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Alfvén-Wave Instability of Current Sheets in Force-Free Collisionless Plasmas
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If the current sheet between adjacent twisted magnetic flux tubes is sufficiently thin, the electron flow
velocity becomes comparable to the Alfvén velocity and can destabilize collisionless Alfvén waves.
The threshold for instability in force-free plasmas is calculated for both inertial and kinetic Alfvén-
wave regimes. When there is strong magnetic shear, unstable kinetic Alfvén waves can resonantly
accelerate ions to energies much higher than the electron temperature.

PACS numbers: 52.35.Qz, 52.35.Hr, 52.35.Py, 52.40.Mj
The direction of the magnetic field rotates abruptly
at the interface between two adjacent twisted flux tubes
[1] corresponding to a thin current sheet flowing in this
interface. The character of the current sheet depends
[2] on the ratio of plasma thermal to magnetic energy
b � 2m0nkT�B2. When b � 1 (denoted high b), current
sheets are associated with a magnetic field null and a
localized region of increased plasma pressure [3,4]. When
b ø 1 (denoted low b), the magnetic field magnitude
remains approximately constant throughout the current
sheet, there is no associated change in plasma pressure,
and the plasma is nearly force free.

Low b plasmas constitute an important class of
plasmas and include the solar corona, the near-Earth
magnetosphere, spheromaks, reversed-field pinches, and
tokamaks. Magnetic reconnection is experimentally
observed in all these plasmas and involves the mag-
netic field becoming locally unfrozen from the plasma.
This has been traditionally modeled by invoking finite
Ohmic resistivity to allow magnetic field diffusion
and dissipation at the current sheet with consequent
modification of the current sheet. However, for many
important situations the plasma is essentially collision-
less so that resistive models cannot explain magnetic
reconnection. There is, consequently, great interest
in finding collisionless mechanisms which can modify
current sheets and thereby enable magnetic reconnection.

Recently this author [5] proposed that the radiation re-
sistance associated with Alfvén-wave emission by a thin
current sheet could act as an effective collisionless resistiv-
ity, but the model in Ref. [5] did not explain why a current
sheet should spontaneously emit Alfvén waves. This Let-
ter demonstrates that sufficiently thin current sheets in low
b collisionless plasmas behave as laserlike kinetically un-
stable resonators which spontaneously emit Alfvén waves.

Low b plasmas can be categorized into two subclasses
according to whether b is smaller or larger than me�mi ,
and so it is convenient to define a normalized quantity b̄ �
bmi�me � y

2
Te�y

2
A. The two subclasses have distinct

physics [6]: when b̄ ø 1, Alfvén waves have the inertial
Alfvén-wave (IAW) dispersion relation and, when 1 ø
b̄ ø mi�me, Alfvén waves have the kinetic Alfvén-wave
(KAW) dispersion.
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Because b ø 1, the equilibrium can be approximated
as force free (i.e., J 3 B � 0) so that

= 3 B � a�r�B . (1)

The divergence of Eq. (1) shows that a is constant along
a field line. Since J � a, a current sheet corresponds
to a sharp peaking of a. We construct a coordinate
system having x̂ parallel to =a and ẑ parallel to B at
the current sheet midpoint x � 0. The magnetic field
satisfying Eq. (1) can be expressed in this coordinate
system as

B�x� � ŷB sin�u�x�� 1 ẑB cos�u�x�� , (2)

where u�x� �
Rx

0 a�x0� dx0 gives the rotation of B�x�
relative to its orientation at x � 0. A convenient repre-
sentation for a�x� which causes B to rotate by an angle D

in the current sheet is given by

a�x� �
D

a
Q

µ
a
2

2 jxj

∂
, (3)

where a is the current sheet width and Q is the Heaviside
function; the corresponding field angle dependence is

u�x� �

8>><
>>:

xD

a
for jxj # a�2

D

2
sgn�x� for jxj $ a�2 .

(4)

For simplicity, finite Larmor radius effects are ne-
glected by assuming that particles are cold in the direction
perpendicular to B. Since the field-aligned current mag-
nitude is J�x� � a�x�B�m0, the equilibrium electron flow
velocity is

uke0�x� �
a�x�B
m0nq

� yA
cD

vpia
Q

µ
a
2

2 jxj

∂
, (5)

where yA is the Alfvén velocity and terms of order me�mi

have been dropped. Thus if avpi�c � D, destabilization
of Alfvén waves becomes a possibility.

We assume that perturbed quantities vary as
g�x� exp�ikk�x�s 2 ivt�, where v øvci , kk � kz cosu,
and s is the distance along B. The parallel wave current is
© 1999 The American Physical Society
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given by

J̃k �
X
s

qs

Z
dyk ykf̃s�yk�

�
ivẼk

m0c2

X
s

1

2k2
kl

2
Ds

Z0

µ
v 2 kkuks0

kkyTs

∂
, (6)

where Z is the plasma dispersion function [7] and
yTs �

p
2kTs�ms .

Using the ion polarization drift m0J̃� � =��ikkÃk� �
ivy

22
A =�f̃, the electric field components can be ex-

pressed in terms of Ãk as

Ẽk � iv�1 2 k2
ky2

A�v2�Ãk, Ẽ� � 2=��kky2
AÃk�v� .

(7)

It has been assumed that =� ¿ a which also means that
B̃� � =Ãk 3 B̂0. Invoking m0J̃k � 2=

2
�Ãk and substi-

tuting for Ẽk in Eq. (6) gives the Alfvén-wave equation

c2

v2
pe

=2
�Ãk 1 Q�b̄, z �

"
Z0

√
z 2

uke0�x�
yTe

!

1
Te

Ti
Z0

√
z

s
Temi

Time

!#
Ãk � 0 ,

(8)

where

Q�b̄, z � � b̄21 2 z 2, (9)

z � v�kkyTe, and ion flow velocity which is of order
m �m has been dropped. The ion contribution has been
e i
retained in Eq. (8) because ion Landau damping can occur
for KAW.

Instability in a uniform plasma occurs [8] when the
argument of Z0 becomes negative, i.e., when uke0 .

v�kk so that ImZ0 reverses sign. The situation is more
complicated for a current sheet because the localization
of uke0 means there is only a narrow layer where ImZ0

reverses sign (beam excitation of purely electrostatic
waves [9,10] has a similar localized character).

Physically, Eq. (8) describes spontaneous emission of
Alfvén waves by the current sheet; these waves radiate out-
wards to x � 6` and Landau damp in the region exterior
to the current sheet. Global instability results when the
rate of wave energy production by the current sheet ex-
ceeds the rate at which wave energy is destroyed by Lan-
dau damping. Wave emission must come at the expense of
the original current sheet and it is expected that quasilinear
theory will describe a modification of the current sheet as
the waves are radiated. Landau damping of emitted waves
on exterior electrons effectively transfers momentum from
current sheet electrons to exterior electrons and so acts as
an electron viscosity. Landau damping on ions (as might
occur for KAW with warm ions and highly sheared fields)
transfers momentum from electrons to ions and so acts as
a resistivity.

Two boundary conditions apply to the x-directed wave
energy flux: (i) the wave energy flux vanishes at x � 0
because of symmetry and (ii) it also vanishes at x � 6`

because of exterior region Landau damping. The wave
energy flux is proportional to Im�Ã�

kdÃk�dx� and so we
derive an equation for this quantity. By assuming zi ø zr

and then Taylor expanding Q and Z0, Eq. (8) can be written
with explicit real and imaginary parts as
c2

v2
pe

d2Ãk

dx2 1 Q�b̄, zr �Z0
R�z̄r �Ãk 1 i

√
Q�b̄, zr �

"
Z0

I �z̄r� 1
Te

Ti
Z0

I

√
zr

s
Temi

Time

!
1 ziZ

00
R�z̄r�

#
2 2zizrZ0

R�z̄r�

!
Ãk � 0 ,

(10)
where

z̄r � zr 2
uke0�x�

yTe
� zr 2

c
avpi

D

b̄1�2 Q

µ
a
2

2 jxj

∂
,

(11)
and we have noted that the dominant perpendicular deriva-
tive is in the x direction. The b ø 1 assumption means
that v�kkyTi ¿ 1 for both IAW and KAW; thus the ion
term Z0

R�zr

p
Temi�Time� is always much smaller than

the corresponding electron term Z0
R�zr � and so has been

dropped.
Multiplying Eq. (10) by Ã�

k and then taking the imag-
inary part of the result yields the wave energy-flux
equation
c2

v2
pe

Im

∑
d
dx

µ
Ã�
k

dÃk

dx

∂∏
1

Ω
Q�b̄, zr �

∑
Z0

I �z̄r � 1
Te

Ti
Z0

I �zr

q
Temi�Time� 1 ziZ

00
R�z̄r �

∏
2 2zizrZ0

R�z̄r �
æ
jÃkj

2 � 0 .

(12)

Integrating Eq. (12) from x � 0 to x � ` and invoking boundary conditions (i) and (ii) gives an equation linear in
vi � zikkyTe which may be solved to give

vi � 2

Z `

0
dxjÃkj

2Q�b̄, zr�

"
Z0

I �z̄r � 1
Te

Ti
Z0

I

√
zr

s
Temi

Time

!#
Z `

0
dx

jÃkj
2

kkyTe
�Q�b̄, zr�Z00

R�z̄r � 2 2zrZ0
R�z̄r ��

. (13)
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The integrals in Eq. (13) are convergent because Landau
damping in the exterior region causes jÃkj

2 to decay ex-
ponentially at large x. Equation (13) is a generalization
of the standard result that Taylor expansion of the uni-
form plasma dispersion relation D�vr 1 ivi� � 0 gives
�vi�uniform � 2DI��≠DR�≠vr �.

Evaluation of Eq. (13) is nontrivial because the exterior
region decay rate of jÃkj

2 depends on vi . This complica-
tion is avoided here by restricting the analysis to a search
for marginal stability, i.e., the condition that vi changes
from negative to positive.

The real and imaginary parts of Eq. (10) constitute
two coupled second order ordinary differential equations
with two-point boundary conditions. We have solved
this system numerically for marginal instability using the
method in Ref. [11] with Z0 prescribed by the two-pole
approximation [7]. In addition to the energy-flux bound-
ary condition that Im�Ã�

kdÃk�dx� vanishes at x � 0, 6`

it is also necessary for Ãk to be an even function of
x to have continuity of both Ãk and dÃk�dx at x �
0. This parity condition provides a laserlike quantiza-
tion condition on allowed a, z ext

r combinations and cor-
responds to requiring a smooth matching of the current
sheet Ãk � exp�iksheet

x x� 1 exp�2iksheet
x x� to the exte-

rior Ãk � exp�ikext
x jxj�; note that Imksheet

x , 0, whereas
Imkext

x . 0. Marginal instability for given D and b̄ is
found by adjusting a and z ext

r until the numerically evalu-
ated numerator of Eq. (13) vanishes while also satisfying
RedÃk�dx � ImdÃk�dx � 0 at x � 0.

Figure 1 plots numerical integration results for a typical
KAW. Here, b̄ � 200 and D � 0.87p were specified
and then z ext

r and a were adjusted to obtain a marginally
unstable wave, i.e., a numerical solution of Eq. (10) having
zi � 0 and satisfying all the criteria listed in the previous
paragraph. For this case it was found that marginal insta-
bility occurs when z ext

r � 0.62 and a � 0.33c�vpi . The
top three curves in Fig. 1 are, respectively, z̄r�x� [from
Eq. (11)], the numerically integrated ReÃk and ImÃk,
and jÃkj

2. The next curve (marked “Net Power Dissipa-
tion”) shows the integrand of the numerator of Eq. (13),
i.e., jÃkj

2Q�b̄, zr � �Z0
I �z̄r� 1 Z0

I �zr

p
Temi�Time�Te�Ti�,

and clearly shows how wave emission in the current
sheet is balanced by wave damping in the exterior
region.
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FIG. 1. Numerically calculated wave functions demonstrating
a marginally unstable KAW wave (parameters given in text);
all plotted quantities are symmetric about x � 0.

The bottom curve in Fig. 1 shows the ion Landau
damping term jÃkj

2Q�b̄, zr�Z0
I �zr

p
Temi�Time�Te�Ti .

Since kk � kz cosu and kz is invariant, z sheet
r �

z ext
r cos�D�2�� cos�u�x�� is smaller in the current sheet

than in the external region causing ion Landau damping
to be concentrated in the current sheet. For KAW which
already have small z ext

r , the x dependence of zr can
result in the wave phase velocity in the current sheet
being reduced to a small multiple of yTi and so give
significant wave-ion coupling. The x dependence of zr

can also cause Qsheet to differ substantially from Qext if
D approaches p .

An analytic estimate of the marginal instability
criterion can be obtained by using the approxima-
tions limz¿1 Z0�z � � z 22 2 2ip1�2z exp�2z 2� and
limzø1 Z0�z � � 22 2 2ip1�2z exp�2z 2� to find the
conditions under which the numerator in Eq. (13)
vanishes. It is convenient to split this numerator into the
current sheet and exterior regions giving
Z a�2

0
dxjÃkj

2Q�b̄, zr �
∑
Z0

I

µ
zr 2

c
avpi

D

b̄1�2

∂
1

Te

Ti
Z0

I �zr

q
Temi�Time�

∏
1 Q�b̄, z ext

r �Z0
I �z ext

r �
Z `

a�2
jÃkj

2 dx � 0 .

(14)
External region ion Landau damping has been dropped
since it is negligible.

Because the exterior region plasma is uniform, we may
assume that in this region Ãk � exp�ikxx�, where kx �
kxr 1 ikxi . The real part of Eq. (10) therefore becomes
the dispersion relation [6]

kxr � 6
vpe

c

q
Q�b̄, zr �Z0

R�zr� . (15)
If b̄ ø 1, Eq. (15) becomes the IAW dispersion
kxr � 2�k2

ky
2
A�v2

r 2 1�1�2vpe�c and has propagating
waves when b̄21�2 . zr . 1, whereas if 1 ø
b̄ ø mi�me Eq. (15) becomes the KAW dispersion
kxr � 1�v2

r 2 k2
ky

2
A�1�2�ckklDe with propagating

waves when b̄21�2 , zr , 1. For IAW both Q and Z0
R

are positive while for KAW both are negative. In order
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to have outward wave energy propagation for x . 0, we
have chosen kxr negative for IAW (backwards wave) and
positive for KAW (forwards wave).

Because vi � 0 at marginal instability, the imaginary
part of the exterior region dispersion relation associated
with Eq. (10) yields

kext
xi �

vpep1�2

c

s
Q�b̄, zr�
Z0

R�zr�
zr exp�2z 2

r � . (16)

jÃkj
2 may be approximated as uniform within the thin

current sheet, and so in the current sheet jÃkj
2 � jÃk�0�j2.

However, in the external region the wave energy decays
as jÃk�x�j2 � jÃk�0�j2 exp�22kext

xi x� and soZ `

a�2
jÃkj

2 dx �
jÃk�0�j2

2kext
xi

exp�2kext
xi a� . (17)

Combining Eqs. (14) and (17) gives the condition for
marginal instability to be∑

QZ0
I

µ
zr 2

c
avpi

D

b̄1�2

∂
1 Q

Te

Ti
Z0

I

µ
zr

s
Temi

Time

∂∏
sheet

.
2c

avpi

r
me

mi

3 �
q

QZ0
R�zr � e2kxia�ext , (18)

or, in a more convenient dimensionless form

��Y 2 zr �e2�Y2zr �2

�sheet . �zrI�sheet

1
Qext

Qsheet

∑
Y´ exp

µ
2

e2z 2
r

´

∂∏
ext

,

(19)

where Y � cD�avpib̄
1�2 is the normalized inverse

current sheet thickness, I � �Te�Ti�3�2�mi�me�1�2

exp�2z 2
r Temi�Time� characterizes ion Landau damping,

and ´ � �
q

b̄meZ0
R�zr��pD2miQ�b̄, zr ��ext characterizes

exterior region electron Landau damping.
Equation (19) is a function of two undetermined di-

mensionless variables, Y and z ext
r ; all other quantities

are set by the equilibrium. Two necessary conditions
for instability are the following: (i) Y . z sheet

r which
indicates that instability begins only when a becomes suf-
ficiently small; (ii) ´ , 1 which gives a shear requirement

D . �
q

b̄meZ0
R�zr��pmiQ�b̄, zr��ext .

Equation (19) indicates that, when a decreases mono-
tonically (e.g., when two flux tubes collide), there will be
a narrow, but finite, a range giving instability. It must be
recalled that the matching conditions on Ãk and dÃk�dx
quantize allowed values of a. For example, consider the
IAW example of a hydrogen plasma with b̄ � 0.14 and
D � 0.01p . Numerical integration using the two-pole
Z0 representation and including quantization shows that
the combination z ext

r � 2.56 and avpi�c � 0.024 gives
marginal instability. For comparison, using z ext

r � 2.56
in Eq. (19) predicts a range 0.022 , avpi�c , 0.030 for
IAW instability showing that Eq. (19) provides a reason-
able estimate of the instability threshold.

When D is large and the plasma is in the KAW regime,
the wave in the current sheet can be sufficiently slowed
to resonate with tail ions (cf. bottom curve in Fig. 1).
Thus, when D is large, KAW instability can accelerate
current sheet ions to energies ¿Te. This linear analysis
predicts interaction with only the small number of tail
ions, but, if a tail-pulling effect analogous to that observed
in lower-hybrid current drive occurs, a much more intense
ion tail would be produced. This KAW acceleration of
current sheet ions is a likely explanation for energetic ion
beams observed by Kornack et al. [12] in the plane of
the reconnection layer between two merging spheromaks;
if tail pulling occurs, it could also explain the efficient
generation of hot ions observed by Ono et al. [13] in the
TS-3 merging spheromak reconnection experiment.
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