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ION EXCHANGE KINETICS 

A Nonlinear Diffusion Problem 

by 

F, Helfferich and M. S. P les se t  

Summary 

Ideal limiting laws a r e  calculated for  the kinetics of particle dif- 

fusion controlled ion exchange processes  involving ions s f  different 

mobilities between spherical ion exchanger beads of uniform size and 

a well- s t i r r ed  solution, The calculations a r e  based on the nonlinear 

Nernst-Planck equations of ionic motion, which take into account the 

effect of the e lec t r ic  forces  (diffusion potential) within the system. 

Numerical resu l t s  for counter ions of equal valence and s ix  different 

mobility rat ios  a r e  presented. They were  obtained by use of a digital 

computer. This  approach contains the well-known solution to the cor -  

responding linear problem a s  a limiting case.  An explicit empir ical  

formula approximating the numerical resu l t s  is given. 



1, Introduction 

An ion e'xsrchange r e s in  consists essentially of a three-dimensional, 

cross-linked network of hydrocarbon chains carrying fixed ionic groups, 

the electr ic  charge of which is compensated for by mobile ions of opposite 

charge ("csuater ions"'), These counter ions axe f ree  to diffuse within 

the res in  network, Tn contact with an electrolyte solution the res in  takes 

up solvent and some additional mobile ions (additional counter ions, and 

l'co-ions" have the same charge sign a s  the fixed ionic groups). In a n  

ion exchange process the counter ion species present initially i s  replaced 

by another species,  

We consider the ion exchange between spherical ion exchange resin 

beads of uniform size containing the counter ion species A and a well- 

s t i r r ed  solution containing the counter ion species B, During the process  

ions A diffuse out of the bead and a r e  replaced by an equivalent amount of 

ions B. 

Id has been established that such processes  a r e  diffusion controlled: 

the ra te  determining mechanism i s  the interdiffusion of the two species 

A and B, either within the res in  particles o r  in a Nernst diffusion layer 

("film"] adherent to the particle surface,  which is not affected by stirring, 
1 

Limiting law8 for fi lm controlled exchange in ideal systems have been given 

previously. in this paper ideal limiting laws for particle controlled 

processes  a r e  calculated. Part ic le  control is favored by concentrated solu- 

tions, large diameter and high degree of cross-linking of the beads, and 

efficient s t i r r ing.  
3 



The driving 'tforce" for the flux of a n  ionic species is ,  in systems 

without convection, the gradient of i t s  general  chemical potential, the 

principal elements of which a r e  the concentration gradient of the species 

and the gradient of the electr ic  potential. Even if no external e lectr ic  

field is applied, a gradient of the electr ic  potential will, a s  a rule, be 

built up by the diffusion process  (diffusion potential). The corresponding 

differential equations a r e  nonlinear. The interdiffusion process con- 

s idered here can be described in t e r m s  of one interdiffusion coefficient 

which, however, is not constant but changes with the concentration ratio 

of the two counter ion species present. Hence, the mathematical t rea t -  

ment is that of a diffusion problem with varying diffusion coefficient, 

Hitherto only the corresponding linear problem, i. e. , with constant inter- 

4 
diffusion coefficient, has been solved and applied to ion exchange 

kine t ics.  In our  approach the solution to the linear problem repre-  

sents  a limiting case: the exchange of counter ions of equal mobility. 

The linear solution holds rigorously for isotopic exchange processes ,  

whereas for  other cases  the deviations a r e  considerable, 

2. Model and Simplifying Assumptions 

We use the simplest  model conceivable and the simplest  equations 

proven to be adequate for the description of ionic diffusion processes,  the 

Nernst-Planck equations. 11-15 

Without respect  to i ts  actual  porous s t ructure the whole res in  is 

t reated a s  a quasi-homogeneous phase. Individual diffusion constants for  

the mobile ions present a r e  defined correspondingly; they can be measured 

by t r ace r  techniques in equilibrium systems.  1' 15-18 The assumption is 



niade with exper imenta l  support  15' 16' l8 that  these individual diffusion 

constants a r e ,  essent ia l ly  constant fo r  a given res in ,  i, e . ,  independent 

of ionic composition. We make use  of the ideal  Einste in  re la t ion between 

the individual diffusion constants and the e lectrochemical  mobili t ies,  We 

neglect any coupling of ionic fluxes o ther  than by e lec t r ic  fa rces .  We 

a s s u m e  a constant concentration of fixed ionic groups throughout the res in .  

Any concentration change and flux of the co-ions i s  d isregarded,  since 

they a r e  s m a l l  a s  compared with those of the counter ions  if  the concen- 

t ra t ion of the solution i s  not too high and that of the fixed ionic groups not 

too low. l3 W e  neglect  changes in ionic activity coefficients and swelling 

condition of the r e s i n  a s  well  a s  the effect  of gradients  aP swelling p re s -  

s u r e .  Under the s imple  boundary condition used here ,  the magnitude of 

the selectivity coefficient i s  i r re levant .  l9 We r e s t r i c t  ou r se lves  to 

r a d i a l  diffusion, i. e . ,  spher ical  symmetry.  We a s s u m e  that interdif-  

fusion within the r e s i n  beads i s  the r a t e  determining mechanism through- 

out the process .  Th i s  l as t  assumption i s  not s t r i c t ly  valid; i t  leads  to 

exchange fluxes that  a r e  infinite initially, whe reas  the possible diffusion 

r a t e  through the f i lm  is finite. F o r  a very  sho r t  init ial  period f i lm 

diffusion m u s t  be  the r a t e  controlling step. 

The assumptions  and simplification l is ted above a r e  those usually 

made in  the formulation of a model  fo r  ion exchange kinetics.  
5- 10 

We do not neglect  the effect of the e l ec t r i c  potential gradient on the 

ionic f luxes;  in th is  r e spec t  our  approach dif fers  f r o m  previous theories.  



3 ,  Formulation of the Problem 

Under the assumptions mentioned, the fluxes of the two counter ion 

species  A and B a r e  given by the Nernst-Planck equations 11-14 

O B =  - D B  r ad  CB -I zBCB (F/./RT) grad rg] , I lb )  

where @ is the flux, 2) i s  the individual diffusion constant, G i s  the 

molar  concentration, z i s  the electrochemical valence, is the 

Faraday  constant, R is the gas constant, T i s  the absolute temperature,  

i s  the e lec t r ic  potential, and the subscripts  A and B refer  to the 

counter ion species ,  

Electroneutrali ty requires  that the total equivalent concentration of 

counter ions is constant throughout the bead, since the concentrations of 

both the fixed ionic groups and the co-ions a r e  constant; thus 

The absence of an  electr ic  cur rent  in combination with (2) gives the con- 

dition 

By use  of  (2) and (31, Eqs. ( l a )  and ( lb)  may be combined to give 

2 
D ~ D ~ ( ~ ~ ~ ~  + .BeB) 

2 grad CA . 
D A A A  z Z  c + DBz BCB 



% 

'She quantity in brackets  may be termed the interdiffusion coefficient 

D~~ of the process ,  Its value depends not only on the individual dif- 

fusion constants DA and Dg; it i s  also a function of the concentration 

rat io  cA/cB and therefore a function of the time and space coordinates. 

The dependence of the interdiffusion coefficient on ionic composition i s  

shown in Fig.  1 for various values of the rat io  D ~ / D * .  F o r  CA 6( CB9 

DAB assumes  the value DA, and for  CB ( CA the value DB. The ion 

present in smal le r  concentration always has the stronger influence on 

the interdiffusion coefficient. 33 l9 This  simple rule i s  a consequence of 

of the fact that in (1) the concentration of the species en ters  in the elec- 

t r i c  term.  It is also physically evident since the e lec t r ic  field ac ts  on 

every  ion present and thus causes a large transference of the species 

present in high concentration, whereas the flux of the species present in 

low concentration is hardly affected. 

F o r  the t reatment  of time dependent processes  the equation of con- 

tinuity must  be introduced 

In previous work on time dependent processes ,  only the limiting 

l inear  case has been considered, to which (4) and (5) reduce when a 

constant interdiffusion coefficient DAB is assumed.  Analytical solutions 

to the linear problem have been derived for a number of systems including 

those with spherical  symmetry with various boundary conditions. 
4, 20 

However, Eq. (4) and Fig. 1 show that the assumption of a constant inter-  

diffusion coefficient holds only i f  the individual diffusion constants DA and 

D a r e  equal, a s  is the case  for example in isotopic exchange processes.  B 



This paper d e a l s  with the general, nonlinear problem and will t reat  

s p e ~ i f i c a l l y  sys tems with spherical symmetry. Upon substitution of (4) 

into (5) an expression i s  obtained which can be written conveniently in 

dimensionless form with the introduction of the following dimensionless 

var iables  and parameters:  

a s z  D / z  D - 1 ;  A A  B B  b = aA/zB - 1 

where t is time, r is the radial  coordinate, and ro is the radius  of the 

beads. The resulting equation 

was derived in a preliminary note. The fraction qA of the species A 

s t i l l  present in the sphere a t  the dimensionless t ime T is expressed in  

t e r m s  of the solution y ( p ,  .c ) of Eq. (7) a s  follows: 

The ion exchange ra te ,  deiined as the decrease  with time of the amount 

QA of the species  A (in moles) present in  the spheres,  may be written a s  

where V is the total  volume of ion exchanger used. 



If the problem is limited to the exchange of counter ions of equal 

valence (zA = zB)$ SO that b = 0. the general  equation (7) may be 

simplified by the iniroduction of the new variable 

to be come 

which is a convenient form for  numerical integration. The resu l t s  

reported a t  the present time will be for  this case.  Determination of the 

solutions of Eq, (7) for  non-zero values of b a r e  planned for  a la ter  time. 

We use the simple s t  initial and boundary conditions possible, assuming 

that initially the beads contain counter ions A only and the solution counter 

ions B only, and that no concentration changes occur in  the solution, 

The boundary condition (12b) corresponds to infinite solution volume o r  

to continuous renewal of the solution, The selection of initial and bound- 

a r y  conditions other than (12) would require  the introduction of further 

parameters  which, for the numerical evaluation we car r ied  out, would 

have to be chosen a rb i t r a r i ly  and have led to resu l t s  applicable in  special  

cases  only. In contrast ,  by using the conditions (121, more  general l imit-  

ing laws a r e  obtained, which can be approached fair ly  closely by experi- 

mental  techniques. 

Even under the simple conditions (12) a n  analytical solution to the 

Eqs. (7) o r  (11) was not obtained, We have evaluated (11) numerically for 



six values of the ratio D ~ / D ~  of the individual diffusion constants: 

The result; a r e  given in section (5). 

4. Calculation Procedure 

F o r  the numerical  evaluation, (11) was approximated by the finite 

difference form 

- R- ( P )  [u(P, 7 - u(P-AP,.I)] 

where 

g(p, = exp - 4 ~ 3  T If A 7 / ( A P ) ~ ;  

By use of (13), U(P,  z + h 7 )  can be calculated f rom u ( p + ~ p ,  T ), 

u(pI 1~ ), and u ( p - 4 ,  T ). F o r  the calculation the initial condition and the 

boundary conditions for p = 0 and p = ]I a r e  required. The initial 

condition is obtained f rom (12a) and (10): 



\ 

The boundary conditions a t  the bead surface ( P  = 1) i s  given by (12b) and 

It can be shown that the gradients of y and u vanish a t  the center of the 

sphere: 

( a u / a  P I P '  0 = o .  

Hence the condition a t  p = 0 becomes 

By choice of Ap an upper limit is given for A T by the stability 

condition f o r  the numerical  integration. 22 In case  of (131, this condition 

The function u(p, 7 ) was calculated numerically f rom (13) and (14) 

in accord with the requirement (15). 

F o r  the numerical integration corresponding to (a), which leads to 

the fraction qA st i l l  present in the sphere, S impsonfs  rule was used: 

where 



The dimensionless ra te ,  -dqA/d r, was  approximated by 

The ca l cuh t ion  s t a r t s  out with a step' function, Therefore,  a very 

fine subdivision of space and t ime is requi red  initially, The init ial  

spacing of p used was Ap = l/640, The spacing of AT was 

selected i n  accordance with the stability condition (15). As  the cal-  

culation proceeded, Ap was increased stepwise to 1/320, 1/160, 

1/80. 1/40 ( a t  about qA = 0 . 9 ) ,  1/20 ( a t  about qA = 0.6), and 1/10 (at  

qA 4 0.1). AT was  increased  correspondingly. The estimated max- 

4- irnurn e r r o r  in  qA is t 0.01; the e r r o r  i n  dqA/d.r i s  about - 2%. 

The calculations were  c a r r i e d  out o n  the "Datatronl' digital com- 

puter (manufactured by Electrodata,  Inc. , Pasadena,  California) in the 

computing cen te r  a t  the California Institute of Technology. Floating 

point numbers  were  used. The total t ime required was  about 35 hours. 

5. Resul ts  and Discussion 

The calculation yields the dimensionle s s  functions u ( ~ ,  7 ), qA( s ), 

and -dqA( T ) / d l  . The f i r s t  i s  readily converted to y (p. .r ), which 

gives the rad ia l  concentration profiles of the species  A. In tabulating 

and plotting the resu l t s ,  we have followed general  practice and given 

the f ract ional  at tainment of equilibrium, ~ ( s  ), r a the r  than qA(7 ). 

Under the init ial  and boundary conditions (121, this  quantity is given by 

F ( 7 )  = 1 - q A ( 7 )  (18) 

The representat ion of the data i s  kept in  dimensionless  form,  since the 



actual  values of the concentrations, the fractional attainment of equilib- 

r iurn,  and the r a t e s  a t  a given time t depend a lso  on D A# ro, C, and V. 

They can be obtained frqm the tables and graphs by substituting numcri- 

ca l  values for these quantities and using ( 6 )  and (9). 

Table I gives the fractional attainment of equlibriurn, F ( T  ), and 

the dimensionless rate ,  -dq / d q l  for  the various cases .  Figure 2 A 

shows a plot of F ve r sus  T and includes the solution to the linear ease  

4 
(DA = DB) which is well known to be 

2 2 cup(-n a T) . (19) F ( T )  = f - -  
mi! n = ~  n 

It should be emphasized that the time coordinate T ~ o n t a i n s  the 

quantity DA; hence, these resu l t s  can be used fo r  d i rec t  comparison of 

different processes  only if  the ion A initially present in the beads is  the 

same in a l l  cases .  F igure  2 shows that the curves for different rat ios  

D ~ / D ~  can not be transformed into one another by a linear t ransforma- 

tion of the time. If the ion B is s b w e r ,  the process  i s  slower, but not 

by a constant factor,  because the interdiffusion coefficient increases  with 

decreasing concentration of A, On the other hand, i f  B is fas te r ,  the 

process  i s  faster ,  but the interdiffusion coefficient decreases  during the 

process.  

I t  is of in te res t  to compare the r a t e s  for  forward and backward 

exchange of two counter ion species. In Fig,  3 we have plotted the f rac-  

-I- 
tional attainment of equilibrium for the exchange processes  H against 

+ -I- 13' and L i  against  H , assuming a ratio D ~ / D ~ ~  = 10. F o r  direct 

comparison we have chosen D t / r2  a s  the dimensionless time H o 



coordinate in both cases ,  i t  is seen that the process  is faster  if  H', the 

fas te r  ion, *is initially present in the resin,  The half t imes of exchange 

differ by about the factpr 2, the time required for  90% exchange by about 

Che factor 3. According to previous theoiies,  which assume a constant 

interdiffusion coefficient, the two curves should coincide. 

The radial  concentrakion profiles of the species A for 25%, 50%, 

75%, and 90% exchange a r e  shown in Fig,  4. T h e  profiles for the linear 

case (D* = ~ g )  given by 4 

2 2 sin (nnp) exp (-n n T ) (20) 
T P  , = 1  n 

a r e  included. The shape of the profiles depends strongly on the ratio 

DA/Dg If the ian present in the sphere initially is much the faster  one, 

a comparatively sharp boundary moves in toward the center of the bead 

(I?ig. 4a). If the ion present in the bead initially is much the slower one, 

the boundary is diffuse and the process reaches the center rapidly 

(Fig. 4b). Again, the explanation is straightforward. In the f i r s t  case 

the concentration of the faster  ion is sma l l  near the surface and large 

near the center of the bead. Hence, the interdiffusion coefficient 

decreases  toward the center. Therefore the outer shells of the bead a r e  

exhausted rapidly, whereas the exchange near  the center remains slow, 

In the second case,  the opposite holds, The interdiffusion coefficient 

increases  toward the canter ;  therefore the exhaustion is more  uniform. 

Previous theories lead to one se t  of curves for a l l  ca ses  (Fig. 4g). 



F o r  practical purposes, an  explicit expression for  F ( .c ) which 

approximafes the numerical  resu l t s  will be useful. The relation 

~ ( 2 )  = 2 - exp Cn ( f l ( a ) e  t f 2 ( a ) z 2  + f 3 ( a )  'z .~)J] 1/2 

where a =: D ~ / D ~  and the coefficients f a), f2( a ) ,  and f 3 ( a )  a r e  

given by 

t 
f i t s  a l l  the numerical  resu l t s  within a n  e r r o r  of - 6%. I t  should hold 

equally well  for  intermediate values of the rat io  D ~ / D ~ .  Equation (21) 

was developed a s  an extension of a simpler but l e s s  accurate approxi- 

mation given by vermeulenZ3 for  the linear case.  

We wish to emphasize again that the resu l t s  represent  ideal limiting 

laws only, f rom which the behavior of actual  sys tems may be expected to 

show more  o r  l e s s  pronounced deviations. However, the comparison with 

the solution fo r  the linear case demonstrates conclusively that the effect 

of the e lec t r ic  potential included in ou r  approach is an  essent ial  feature of 

the process  which no theory can omit. 
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FRACTIONAL ATTAINMENT OF EQUILIBRIUM, ~ ( t ) ,  AND DIMEI\TSIONLESS 

RIZTE, - aqA(*)/a+ , FOR SIX D ~ W I T  VALUES OF THE RATIO D ~ / D ~  



TABLE I ( ~ o n t ' d , )  

FRACTIONAL ATTAJXMENT OF EQUILIBRIUM, F ( * ) , AND DIMEXVSIONLESS 

RATE, - dqA( r ) i d s  , FOR SIX DIFFERWT VALUES OF 'PHE RRTIO ~ ~ 1 %  



TABLE I (~ont'd.) 
% 

FRACTIONAL ATTAUNMENT OF EQUILIBRIUM, F( * ) , AND DLMENSIOIEZSS 

RATE, - dqA( ( )/ d z , FOR SIX D~~ VALUES OF THE RATIO ~ ~ 1 %  



TABLE I (C!ontfd,) 
1 

FRACTIONAL ATTAINMENT OF EQUILIBRIUM, F( ) , AND DIMENSIONLESS 

RATE, - dqA( l )/ d~ FOR SIX DIFFEBEXQ VALUES OF THE RATIO D ~ / D ~  

a) ~ ~ 1 %  - 1/2 



TABLE I (cont9d.) 
x 

FRACTIONAL ATTAINMENT OF EQUILIBRIUM, F(Z ) , AND DIMENSIONLESS 

UTE, -aql((% ) / a~ , FOR SM ~rn- VALUES OF TIE WTO D ~ / D ~  



FRACTIONAL ATTAIJSTMENT OF EQUILIBRIUM, F(*E' ), AND DLMENSIONLESS 

RATE, - aqA(-z )/ , FOR SIX DIFFERENT VALUES OF THE RATIO D ~ / D ~  



EQUIVALENT FRACTION OF B EQUIVALENT FRACTION OF B 

Fig. 1 .  Dependence of the interdiffusion coefficient DAB on the ionic 
composition of the exchanger, calculated from Eq. (4), for 
the interdiffusion of ions of equal valence (left) and of a uni- 
valent and a bivalent ion (right). The different curves cor- 
respond to different ratios D * / D ~  . 
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Fig. 4. Concentration profiles of the species A in the bead for 2570, 
5070, 7570, and 90% exchange (F = 0 . 2 5 ,  0 . 5 0 ,  0 . 7 5 ,  and 0 .90)  
for seven different rat ios  DA/DB. The profiles for the linear 
case (DA = DB) were  calculated f rom Eq. ( 2 0 ) .  
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Stevens Inst i tute  of Technology 
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W o r c e s t e r ,  M a s s .  
Attn:  P ro f .  J. L. Hoope r ,  
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D r .  F .E .  F o x  
Cathol ic  Un ive r s i t y  
Washington 17, D .C .  (1) 
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