ABSTRACT

The present work investigates the dynamics of idealized bubbly and cavitating flows in whirling helical inducers, with the purpose of understanding the impact of the bubble response on the rotodynamic forces exerted by the fluid on the turbomachine under cavitating conditions. Inertial, damping, and compressibility effects in the dynamics of the bubbles are included. The effect of the whirl excitation on the two-phase flow is dependent on the wave propagation speed and the bubble resonance behavior in the bubbly mixture. These, in turn, lead to rotodynamic forces which are complicated functions of the whirl frequency and depend on the void fraction of the bubbles and on the mean flow properties. Under cavitating conditions the dynamic response of the bubbles induces major deviations from the non-cavitating flow solutions. The quadratic dependence of rotodynamic fluid forces on the whirl speed, which is typical of cavitation-free operation, is significantly modified. Results are presented to illustrate the influence of the various flow parameters.

INTRODUCTION

Rotodynamic instabilities and cavitation represent one of the most severe limitations to the performance of turbopumps (Brennen 1994), especially in high power density applications where they can be responsible for very serious problems, ranging from long term fatigue damage to sudden failure of the machine (Iery et al. 1985; Franz et al. 1989). The most critical rotodynamic instability in turbopumps is the development of self-sustaining lateral motions (whirl) of the impeller under the action of destabilizing forces. These forces can be of mechanical origin (internal damping and hysteresis of the rotating parts, stiffness anisotropies, dynamic unbalance, direct contact of the static and rotating parts, system nonlinearities, etc.), or of fluid dynamic origin (flow asymmetries, cavitation, journal bearing or seal forces, leakage and recirculation flows, rotor/stator interactions, non-stationary phenomena).

Because of their greater complexity, rotodynamic fluid forces under cavitating conditions have so far received less attention in the open literature, despite their potential for promoting rotodynamic instabilities of high performance turbopumps (Rosenmann, 1965). Recently, forced vibration experiments carried out by Franz (1989) and Bhattacharyya (1994) have demonstrated that cavitation affects the rotodynamic forces on axial flow inducers artificially whirled on a circular orbit with assigned eccentricity and constant whirl speed. The occurrence of cavitation has been found to have, in general, a destabilizing effect on the whirl motion and to reduce the steady lateral forces on the rotor. More importantly in the context of the present work, cavitation alters the behavior of the rotodynamic fluid forces as a function of the whirl speed by replacing the characteristic quadratic dependence typical of cavitation-free operation with a more complex function of frequency. Consequently, the traditional quadratic expansion of the rotodynamic fluid forces in terms of stiffness, damping and inertia matrices seems to be no longer justified for cavitating turbopumps.

The purpose of this research is to obtain some fundamental insight into the fluid dynamic phenomena responsible for the observed behavior of the rotodynamic
fluid forces in whirling impellers operating under cavitating conditions. Bhattacharyya (1994) correlated the changes in the rotodynamic fluid forces with the development of reverse (possibly oscillatory) flow in cavitating inducers at lower flow coefficients. This implies some interaction between cavitation, backflow, and whirl motion of the inducer, the details of which are not clear.

The purpose of the present study is to investigate the extent to which the behavior of the rotodynamic forces under cavitating conditions could be a consequence of the dynamic response of the bubbly mixture in the blade passages.

This whirling helical flow is studied using the same linear perturbation approach of previous dynamic analyses of bubbly liquids (d’Agostino and Brennen 1983, 1988, 1989; d’Agostino, Brennen and Acosta 1988; Kumar and Brennen 1993). In spite of the intrinsic limitations of the linear approximation and the simplifying assumptions introduced in order to obtain a closed form solution, some of the observed features of the rotodynamic forces are consistent with available experimental results.

LINEARIZED DYNAMICS OF A BUBBLY FLOW IN A WHIRLING IMPELLER

We address the problem of the flow of a bubbly liquid of velocity, \( \mathbf{u} \), pressure, \( p \), density, \( \rho \), speed of sound, \( c \), void fraction, \( \alpha \), in a simple helical inducer rotating with velocity \( \Omega \), and whirling on a circular orbit with small eccentricity, \( \varepsilon \), at a frequency \( \omega \). We define cylindrical coordinates \( r', \theta', z' \), fixed in the impeller and rotating and whirling with it (\( z' \) is the impeller axis), and an inertial cylindrical coordinate system, \( r, \theta, z \), fixed on the axis of the surrounding duct, as illustrated in Figures 1 and 2. A number of simplifying assumptions are introduced in order to obtain a solvable set of equations that still reflect the dynamics of a whirling inducer in a bubbly mixture. The relative motion of the two phases is neglected, as are viscous effects (except in the dynamics of the bubbles where they give important damping contributions). A simple helical inducer with radial blades is considered as shown in Figure 1, with zero blade thickness, hub radius, \( r_H \), tip radius, \( r_T \), axial length, \( L \), small tip blade angle, \( \beta_T \), constant pitch, \( P = 2\pi r_T \tan \beta_T \), axial blading length, \( L_H \), and blade cant angle, \( \gamma \equiv 0 \), in the meridional plane. The suction flow conditions (subscript \( s \)) are given by the flow coefficient, \( \phi \), the uniform axial velocity, \( w_s = \phi \Omega r_T \), and the pressure, \( p_s \).

For the present purposes we approximate the mean flow within the inducer as comprising a simple forced vortex with axial velocity

\[
w_o = \text{const} = \frac{w_s}{1 - \alpha} \frac{r_T^2}{r_T^2 - r_H^2}
\]

Figure 1. Schematic of the flow and inducer geometry.

The cavitating bubbles are modeled by assuming a homogeneous distribution of small bubbles of unperturbed radius, \( R_o \), with void fraction, \( \alpha \). Relative motion between the bubbles and the fluid is neglected.

During its transit through the inducer the bubbly mixture rotationally accelerates from its initial state at the blade inlet to the uniform angular velocity

\[
\Omega_s(z) = \frac{v_o}{r} \Omega \left( 1 - \frac{w_s}{\Omega r_T} \cot \beta_T \right)
\]

The pressure varies in the inducer with the radius, \( r \), according to the equation:

\[
p_s = p_s + \frac{1}{2} \rho (w_s^2 - w_z^2) + \frac{1}{2} \rho \left[ \Omega^2 - (\Omega - \Omega_s)^2 \right] r^2
\]

Figure 2. Schematic of whirl motion and rotodynamic forces.
The unperturbed flow inside the inducer is therefore fully specified by the suction conditions, the flow rotation, \( \Omega_0 \), and the assumed value of the void fraction.

Kinematic conditions of the form \( Db/Dr = 0 \) are assigned to the flow velocity on the hub (\( b = r' - r_H = 0 \), on the outer casing (\( b = r - r_T = 0 \)), and on the blade

\[
\begin{align*}
\dot{b} & = \gamma' - \frac{r'}{r_T} \cot \beta_T \tan \gamma + \frac{z'}{r_T} \cot \beta_T - \gamma_T = 0
\end{align*}
\]

where \( \gamma_T \) identifies the orientation of the blade (Figure 1).

It is convenient to analyze the flow in a Lagrangian frame, \( r_L, \theta_L, z_L \), moving with the fluid, in which the unperturbed flow is at rest and the perturbation velocity components are indicated by \( u, v, w \). Expressing \( b \) in terms of \( r_L, \theta_L, z_L \) and implementing the material derivatives, the linearized boundary conditions are found to be:

\[
\begin{align*}
u &= \varepsilon \omega_L \sin (\theta_L - \omega_L t) \quad \text{on the hub} \quad r_L = r_H
\end{align*}
\]

\[
\begin{align*}
u &= 0 \quad \text{on the casing} \quad r_L = r_T
\end{align*}
\]

and, exploiting the fact that in most inducers \( \gamma = 0 \) and \( \tan \beta_T < 1 \), the blade boundary condition is fully linearized to yield (with error of order \( \tan \beta_T \)):

\[
\begin{align*}
w &= 0 \quad \text{on} \quad z_L = \text{constant}
\end{align*}
\]

where \( \omega_L = \omega - \Omega_0 \) is the frequency of the boundary excitation in the Lagrangian frame.

Linearization of the fluid dynamic equations of the bubbly mixture for time-harmonic perturbations of frequency, \( \omega_L \), yields the following Helmholtz equation (d'Agostino and Brennen 1988):

\[
\nabla^2 \tilde{p} + k^2(\omega_L) \tilde{p} = 0
\]

where \( \tilde{p} \) is the complex amplitude of the pressure fluctuation, such that \( \tilde{p} = \tilde{p} e^{-i\omega_L t} \) in the inducer flow and the velocity and pressure perturbations are related by \( i\omega_L \rho (1 - \alpha) \dot{u} = \nabla \tilde{p} \). The free-space wave number, \( k \), is determined by the dispersion relation:

\[
\frac{1}{c_M^2(\omega_L)} = \frac{k^2(\omega_L)}{\omega_L} = \frac{1}{c_M^2} \left( \frac{\omega_{bo}^2 (1 + i \omega_L \frac{R_o}{c})}{\omega_B^2 - \omega_L^2 - i \omega_L 2 \lambda} \right) + \frac{1 - \alpha}{c^2}.
\]

Here \( c_M(\omega_L) \) is the complex and dispersive (frequency dependent) speed of propagation of harmonic disturbances of angular frequency, \( \omega_L \), in the free bubbly mixture, and \( \omega_B(\omega_L) \) and \( \lambda(\omega_L) \) are the effective natural frequency and damping coefficient of an individual bubble when excited at frequency \( \omega_L \) (Prosperetti 1977, 1984). Also:

\[
\omega_{bo}^2 = \frac{3 P_o - 2 S}{\rho R_o^2} \quad \text{and} \quad c_M^2 = \frac{\omega_{bo}^2 R_o^2}{3 \alpha (1 - \alpha)}
\]

where \( \omega_{bo} \) is the natural frequency of oscillation of a single bubble at isothermal conditions in an unbounded liquid with pressure \( P_o \) and surface tension \( S \) (Plesslet and Prosperetti 1977, Knapp et al. 1970) and \( c_M^2 \) is the low-frequency sound speed in a free bubbly flow with incompressible liquid (\( \omega_L \to 0 \) and \( \epsilon \to \infty \)). Notice that the propagation speed and wave number depend on the radial coordinate through the mean pressure \( P_o \), thereby making the Helmholtz equation quasi-linear.

The Helmholtz equation for the pressure, together with the above kinematic conditions and the appropriate inlet and exit conditions, represent, in theory, a quasi-linear boundary value problem for \( \tilde{p} \). However, further simplifications are necessary in order to obtain a closed form solution. To fully linearize the problem, the wave number \( k \) is computed for a reference value \( \tilde{P}_o \) of the inducer pressure \( P_o \) at some suitable mean radius, say \( \bar{r} = \frac{r_T^2 + r_H^2}{2} \). By separation of variables (Lebedev 1965), the solution for the pressure perturbation, expressed in the absolute coordinates, is readily found to be:

\[
p(r, \theta, t) - P_o(r) = \text{Im} \left[ i e^{i \omega_L t} \rho (1 - \alpha) G(r, \omega_L) e^{i(\theta - \omega_L t)} \right]
\]

where the function \( G(r, \omega_L) \) has the following form:

\[
G(r, \omega_L) = \frac{1}{kr} \left( \frac{J_1(\lambda') Y_1(\lambda r_T') - J_1(\lambda r_T') Y_1(\lambda')}{Y_1(\lambda r_T') - Y_1(\lambda')} \right)
\]

with

\[
k = k(\omega_L)
\]

where \( J_1, Y_1, J_1', \) and \( Y_1' \) are the normal Bessel functions and their derivatives. Notice that the flow dynamics does not have a simple quadratic dependence on the excitation frequency, except in the incompressible limit where:

\[
k \to 0 \quad \text{and} \quad G(r, \omega_L) \to \frac{r/r_T + r_T/r}{1 - r_T^2/r_H^2}
\]

so that \( G \) is independent of \( \omega_L \), as expected.

To evaluate the fluid induced forces per unit length on the inducer and the casing we define:

\[
f^{(i)} = -\int_0^{2\pi} \left[ p - P_o + (r - r_T) \frac{dp_o}{dr} \right] e'(r, \theta) r d\theta
\]

\[
f^{(c)} = -\frac{\pi \epsilon \rho \Omega^2 R_o^2}{2}
\]
where \( e' \) is the unit vector in the direction of \( r' \). Upon integration, the radial and tangential components of the rotodynamic forces, \( f_r \) and \( f_T \), are more compactly represented in complex form by:

\[
f^{(c)} = f^{(l)} - i f^{(l)} = \left[ 1 - \left( \frac{\Omega - \Omega_c}{\Omega^2} \right)^2 \right] \frac{r_{ll}}{r_T^2} + \left( 1 - \alpha \right) \frac{\Omega^2}{\Omega_c^2} \frac{r_{ll}}{r_T} G(r_T, \omega_L)
\]

\[
f^{(c)} = f^{(c)}_r - i f^{(c)}_T = (1 - \alpha) \frac{\Omega^2}{\Omega_c^2} G(r_T, \omega_L)
\]

The entire flow has therefore been determined in terms of the material properties of the two phases, the geometry of the impeller, the nature of the excitation, and the assigned quantities: \( \phi \), \( \alpha \), and \( R/s_r \).

**RESULTS AND DISCUSSION**

The present calculated results for the rotodynamic forces will be compared with the experimental results for a helical inducer obtained by Bhattacharyya (1994). The inducer was operated in water (\( \rho = 1000 \text{ kg/m}^3 \), \( c = 1485 \text{ m/s} \), \( \mu = 0.001 \text{ Ns/m}^2 \), \( S = 0.0728 \text{ N/m} \)) with no prerotation (\( \Omega = 0 \)) at \( \Omega = 3,000 \text{ rpm} \), and a flow coefficient \( \phi = 0.074 \). The two-phase flow in the inducer is assumed to contain air bubbles, (\( \kappa_c = 0.0002 \text{ m}^3/\text{s} \)), \( \gamma = 1.4 \)) at mean pressure \( \bar{p}_a \), with the void fraction \( \alpha \) specified by assigning the parameter \( 3\alpha(1-\alpha)r_T^2/R_c^2 \).

The propagation of disturbances through the annulus has been examined in detail, because of their central role in determining the rotodynamic fluid forces on the inducer and the casing. Not surprisingly, the general features of linear propagation in the inducer flow are qualitatively similar to those of previous analyses of the dynamics of bubbly flows in other geometric configurations (d'Agostino and Brennen 1983, 1988; \( \gamma ) \).

The solution depends on the radial coordinate, \( r \), through a linear combination of first order Bessel functions (properly weighted to satisfy the boundary conditions at the inner and outer radii) and on the excitation frequency, \( \omega_L = \omega - \Omega_c \), through the wave number \( k = k_1(\omega_L) \), as illustrated in Figures 3 and 4 for a typical value of the parameter \( 3\alpha(1-\alpha)r_T^2/R_c^2 = 100 \). Quite similar parameters, also involving the void fraction and the square of the ratio of a macroscopic dimension of the flow to the bubble size, appear in all other previous analyses of the dynamics of bubbly flows.

Notice from Figures 3 and 4 that the relative importance of the real and imaginary parts of \( k \) is reversed when \( \omega_L/\omega_\infty \) crosses unity. Consequently, in view of the properties of Bessel functions, appreciable wave-like propagation only occurs at low excitation frequencies, below \( \omega_\infty \), while above \( \omega_\infty \) the flow disturbances are rapidly attenuated in the bubbly mixture. Owing to the dependence of \( \omega_\infty \) on the bubble size and ambient pressure, this transition is usually unimportant in laboratory experiments on cavitating inducers operating in water at relatively low speed. However, it could be relevant to full-scale high performance turbopumps, where the excitation frequency is higher due to the much larger rotational speeds.

Free oscillations of the flow can only occur if

\[
J_1'(kr_H)Y_1'(kr_T) - Y_1'(kr_H)J_1'(kr_T) = 0,
\]

and we denote the roots of this equation by \( k_{nr_T} = \beta_n, \ n = 1,2,3,... \). The roots clearly depend on the hub/tip radius ratio \( r_H/r_T \), and are known to be real, distinct, non-negative, and diverging for large values of \( n \). The first few roots \( \beta_n \) are reported in Table 1 for some representative values of \( r_H/r_T \).

In the absence of damping, the condition for free oscillations, together with the dispersion relation, defines an infinite set of natural frequencies (and mode shapes) for the two-phase flow in the inducer:

\[
\omega_n^2 = (\omega - \Omega_c)^2 = \frac{\omega_\infty^2}{\left(1 + \frac{3\alpha(1-\alpha)r_T^2/R_c^2}{\beta_n^2}\right)}
\]
Figure 4. Imaginary part of the normalized radial wave number, $k r_T$, as a function of the square of the reduced frequency, $\omega^2 / \omega_{bo}^2$, for $3\alpha(1-\alpha)r_T^2/R_o^2 = 100$, and with (○) and without (▲) damping.

Figure 5. Normalized natural frequency, $\omega_n^2 / \omega_{bo}^2$, as a function of the bubble interaction parameter $3\alpha(1-\alpha)r_T^2/R_o^2$ for $n=1$ (●), 2 (○), 3 (■), and 4 (▲) modes.

Hence, the natural frequencies never exceed the bubble resonance frequency, $\omega_{bo}$, they increase with the mode number, and converge to $\omega_{bo}$ for large values of $n$. They also decrease with $3\alpha(1-\alpha)r_T^2/R_o^2$, as illustrated in Figure 5 for the lowest modes, and become significantly smaller than $\omega_{bo}$ when $3\alpha(1-\alpha)r_T^2/R_o^2$ is comparable to $\beta_n^2$. Also notice from the above equation that the corresponding whirl speeds, $\omega_n$, are shifted by the rotation, $\Omega_o$, of the inducer.

$r_H/r_T$ : 0.3 0.4 0.5 0.6
$\beta_1$ : 1.582 1.462 1.355 1.262
$\beta_2$ : 5.137 5.659 6.565 8.041
$\beta_3$ : 9.308 10.683 12.706 15.801
$\beta_4$ : 13.684 15.848 18.943 23.6243
$\beta_5$ : 18.116 21.049 25.205 31.462

Table 1. Zeros of $J'_1(\beta r_H/r_T)\gamma'_1(\beta) - Y'_1(\beta r_H/r_T)J'_1(\beta)$.

The normalized radial rotodynamic force per unit length, $f_2^{(i)}/\pi \rho \Omega^2 r_T^2$, for the test inducer is displayed in Figure 7 as a function of the frequency ratio, $\omega/\Omega$, for three values of the parameter $3\alpha(1-\alpha)r_T^2/R_o^2 = 100$, 200, and 300. The corresponding rotodynamic force per unit length in the incompressible fluid case is also shown for comparison. Notice that the two-phase flow solution deviates from the quadratic behavior of the incompressible flow.

Figure 6. Radial mode shapes, $G(k_r)$, as functions of $(r-r_H)/(r_T-r_H)$ for several modes $n=1$ (●), 2 (○), 3 (■), and 4 (▲), $r_H/r_T = 0.4$, and $3\alpha(1-\alpha)r_T^2/R_o^2 = 100$. 

51
Figure 7. Normalized radial rotodynamic force per unit length, $f_r^{(0)} / \pi \rho \Omega^2 r_T^2$, for the test inducer as a function of the whirl frequency ratio $\omega / \Omega$ for the incompressible flow case (△), and in a bubbly fluid with $3\alpha(1-\alpha)r_T^2/R_e^2 = 100$ (●), 200 (♦), and 300 (■). In all cases $\phi = 0.074$, $R_0/r_T = 0.064$.

solution. In particular, for sufficiently high values of $3\alpha(1-\alpha)r_T^2/R_e^2$, the radial rotodynamic force becomes positive at higher values of the whirl frequency ratio.

Figure 8. Experimentally measured radial rotodynamic forces for the test inducer as a function of the whirl frequency ratio, $\omega / \Omega$, under non-cavitating conditions (○) and with cavitation numbers $\sigma = 0.106$ (△), 0.098 (♦), and 0.093 (▼). In all cases $\phi = 0.074$. (From Bhattacharyya, 1994).

Figure 9. Experimentally measured radial rotodynamic forces on a $12^\circ$ inducer as a function of the nondimensional whirl frequency ratio $\omega / \Omega$ in the non-cavitating case (○) and with cavitation numbers $\sigma = 0.050$ (○), 0.040 (△), and 0.035 (▼). In all cases $\phi = 0.070$.

Notice that the calculated behavior is similar to that experimentally observed by Bhattacharyya (1994) and...

Figure 10. Radial component of the normalized rotodynamic force per unit length, $f_r^{(c)} / \pi \rho \Omega^2 r_T^2$, on the casing as a function of the whirl frequency ratio, $\omega / \Omega$, for the incompressible flow case (△), and in a bubbly fluid with $3\alpha(1-\alpha)r_T^2/R_e^2 = 100$ (●), 200 (♦), 300 (■). In all cases $\phi = 0.074$, $R_0/r_T = 0.064$. 

52
mixture. In the presence of the dissipation associated with the dynamics of the bubbles, the spectral response of the flow is essentially dominated by the lowest resonant modes, while the others are effectively damped. Appreciable oscillatory propagation is limited to the frequency range below the bubble resonance condition. At higher frequencies rapidly decaying propagation of the exponential type prevails. The influence of bubble dynamic effects is dependent on the nondimensional parameter $3\alpha(1-\alpha)r_T^2/R_b^2$. The natural frequencies of the flow are always smaller than the bubble resonance frequency and their lowest values decrease rapidly when the bubble interaction parameter $3\alpha(1-\alpha)r_T^2/R_b^2$ exceeds unity. Moreover, the penetration of the whirl-induced disturbances into the flow also decreases with the excitation frequency and the bubble interaction.

As a consequence of these modifications, the rotodynamic fluid forces on the inducer and its casing in bubbly and cavitating flows no longer vary quadratically with the whirl frequency, as in non-cavitating flow. Rotodynamic fluid forces are also influenced by the flow rotation in the inducer, which changes the frequency of the excitation seen by the bubbly mixture. The spectral response of the rotodynamic fluid forces is strongly correlated to the bubble interaction parameter and the relative magnitude of the excitation and bubble resonance frequencies. Given the void fraction and bubble size typical of cavitating inducers, the resonant transition is usually unimportant in low-speed laboratory experiments, but may play an important role in full-scale turbopumps operating at much higher speeds.

The present theory invoked major simplifications and approximations and therefore is not expected to provide a quantitative description of unsteady bubbly and cavitating flows in whirling inducers. In this respect, the most crucial limitation is probably the relatively crude description of the unperturbed flow through the inducer. The linearization of the bubble dynamic response is more justified because of the expected magnitudes of the bubble size and rotor eccentricity in whirling turbopumps. Another limitation of the theory consists of the need to assign the value of the bubble interaction parameter, rather than deduce it from the mean flow conditions by means of a suitable cavitation model. However, experimental information on the typical void fraction and bubble size in cavitating inducers is more readily obtained than direct measurements of the fluid forces. Despite these limitations, the present analysis is qualitatively consistent with experimental results and reveals some of the fundamental phenomena that play a crucial role in determining the rotodynamic fluid forces in cavitating inducers.

CONCLUSIONS

This study reveals that a number of important effects can occur in the bubbly and cavitating flows in axial flow inducers as a consequence of the strong coupling between the local dynamics of the bubbles and the global behavior of the flow. The propagation of the whirl-induced disturbances within the annulus is significantly modified by the large reduction of the sonic speed in the bubbly mixture.
Research under the 1993 grant program for academic research and by the Office of Naval Research under grant number N-00014-91-K-1295. Some of the authors would like to express their gratitude to Profs. Mariano Andrenucci and Renzo Lazzarotti of the Aerospace Engineering Department of Pisa University, Pisa, Italy, for their encouragement in the completion of the present work.

REFERENCES


