconstructed as follows. In case of a single 
error at position I, we have el(a) = a-lhsh(a),  where sh(a)  
is any of the four connected vertices in Fig. 1. In case of two 
errors at positions j and 1, we have 

a - ( + l ) j z z  0 ff 

eZ(t.1 = a-i’ ( s , (a)  + a2Je2(a)) 

where i E {1,2,3,4} is such that y,[a) = 0, and the division 
in (21) is computed as in Lemma 3.2. In case of three errors 
at positions j ,  k ,  1, we employ the results of [4] to arrive at 

(21) el(a) = a j  + al  

Yl(a) 
( a k  + a”(ak + ai) 

el(a) = 

z ~ ( Q )  + (ak + a’)el(a) 
a3 + a1 .2(‘.) = 

e3(a) =  SO(^) + el(a) + e2(a). 

and 

This completes the error-correction procedure. 
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Finally, it is worth mentioning that Algorithm 3.2 in effect 
amounts to p successive invocations of a slightly modified ver- 
sion of Algorithm 3.1 with z ~ ( Q ) ,  z ~ ( Q ) ,  . . . , xg(a) substituted 
for the syndrome values. This provides a way to extend our 
approach to the correction of an arbitrary number of errors. 
In order to correct T symbol errors with ,4(p,r) for T 2 27, 
compute for each 1 = O , l , . - . , p -  1 

21(a) = s1(a) + a"o(a) 
"2(.) = S2(Q) + &(a) 

and substitute z ~ ( Q ) ,  z ~ ( Q ) ,  . . . , zzT-l(a)  for the syndrome 
values into an appropriately modified version of the decoder 
for A ( p ,  r-2) .  However, the complexity of such a decoding 
scheme is obviously 0 ( p T - ' ) .  At present we do not have a 
technique which would allow to avoid exponential complexity 
and finite field operations at the same time. Nevertheless, for 
the small values of T = 2 and 7 = 3 the proposed decoding 
algorithms are quite feasible. 

Iv .  OPnMALITY OF THE UPDATES 

In this section we address the issue of updating the parity (or 
redundancy) symbols following an update in the information. 
Let C be a systematic linear (n, k )  code over GF (2"), and 
assume that the symbols of C are represented as binary m- 
tuples. We define q(C) to be the average number of parity 
bits affected by a change in a single information bit in C. 
More precisely, for any g = (co,  c1, . . . , cn - 1 )  E C let wt (c2)  
denote the Hamming weight of the ith symbol in c regarded 
as a binary m-tuple, and let 

k-1  

5 = {(CO,Cl,...,Cn-1) E c : W t ( C Z )  = l }  (22) 
2=0 

be a subset of C consisting of all the codewords that contain 
a single nonzero entry in the information part. Then 

n-1 

This parameter q(C) is of crucial importance in storage iippli- 
cations that require frequent updates of information. Indeed, 
in such applications it is desirable to use codes for which 
q(C) is as small as possible. This is precisely the property P3 
mentioned in the Introduction. 

Herein we prove upper and lower bounds on q ( C )  for 
MDS codes over GF(2"). In particular, we show that if 
C = A(p,r ) ,  with symbols of size p-1, then q(C)  is . upper- 
bounded by 2r - 1. It follows, therefore, ithat for our codes 
q(C) does not depend on the size of the symbols. In contrast, 
it is shown that for Reed-Solomon codes, as well as for the 
MDS codes of Blaum and Roth [4], q(C) increases linearly 
with the symbol size. Thus our codes are indeed more suitable 
for use with very large symbols. 

Proposition 4.1: For C = A ( p ,  r ) ,  we have 

2(r-1) 

P 
q(C) 2r - 1 - -. 

Proof: Consider column 0 in any codeword of A ( p ,  r ) .  
If any one of the p - 1 bits in this column is changed, we 
need to make exactly r updates-one in each parity symbol. 
Therefore, column 0 requires a total of ( p  - 1). updates. 
Now consider column I ,  where 1 5 1 5 p-1. For each of 
the p - 1 information bits in this column we shall count 
the number of parity bits that are affected by a change in 
that bit. Consider first the r - 1 information bits in entries 
( ( - i l - l ) p , l )  for i = l , 2 , . . . , r  - 1. Since p is prime we 
have (-il-l)p # (-jl-l)p for all 1 _< i < j I r-1, 
which implies that all these entries are distinct. When entry 
( ( - iZ- l )p ,  1 )  is changed, one has to to update all the p - 1 
bits in parity column p + i ,  as well as one bit in each of the 
parity columns p + j for j = 0,1, . . . , i - 1, i + 1, . . . , r - 1. 
This gives a total of (r - l)(p + r - 2 )  updates for these T - 1 
information bits. The remaining p - r bits in the Zth column 
require r updates each. Thus the total number of updates for 
all the bits in column 2 is ( r  - 1) ( p  + r - 2) + r (p  - r ) .  Since 
1 # 0, but otherwise arbitrary, we may now compute 

P - 1  
( P  - 1). + c [(. - l ) ( P  + 7- - 2 )  + r(P - 7-11 

= 2 r -  
2(r-1)  

1--. U 
P 

For instance, if r = 1 then q(C) = 1 which corresponds 
to the trivial parity code, and is obviously optimal. For 
C = A ( p , 2 )  we have q(C) = 3 - 2 / p  M 3. In general, for 
A ( p ,  r )  the average number of updates can be approximated 
by q(C) M 2r  - 1, which indeed does not depend on the size 
of the symbols. 

However, is 2r - 1 optimal for MDS codes with the 
parameters of A(p,r)? A trivial lower bound for an MDS 
code C with minimum distance r + 1 is q(C) 2 r,  since a 
change in any information bit must affect all r parity symbols. 
It is an interesting open problem to narrow the gap between 
the upper and lower bounds r 5 q(C) 5 2r - 1 for MDS 
codes with the parameters of A ( p ,  r ) .  We presently show that 
the lower bound is unattainable for r 2 2. 

Proposition 4.2: Let C be an MDS code with symbols of 
size p - 1 bits, having at least p information symbols and r 
parity symbols, where r 2 2. Then q(C) > r. 

Proof: We will assume that q(C) = T and reach a 
contradiction. W.1.o.g. suppose that the number of information 
symbols is p ,  and let S be the subset of C as defined in (22).  
Clearly, IS( = p ( p -  1). It is also clear that for every codeword 
in S none of the r parity symbols is zero, since otherwise the 
minimum distance of C would be 5 7'. Moreover, since we 
assume that q(C) = r,  each parity symbol in every codeword 
of S has weight exactly 1. Hence, there are at most ( p  - 1)2 
distinct ways to choose the first two parity symbols in a 
codeword of S. Since IS1 = p ( p  - 1) > ( p  - 1)' it follows 
that there are some two codewords U ,  g E S which coincide in 
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the first two parity symbols. But then the Hamming distance 
between and 2 is at most T ,  contradicting the assumption 
that the minimum distance of C is T + 1. 0 

The proof of Proposition 4.2 is based on the fact that the 
number of information symbols is sufficiently large relative to 
the size of the symbols, and applies to both linear and nonlinear 
codes. Next we show that for linear MDS codes we cannot 
have q(C) = r even if there are only two information symbols. 
This claim is slightly stronger than that of Proposition 4.2. 

Proposition 4.3: Let C be a linear MDS code having at 
least two information symbols and r parity symbols, where 
T 2 2. Then q(C) > r.  

Proofi Again, we assume that 7(C)  = r and reach a 
contradiction. Let the first two symbols in each codeword of 
C be information symbols, and define 

SO = { ( C O ,  ~ 1 , .  . . , ~ ~ - 1 )  E C : wt (CO) == 1 and wt(c,) = 0 
for z = 1 , 2 , .  . . , n -~ - l }  

for z = 0 , 2 , 3 , .  . . , n-T-1 } 
Si = { (CO, ~ 1 , .  . . , ~ ~ - 1 )  E C : Wt ( ~ 1 )  1 and wt (c,) 1 0 

If (CO, c1, . . . , cnL1) and (eh, c;, . . . , cLP1) are any two code- 
words in SO then clearly 

CL-, # Cn-rr cd-r+l # cn-r+l,. ' .  1 cl-1 # en-1 

since the minimum distance of SO is r+l. Furthermore, by the 
assumption q(C) = T it follows that 

wt (cnpr) = wt (cn-r+l) = . ' .  = wt (Cn-1) = 1 

for any (CO, c1,. . . , cn-l) E SO. Hence 

SO = cc = (l,Q,Q,...,Q,~,l,...,~) -- 
n-r CE S O  r 

where Q , l  denote the all-zero and all-one binary columns, 
respectively. By a similar argument 

31 = E. = (0,l,0,0,..~,0,l,l...,1). -- 
n-r GESl  r 

But then by linearity of C we have 

so $ 2 ,  = (l,l,Q,Q,. . . ,Q) E c 
which contradicts the fact that the minimum distance of C is 
r S l L 3 .  0 

We note here that, although Proposition 4.3 is stronger 
than Proposition 4.2, the proof technique of Proposition 4.2 
can be used to show that in any sufficiently long MDS code 
q(C) must increase linearly with the symbol size. Consider, 
for instance, Reed-Solomon codes over GF (2") with O(Zm) 
information symbols. Then the size of the set S C C as defined 
in (22) is O(m2"). Now assume that q(C) 5 X where X does 
not depend on m. Then the number of ways to choose the 
first two parity symbols in a codeword of S is upper-bounded 
by O(m2'), which is less than O(m2") for any constant X 
and sufficiently large m. Hence, as in the proof of Proposition 
4.2, we arrive at a contradiction with the minimum distance 
property of the code. This implies that in Reed-Solomon codes 
with O(2") information symbols q(C) must increase with the 

symbol size. A more careful counting argument along the same 
lines shows that in fact q(C)  increases linearly with the size 
of the symbols. This follows essentially from the fact that for 
n 4 CO we have 

for any sublinear function g ( n ) .  
As shown above, the fact that for Reed-Solomon codes the 

average number of parity updates is high follows simply from 
the fact that these codes are long relative to the size of their 
symbols. However, if the number of information symbols in 
a code G is small relative to its symbol size, this does not 
necessarily mean that q(C) will be low. Consider, for instance, 
the MDS array codes of Blaum and Roth [4]. These codes have 
symbols of size p - 1 and contain r information symbols less 
than the codes A(p,r) .  Thus each codeword is a (p-1)  x p 
binary array where the last T columns may be taken as the 
parity symbols. Assume for the time being that r = 2 and 
let uP-2(a), up- l (a)  denote the parity columns. It may be 
shown that if a single information bit in column J and row i 
is updated, where 0 5 j 5 p-3 and 0 5 i 5 p-2, then the 
parity columns must be recomputed as follows: 

up-2(QI) + up-2(a) + aZfl + at+2 + . ' ' + a2+3+1 

Uppl (Q)  + up-l(QI) + at + QZ+l + . . ' + a 2 + 3 + l  (23) 

with all operations taken modulo M P ( z ) .  Using (23) and 
averaging over all i , j  we find that q(C) = $ p  + 1. Thus it 
follows that in the Blaum-Roth codes v(C)  increases linearly 
with the symbol size, even though the codes of [4] are shorter 
than our codes. In fact, it was this shortcoming of the codes 
of Blaum and Roth [4] that originally motivated us to develop 
the codes presented in this paper. The new codes combine 
the advantages of the Blaum-Roth codes (MDS, encoding and 
decoding without finite field operations) with low v( C). 

V. CONCLUSIONS 
We have presented a new family of MDS array codes whose 

codewords are (p-1) x (p+r) binary arrays with r independent 
parity columns, where p 2 3 is a prime number. This family 
extends previously known results of [2], [4] for T = 2. We 
proved that the new codes are MDS for r 5 3, and gave 
necessary and sufficient conditions for these codes to be MDS 
for T 2 4. Using these conditions, we have shown that the 
new codes remain MDS up to r 5 8 if p > 29 is such that 
2 is primitive in GF ( p ) .  Decoding procedures which do not 
require finite field operations were presented for up to three 
symbol errors, extending the previously known results of [4] 
for the case of a single symbol error. Finally, we developed 
upper and lower bounds on the average number of parity bits 
affected by an update in an information bit, showing that for 
our codes this number does not depend on the symbol size. 
This property makes the new codes mOre suitable for use 
in storage applications requiring large symbols and frequent 
data updates, such as M I D  architectures and/or holographic 
recording [ 171, than the conventional Reed-Solomon codes or 
the array codes of Blaum and Roth [4]. 
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Lemma A.2: W.1.o.g. it may be assumed that vT-l = 0, or 
equivalently, that a ,  = T - 1. 

Proofi If v,-1 = 1 then expanding about the columns 
corresponding to the nonzeros in 2 produces a determinant 
which does not contain any entries from the last row of 
H ( p , r ) .  Such a determinant corresponds to the case r’ < r ,  

U 
For example, the vectors g = (01001) and g = (00101) 

for T = 5 correspond to (3) and (4), respectively, already 
considered for T = 4. 

Note that an argument similar to Lemma A.l  implies that 

and must have been already considered earlier. 

D(a1,a2,.  . . ,a,; ao , i1 , .  . . , im- l )  

D(a1 ,a2 , . . . ,am;  O,kl,...,k,-l) 

is invertible modulo MP(x) if and only if so is 

where k, = a, - io and 

APPENDIX 
This appendix contains the proof of Theorem 2.5, which 

gives an upper bound on the number of different classes of 
polynomials that must be checked to establish whether .A(p, T )  

is MDS. Recall that A ( p ,  T )  is MDS if and only if every T X T  

submatrix of H ( p , r )  is nonsingular. Any such submatrix M 
corresponds to a binary vector U = (U’ I g ) of length p + r 
and weight r,  where the nonzero entries of U indicate the 
columns of H ( p , r )  contained in M.The vector g of length 
T corresponds to the redundant part of the codeword, and 
we only need to consider the case where g is nonzero, since 
otherwise M is a Vandermonde matrix. 

We shall write 2 = (vo,v1, . . . , uT- l )  and let 

0 5 a1 < a2 < ..,  < a,  5 r-l 

be the positions of zeros in g, where m = r - wt (2). Thus 
we essentially deal with determinants of ithe type 

def 
D(a1, u2,. . . , a,; i o ,  2 1 , .  ’ . , 2,-.1) = 

where 0 5 io < i l  < . ‘ .  < i,-l 5 p - 1 are the positions 
of the information columns. Determinants of the type (24) 
are known in the literature (cf. [ I l l ,  [16]) as alternarits and 
have been shown to be nonzero over the field of real numbers 
[13]. For the treatment of altemants over the field of complex 
numbers see [9]. However, it appears that the results of [9], 
[ 1 11, [ 131 are not applicable for polynomials modulo AdP (x). 

LemmaA.1: W.1.o.g. it may be assumed that WO =. 0, or 
equivalently, that a1 = 0. 

Proof: Expanding A4 about the columns corresponding 
to the nonzeros in g we obtain the detemiinant 

D(a1, ~ 2 ,  ” .  ,am;  i o ,  21, .. . , L l )  

as defined in (24). Now 

D(a1, u2,. . . ,a,; i o , .  . . ,&-I) = 

- - aalzo . . . a a ~ z m - l  D(0, u2-a1,. . . , a ,  -a1; io,. . . , & - I )  

D(a1,u2,. . . ,a,; iO,il, .  ..,&-I) 

D(0, a2-a1,. . . , a,-a1; a o , i 1 , .  . . , im- l ) .  

( v L , ~ i , . . . , v ; - ~ )  withwh=O. 0 

Hence, in view of Lemma 2.1 

is invertible modulo MP(x) if and only if so is 

However, this determinant corresponds to some vector g’ = 

Referring to (2), it is trivial to see that if .A(p, T ’ )  is nolt MDS 
for some T’ < T then A ( p , r )  is surely not MDS. Therefore, 
when checking whether for a certain prime p our codes are 
MDS we will consider the values of T in increasing order. 
If for a certain value of p we find an r such that A ( p , r )  
is not MDS, we may eliminate this value of p from further 
consideration. In this context we have the following lemma. 

1 < k l < k 2 < . . . < k , - l ~ p - l .  

We use this fact in the following lemma, showing that the 
number of different cases we need to consider may be further 
reduced. 

Lemma A.3: If the vectors 2 and ‘U‘ are reflections of each 
other,thatisvi =v,-l -, forallj=O,l,...,r-l,thenonly 
one of these vectors need be considered. 

Proofi Let U ; ,  U ; ,  . . . , U:, denote the positions of zeros 
in 2‘. Then 

D(ai,ab, . . - , a i ;  O , k l , .  . . , km- l )  = 
- - a(T-l)kla(T-l)h2 . . . &-l)km-l 

. D(a1, a2, . . . , am; O , P - ~ I ,  . . ,p-km-l) 

(25) 

where we have used the fact that U: = (T-1)  - U ,  for all j. 
Indeed, in the ring of polynomials modulo M P ( x )  we have 

x p a  - 1 (x - l)Mp(iC)(&-l)P + & - Z I P  + . . . + 1) 
OmodMp(x). 

Hence a P a 3  = 1 and therefore 
a ( ~ - l ) h a a , ( ~ - h )  = a ~ a , a ( ~ - l - - a , ) h  - - aaik i  

This establishes (25). Observe that when k1, k2,  . . . , k,-1 
range through all the possible values so do their complements 
( P  - kl), ( P  - k2) ,  . . . ,  ( P  - k,). Hence 

D(al ,a2,  .. . ,am;  0, k1, .. . , km-1) 

D(a1, a2, ... ,a,; O,p-k1, .. . ,p-km-l) 

and 

enumerate over the same polynomials. 0 
It follows from Lemmas A.l and A.2 that the number of 

different vectors that need be checked for each T does not 
exceed 2r-2 - 1. Lemma A.3 further eliminates half of the 
remaining vectors that are nonpalindromic, that is, not equal 
to their reflections. Since the number of nonzero binary palin- 
dromes of length r - 2 is given by 2r(‘-2)/21 - 1, we conclude 
that Lemma A.3 eliminates precisely (2r-2 - 2r(T-2)/21 ) / 2  
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vectors. Hence, we are left with Y-’ + 2 r(-2)/21 - 1 cases REFERENCES 
to consider. 

Finally, we can eliminate the cases in which 

D(0,  a2 , .  . . , r-1; 0, k l ,  . . . , km-l)  

is a Vandermonde determinant. This happens whenever a2 

divides a, = r-1, and the determinant is given by 

D(0,  u2,2a2, .  . . , r-1; 0, k l ,  ‘ .  . , km-l)  

where m stands for ( r - l ) /u z .  Therefore, for each T ,  we 
can further eliminate ~ ( r  - 1) cases, where ~ ( n )  denotes 
the number of divisors of n different from 1. For instance, 
for r = 7 there axe three Vandermonde determinants of 
this type: D(0,2,4,6; 0, k l ,  k 2 , k ~ ) ,  D(O,3,6; 0 ,  k ~ ,  k z ) ,  and 
D(O,6; 0 , k l ) .  They correspond to the three divisors of 6, 
namely 2, 3, and 6. 

Combining this argument with Lemmas A.l, A.2, and A.3, 
we conclude that the number of different cases to consider is 
at most 

.(.) 5 r3 + 2r(r-2)/21-1 - 7 ( r - - 1 )  - 1. 

This is precisely the upper bound on v(r )  given in Theo- 
rem 2.5. 
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