IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008 231

Active Queue Management for Fair
Resource Allocation in Wireless Networks

Lachlan L.H. Andrew, Senior Member, IEEE, Stephen V. Hanly, Member, IEEE, and
Rami G. Mukhtar, Member, IEEE

Abstract—This paper investigates the interaction between end-to-end flow control and medium access control (MAC)-layer
scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point;
each user suffers fading and a scheduler allocates the channel based on channel quality but is subject to fairness and latency
considerations. We show that the fairness property of the scheduler is compromised by the transport-layer flow control of Transmission
Control Protocol (TCP) New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at
a receiver to control a TCP sender by setting the TCP receiver’s advertised window limit, and this allows the scheduler to allocate

bandwidth fairly between the users.

Index Terms—Wireless communications, wireless networks, TCP, Transmission Control Protocol, active queue management,

multiuser diversity, scheduling, flow control, access networks.

1 INTRODUCTION

TRANSMISSION Control Protocol (TCP) Reno (and its
variants) is the dominant transport-layer (layer-4)
protocol for data transfers in the Internet. In the last few
years, increasing attention has been drawn to the perfor-
mance of TCP across wireless networks. In this present
paper, we focus on the interaction between TCP, which
attempts to fill and overflow network buffers, and a lower
layer wireless scheduler that tries to maximize throughput
that is subject to fairness constraints. The model that we use
is applicable to fading channels in which the scheduler can
exploit multiuser diversity [1]. We undertake this study by
comparing the TCP throughput with an alternative flow-
control algorithm that clamps TCP’s bandwidth probing
mechanism.

1.1 Motivation

In this study, we investigate the potential impact of the TCP
flow control on a lower layer scheduler in terms of the
fairness and throughput that it can provide. Although it is
already well known that TCP is unfair toward flows with
long propagation delays, the studies that have concluded
this fact and provided analyses to support it have focused
on wireline networks. Wireless networks may be different
for a number of reasons.

e L.L.H. Andrew is with the Department of Computer Science, California
Institute of Technology, M/C 256-80, 1200 E. California Blvd., Pasadena,
CA 91125. E-mail: l.andrew@ieee.org.

e S.V. Hanly is with the ARC Special Research Centre on Ultra-Broadband
Information Networks, Department of Electrical and Electronic Engineer-
ing, University of Melbourne, Parkville, Australia, 3010.

E-mail: s.hanly@ee.unimelb.edu.au.

o R.G. Mukhtar is with VaST Systems Technology, Ground Floor,

29 Christie St., St. Leonards, Australia, 2065. E-mail: ramim@ieee.org.

Manuscript received 4 Mar. 2006, revised 31 Jan. 2007; accepted 30 May
2007; published online 25 June 2007.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0064-0306.
Digital Object Identifier no. 10.1109/TMC.2007.70724.

1536-1233/08/$25.00 © 2008 IEEE

First, in wireless networks, fairness is typically handled
at a lower layer than TCP. The recent trend has been toward
a scheduled service at the wireless access points (APs),
where the traditional first-come, first-served (FCES) queue
is replaced by a set of queues (perhaps per-receiver queues)
with a scheduler allocating the capacity between the
different streams. A motivation for this approach is
multiuser diversity: It is well known that schedulers can
take advantage of channel knowledge to schedule users that
have good channel conditions and queue the packets of
users who are in bad channel states until they can be
rescheduled in more favorable channel states [1].

Second, channel rates cannot be treated as deterministic
quantities and there is an interaction between TCP and the
link and medium access control (MAC) layers where link
rate adaptation and scheduling both respond to fluctuating
channel conditions. TCP responds to buffer overflows,
which may be caused by these fluctuations.

Third, queuing dynamics become important: Significant
queuing is required to average out the lower layer
fluctuations, and the amount of buffering required impacts
TCP’s performance. It is necessary to take account of these
issues in models of TCP performance.

In this present paper, we study the performance of TCP
over a wireless network by using a model that is rich
enough to incorporate the above features. The terminals are
mobile receivers downloading information from servers
located anywhere in the Internet via a common AP. The AP
must schedule the packets as they arrive, but it takes into
consideration the current channel conditions of each link,
which are fading due to the mobility.

We assume in this paper that the primary cause of
interaction between TCP and the lower layers is TCP’s
fluctuating window size (window halving on packet loss).
Since wireless channels are inherently random, we consider
an alternative mechanism for window control that leads to
fairly static window sizes (in equilibrium) with the window

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

232 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

sizes determined by average quantities, which are measured
at the AP. This alternative control algorithm is itself a
contribution of this present paper, and it is motivated by the
large body of theoretical work on flow control for the
Internet based on the concept of an explicit congestion price
signal [2]. Another viewpoint of the results of this present
paper is that it provides a study of the potential impact of
flow control based on prices explicitly computed by the
nodes in the context of wireless networks with the above
properties.

We were also motivated by some recent works that use
the receiver-side advertised window (AWND) as a control
mechanism (see [3] and [4]) rather than attempting to
change the way that the congestion window (CWND) is
calculated at the sender. A benefit is that the modification
can be implemented entirely within the wireless access
network without the need for widespread changes to
routers and servers throughout the Internet.

1.2 Approach

In this paper, we propose a novel flow-control mechanism
that we use to study the benefit of clamping the TCP
window. This is an algorithm, CLAMP, that controls the
receiver AWND based on feedback from the AP. We
consider its operation at the receiver side in conjunction
with TCP New Reno at the sender side and compare its
performance against that of TCP New Reno without
CLAMP.

The first step is to describe the clamping algorithm. This
algorithm runs at the mobile device (the receiver) and
acknowledgments (ACKs) are sent back to the sender
containing the new values of AWND as calculated by
CLAMP. Since all versions of TCP interpret the AWND as
an upper limit on the allowable window size, which is a
mechanism to avoid an overflow of the receiver buffer, this
provides an effective method of control provided that the
AWND value is smaller than the CWND value calculated by
the sender.

To provide a simple context in which to introduce
CLAMP, we begin in Section 3.2 with a fluid model of a
deterministic link. In this model, a fixed-rate link is shared
between a number of flows, and CLAMP is the agent for
flow control. This model is simple enough to admit an
analytical treatment and provides insight into the design of
CLAMP, the meaning of the various parameters, and the
effect that they have in the equilibrium achieved by the
algorithm.

In Section 5, we describe the details of the wireless
network scenario, which is the main focus of this present
paper. A number of TCP flows are studied which are
assumed to be bottlenecked at the AP. Packet loss can occur
from the buffer overflow at the AP or from packet loss
across the wireless link. The AP implements multiuser
diversity by using per-receiver queues, and the scheduler
selects which queue to service. We have built a compre-
hensive simulator that models the interactions among the
first four protocol layers (physical, link, network, and
transport). At layer 4, TCP New Reno is used at the sender
side and the receivers have the option of using CLAMP
to suppress the window oscillations of New Reno. We

consider experiments in which either CLAMP is turned off
in all mobiles or CLAMP is switched on in all mobiles.

The conclusions of this study are presented in Section 6.
Our main conclusion is that clamping the TCP window
oscillations in the way described in this paper allows the
lower layer scheduler to achieve its aims in terms of fairness
between users. It also provides fairness between flows that
share the same queue, irrespective of their round-trip times
(RTTs). These are flows that the scheduler cannot distin-
guish. Thus, the well-known unfairness of TCP toward
flows that have long propagation delays is corrected by the
clamping mechanism. CLAMPing the window in the way
described in this paper also provides the AP some control
over the queuing delays in its buffers.

2 RELATED WORK

A useful survey of TCP enhancements for last-hop wireless
networks is provided in [5]. Most work on TCP over
wireless channels has focused on the issue of packet loss, its
detrimental effect on TCP [6], [7], and the mechanisms at
layers 1 and 2 to reduce packet loss rates [8], [9], [10], [11],
[12], [13]. Retransmissions can also be handled at layer 4
[14]. The net effect of these mechanisms is to provide a low
packet loss rate at the expense of variable packet transmis-
sion times [10], [15]. Some recent papers have focused
instead on the rate and delay variation that results from a
reliable link layer. Packet-level burstiness can lead to packet
losses at the AP buffers and the mechanisms of delayed
ACKs [16] and ACK regulation [17], [18], [19] attempt to
overcome this problem. We also address this latter problem
with CLAMP in the context of a cellular fading scenario.

Several recent papers have studied the interaction
between TCP and the MAC layer of the wireless local area
network (LAN; IEEE 802.11) [20], [21]. Fairness is consid-
ered, and a recent paper [22] has highlighted potential
instabilities that may result from the interaction between
layers. An experiment-based paper analyzing TCP over
IEEE 802.11 ad hoc networks [23] shows the benefit of
“clamping” the CWND to a value that depends on the
number of hops in the network. Recent work to reduce the
contention at the MAC layer by generalizing the concept of
delayed ACKs is reported in [24].

The 802.11 family of standards does not include channel-
based scheduling, as will occur in cellular networks. Papers
[17] and [18] consider channel-state-based schedulers, as we
do in this present paper. Other papers have considered the
interactions between TCP and the MAC layer of cellular
systems [25], [26], [27].

Another research thrust is to make TCP more resilient to
wireless loss by distinguishing between wireless loss and
congestion loss [28], [29]. A new sender-side protocol called
“TPC Veno” tries to make this distinction and only halve
the window on a congestion-related loss [30]. Recent
proposals that modify the TCP sender-side also include
TCP Westwood [31], [32] and TCP Jersey [33], which both
involve bandwidth estimation at the sender to adjust the
transmission rate after detecting congestion. TCP Jersey [33]
also uses packet marking at the wireless routers to signify
incipient congestion so as to distinguish wireless packet loss
from network-congestion-related loss. Other works include

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS 233

TCP Probing [34], which suspends data transfer and uses a
probing technique to ride out a lossy period, TCP Santa
Cruz [35], which adapts the CWND based on relative delays
signaled in the ACKs from the receiver, and “wave and
wait” [36], which sacrifices throughput to avoid unneces-
sary losses and, hence, wasted energy.

It is also possible to consider tighter cross-layer coupling,
in which the various layers try to collectively solve a joint
optimization problem. There have been many recent papers
in this area (see [37] and the references therein). In
particular, we mention the rate-based approaches in [38]
and [39], which base the layer 4 congestion signal on the
queue size, as we do in this paper.

There have been many recent papers concerning TCP
over multihop wireless mesh networks [40], [41], [23], [19],
[24]. This is an interesting direction for future work, but in
this paper, we address the fairness and stability issues
associated with TCP in the context of a single-hop wide-
area wireless network with a reliable link layer and
multiuser (variable rate) scheduling. In particular, we
investigate the feasibility of a receiver-side enhancement
to TCP to improve the throughput and fairness in this
scenario.

A precursor to the CLAMP protocol was proposed in
[42], and it was later implemented in a General Packet
Radio Service (GPRS) performance-enhancing proxy with
promising results, as reported in [43]. The performance of
CLAMP over a single time-varying channel was studied in
[44]. This paper extends these results to multiuser wireless
scheduling with a more realistic model of wireless fading
and link-rate adaptation. Other papers using the AWND to
control the sender include Freeze-TCP [45] (for wireless),
[3], and [4].

3 SySTEM ToPOLOGY AND THE CLAMP
ALGORITHM

In this section, we describe the system topology that we
study in this paper, and we motivate and introduce a
window flow-control algorithm for this scenario that, in
contrast to TCP, does not react to loss and does not lead to
wide fluctuations in the window.

3.1 Topology and Notation

The access network topology of interest is illustrated in
Fig. 1. In the example scenarios studied in this paper, the
AP maintains a separate queue for each user to allow
channel-state-aware scheduling between users, but users
may be involved in multiple TCP sessions, which then share
the same queue, as in the case for user 1 in the figure.
Alternatively, the AP may use only a single queue for all
users (not depicted but is relevant for wireline applications
and for many existing wireless networks such as 802.11a
and b).

The service rate of a queue, that is, p. bytes/s, depends
on the channel statistics of the users and the scheduling
policy at the wireless AP. Referring to Fig. 1, each flow ¢ has
a source node S; and an associated round-trip transmission
delay, which includes all propagation and queuing delays
except for the queuing delay at the access router.

v
2
'y

||

LD eee

T

s |

S

2 Core Network /A;;‘r’;s

(Router)
—— .. R2

[] / M
[] R“
S

Fig. 1. System topology.

Each sending node implements a sliding-window flow
control. Under the assumption that sources are greedy, the
total number of packets and ACKs for flow i, which is in
flight at any time ¢, is equal to the window size w;(t). The
CLAMP algorithm selects w;(t) in a decentralized way such
that each flow sharing the same queue obtains a propor-
tional share of the service rate y., and the equilibrium buffer
occupancy of the queue ¢(t) can be controlled, as described
in the following.

3.2 Controlling the Window: A Fluid Model

Our aim is to introduce a model of the queuing at the AP, as
well as a window control algorithm that responds to the
queue size at the AP rather than buffer overflow events. The
algorithm that we propose has a similar objective to TCP
Vegas: to try and store a small number of bytes per flow at
the bottleneck, for example, 7 bytes per flow. The aim is to
avoid interaction between the layer 4 flow control and the
layer 2 wireless scheduler.

Let us focus for now on a single queue and assume that it
receives a deterministic service rate of . bytes/s. In a
wireless scenario, there could be any number of queues
(u queues depicted in Fig. 1; here, we are focusing on just
one of them and assume that the scheduler offers it a rate
e bytes/s when it is backlogged). Assume that there is a
single flow and it has a propagation delay of d seconds, so
its bandwidth-delay product is p.d bytes, excluding the
queuing delay at the AP. An alternative to TCP congestion
avoidance would be the following control, which we
express in the form of a differential equation:

= b)),
N = 0 if w(t) < ped (1)
a = { w(t) — ped otherwise,

where b is a dimensionless constant and ¢(t) is the amount
of the flow (in bytes) stored at the AP (a continuous-valued
quantity since this is a fluid model).

The algorithm (1) will increase w(t) until ¢(¢) is nonzero
(in Section 4, we will introduce a slow-start mechanism to
speed up this initial increase). When ¢(t) > 0, the link
output rate is a constant y. bytes/s. Since we are assuming
a window flow control (which implies that self clocking
occurs at the sender side), the input rate to the queue must

234 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

also be p. bytes/s plus the rate of change of the window
(positive or negative) that occurred d seconds earlier. When
q(t) > 0, the only effect of the changing window size is the
change in the amount of fluid ¢(t¢) buffered in the queue: It
will not affect the rate p. allocated by the scheduler. The
point of the flow control is to keep the “pipe” full and
maintain a target of 7 bytes in the queue to avoid any
interaction with the scheduler.

In this paper, we like to think of the control as occurring
at the receiver, so w(t) is the amount of flow outstanding
(“in the pipe”) at time ¢ from the receiver’s point of view.
Thus, the input rate to the queue at time ¢ is p. +%2],_,,
where the time lag d reflects the time that it takes for the
change in the window to be seen in the arrival rate at the
queue. Finally, since the rate of change of the queue is the
difference between the input and output rates, it follows
that the queue size obeys the delayed differential equation

L batt))
during periods when the queue is nonzero.

The above model is highly simplified, but it contains the
basic form of the flow control that we will define later. The
assumption of a deterministic service rate p, is not realistic
for wireless links, but we ignore this issue for now. The
assumptions that the flow can be modeled by a fluid and
that the window can vary in a continuous manner are
clearly highly idealized, and we will relax all these
assumptions in the precise definition of the CLAMP
protocol in Section 4.

For now, let us motivate the above flow-control algo-
rithm with the following observations: First, if ¢(¢) will
converge, it will converge to the unique equilibrium

at) =7 (3)

The question of stability is resolved in the following:

Theorem 1. The necessary and sufficient condition for the total
queue size q(t) to converge under (1) is

b<g. (4)

Proof. Taking the unilateral Laplace transform of (2) gives

N
) = o)

The (infinite number of) poles of (2) determine the
limiting behavior of (1). For d = 0, the system has a single
real pole located at s = —oo; hence, it is stable for all
b > 0. For b >0, as d is increased, an infinite number of
poles will appear from infinity on the left half plane and
ultimately cross the imaginary axis. Applying the
method shown in [46, p. 26], we search for potential
points where the poles cross the imaginary axis by
solving

W(w?) = — (b/d)* =0

for w?. The solution w? = (b/d)* indicates that the poles
cross the imaginary axis at s = +j(b/d). Equating the

characteristic equation of (5) to zero and substituting in
w = b/d reveals that the first time that two poles cross
into the positive half of the imaginary axis occurs when
d = (nd)/(2b); that is, the system will be stable for
b < m/2. Note that, if (2) is stable, then the asymptotic
stability of (1) follows since ¢(¢) will not drop to zero if
we start sufficiently close to equilibrium. 0

Note from (1) that b is a “reactivity” parameter, which
determines how quickly the control responds to the
measured queue size. If it is too large, then the system is
unstable, but if it is too small, then by (3), the queue size in
equilibrium can be very large. We conclude that b=1is a
safe choice. In this case, the system is stable and the
equilibrium queue size is 7 bytes.

One oversimplification of this model is that it assumes
per-flow queuing, whereas, in fact, several flows may share
the same queue, as in the case for queue 1 in Fig. 1. For
example, in our simple wireless scenario, several flows may
be destined for the same mobile device, but the scheduler
may not be able to distinguish these flows. In more complex
multihop network scenarios, per-receiver queuing may be
more preferable than per flow queuing, so it is important to
allow this possibility. In this case, our flow-control algo-
rithm must provide fair allocation to the flows sharing a
queue, as the scheduler is unable to distinguish them.

Let us modify the basic flow-control equation (1) to allow
more than one flow to share the queue. In the following, we
write the window evolution equation for one flow ¢ that
shares the queue:

d;l:‘, _ dll(T —p(q(t))pi(t)), (©)

where we have replaced bg/ . with the function

_bg—a
He

p(a) (7)
and p, with the rate y;(¢) achieved by flow i at time ¢. In (7),
the parameter a is a constant, in units of bytes, that allows
more flexibility in controlling the equilibrium queue size, as
will be seen. Note that 7 can be interpreted as an additive
increase term, and p(q(t))p;(t) can be interpreted as a
multiplicative decrease term given that the decrease is
proportional to the rate achieved by the flow.

This window update rule incorporates two important
principles of fair, stable flow control. It is well known [47]
that a simple “additive increase, multiplicative decrease”
(AIMD) window update rule produces fair bandwidth
allocation. This suggests that the rate at which the window
is updated should be the sum of a positive constant and a
negative term proportional to the flow’s rate. It has also
been recently shown [48] that the update rate should be
inversely proportional to the flow’s RTT in order for the
flow-control system to be stable. The algorithm above
incorporates both of these principles, and fairness and
stability are indeed achieved, as we show in this paper.

Using k to denote the number of flows sharing the queue
and applying the same reasoning as for the single-flow
system, we obtain the delayed differential equation for the
queue size:

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS 235

dq k dw;
dt 2 dt

To get insight into the behavior of this system of
equations, note first that, since we are assuming that the
queue does not empty (this is a stability issue that we
address later), the following flow conservation law must
hold:

"
Z pi(t) = pe-

=1

(10)

If the system is stable, that is, ¢(t) converges to a constant ¢*,
and each window size w;(t) converges to a corresponding
constant w;, then it follows from (6) that, at equilibrium,
wi(t) = 7/p(¢*). Since this is a constant, which is indepen-
dent of 4, it follows from (10) that y;(t) must converge to
e/ k. Thus, the system is fair in the sense that it allocates an
equal fraction of the total service rate to each flow.
Assuming that the system is at equilibrium, we obtain from
(6) and (7) that

kT+a
= . 11
; (1)

The question of stability is resolved in the case of equal
delays (that is, d; = d for all 4) by noticing that, in this case,
(9) reduces to the simpler form

dg _1
dt ~ d

*

(kT +a —bg(t —d)) (12)
(using (10)). This becomes identical to (2) if we replace the
constant k7 + a with 7. Since the value of this constant did
not enter the stability analysis, Theorem 1 continues to
apply, and we obtain the stability condition that b < 7.

We do not have a complete analysis of stability in the
case of unequal delays, but the numerical evidence that we
have obtained is that the system is stable when b <7.
Preliminary analysis in the case of unequal delays can be
found in [49]. The results that we present in this paper,
which are for the CLAMP protocol (as defined in Section 4),
also support the hypothesis that the underlying equations
are stable.

Stability justifies our assumption that the output rate of
the queue is fixed at j. bytes/s. Provided that we start the
system sufficiently close to equilibrium, the scheduler will
always see a backlogged queue and be able to allocate it a
constant rate of y. bytes/s. Although the output rate is
constant, its composition in terms of the individual flow rates
is time varying and converges to an equal share of the
output rate.

Orne can interpret the value p(q) in (7) as a congestion price
signal that is used by the flow-control equations (6) to adjust
the window size. Note that it will be the AP that signals this
price to the mobiles, and in this context, the AP only needs
to know ¢(¢) and the total rate p. (both of which can be
measured after a suitable averaging to smooth out fluctua-
tions), as well the constants a and b.

In the protocol implementation of CLAMP in Section 4, 7
will be a parameter that is used in the mobile receiver to
calculate the value of AWND, whereas a is a parameter that
is used in the AP to compute a congestion price signal. We
will use a fixed value of 7 = 500 bytes in all scenarios in this
present paper. The parameter a provides a tunable
parameter to the AP to help target a suitable equilibrium
queue size. We will illustrate the effectiveness of this
control knob in Section 5.5, as well as why it is particularly
useful at a wireless AP. The viewpoint here is that a is free
to be chosen by the AP, but it is a fixed parameter for the
system once that choice has been made (it is possible that it
can be varied on a slow timescale in response to changing
network conditions, but we have not yet investigated this
approach). Finally, as noted earlier, b =1 is a safe choice,
and this is one that we make for the remainder of this paper.

A disadvantage of the proposed method of control is that
the equilibrium queue size ¢* depends on the number of
flows k. Indeed, there is a linear growth with respect to k, as
given in (11), and the constant 7 provides the rate of growth
with k. It is an open research problem to devise a control
signal that allows the AP to have complete control over the
equilibrium queue size without suffering this growth with
the number of flows that share the same queue. In the
context of this present paper, that is, a single hop wireless
network from AP to mobiles, this is not a major problem.
There will not usually be many flows in the same receiver
queue, and in any case, the AP can use the parameter a to
offset the effect of k7. For example, if a single flow requires
significant queuing (to average out the channel fluctua-
tions), then the value of a may dominate the value of k7 for
small values of k.

We propose to implement (6) in the mobile receivers, and
this requires them to measure the rate in bytes per second
(i for flow i) that they are receiving and also that they
receive the congestion price signal p(q(t)) from the AP.In a
wireless scenario, it will be necessary to perform some
averaging on the measured received rate to remove
statistical fluctuations that are not accounted for above. It
also appears that the mobile needs a precise measurement
of each flow’s propagation delay, which might not be
known at the receiver. However, we remark that the
normalization by d; in (6) is only a gain parameter, which
is needed to ensure stability, and its precise value does not
affect the equilibrium achieved. In practice, one can replace
d; by the estimate 1:(%) (in seconds), and this is what we use
in the definition of the CLAMP protocol in Section 4.

All bets are off in the more realistic case that the
scheduler offers a random and time-varying rate to each
queue. In this case, one cannot assume that the output rates
are constant nor that the queues will not empty. It is then
hard to avoid an interaction between the layer 4 flow
control and the layer 2 scheduling. Unfortunately, realistic
scenarios are hard to treat analytically, and for this reason,
we resort to simulation experiments in Section 5.

4 THE CLAMP PRroTOCOL

In Section 5, we will implement the window clamping
algorithm as a receiver-side modification to TCP, operating
over a simulated wireless network. To do so, we need to

236 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

recast the algorithm in terms of discrete packets, which
arrive at possibly random time instants and are controlled
at the sender by TCP New Reno. In order to implement
CLAMP, the access network should be modified by
inserting a software agent in both the AP and the mobile
client, as described in the following.

4.1 Access Router Agent

The software agent in the access router samples each user’s
queue length and computes an exponential moving average
g (a separate value for each queue). Precisely, when the
nth packet arrives in the queue, the moving average ¢(n) is
computed via

q(n) = exp(=20)g(n — 1) + (1 — exp(=21))Q(n),
where I is the time between packet arrivals (in seconds) at
the AP buffer and Q(n) is the current queue size at packet
arrival n.

Given ¢, it evaluates the following price:

ps(q) = max((q - a)/#aa 0)7 (13)

which is the same as that described in (7), aside from an
explicit nonnegativity constraint to avoid the possibility of a
“multiplicative increase.” This nonnegativity constraint has
no effect on the equilibrium calculated previously: The
parameter a (in bytes) still controls the equilibrium mean
queue size ¢* exactly, as it did in Section 3.2. The value g, is
the measured output rate from the queue. Each packet that is
sent out carries a field containing p(q), where ¢ is the current
value of the moving average when the packet is sent.

4.2 Client-Side Agent: Window Update Algorithm
The client agent’s function is to receive the router’s
congestion measure p and set the receiver's TCP AWND
value according to the algorithm described below, hence
clamping the sender’s TCP transmission window.

For simplicity, the algorithm will be described for a
single flow. Let t; denote the time instant when the
kth packet, with a size of s; bytes, is received by the
receiving client. CLAMP calculates the change in window
size (in bytes [50]) as

Aw(ty) = [W} (tr — te-1),

where /i is an estimate of the average received rate of the
flow in bytes per second, d(t;) is given in the following, and
7 > 0 (in bytes) is a constant for all flows. Note that this is a
discrete approximation to the fluid equation (6).

The factor in brackets is the rate of update of the
window. The factor d(t;) is a coarse approximation of the
RTT, which ensures that the control loop has a gain with
the appropriate scaling behavior. In Section 3.2, we showed
that the fluid equations were stable with this scaling of the
gain. In [49], we showed that, without this scaling, the
equations can be unstable in some circumstances.

The current received rate fi is estimated by using an
exponential moving average:

k
Zi:kfa Si

ty — th-a

(14)

fi(te) = (15)

and

AWND(t;)

ate)
where the integer a and S € (0,1) are smoothing factors,
and AWND(#;) is the actual AWND (see below). d is
initialized by the time between the SYN-ACK being sent
and the first data packet being received. In the experiments
in this paper, we use the following value:

d(t) = (1= B)d(ty-1) + 8 (16)

a = min{number of packets received so far, 1,000}.

Thus, initially, ﬂ(tl) =0, ﬂ(tg) = (Sl + 82)/(t2 — tl) ey
and so forth. Finally, we use the value 3 =0.001 in the
update of d.

In equilibrium, d will be the RTT of the flow in seconds,
that is, propagation plus queuing delay. However, comput-
ing d(ty) clearly does not require an explicit measurement of
such a delay, which is an important consideration, given
that the algorithm must operate during the transient period.
Before updating the window size w, Aw is clipped to a
maximum value of 10 Kbytes to avoid sudden increases
after idle periods. It is also clipped below: The window
cannot decrease by more than the number of bytes in the
received packet to ensure that the right edge of the window
is monotonic nondecreasing [50, p. 42]. Note that, for
notational ease, we have omitted the index of the flow in the
above notation. However, each flow will maintain its own
w, fi, and d.

The AWND value advertised to the sender is then

AWND(t;) = min(w(t;), AWND), (17)

where the AWND on the right-hand side of the assignment
is the value received by the client-side agent from the
receiver’s operating system. The assigned value on the left-
hand side is the one used in (16).

4.3 Receiver-Side Slow-Start

It is important for CLAMP to allow TCP slow-start to take
place at the start of a connection to allow TCP to fill the
network pipe. We propose that CLAMP should mimic TCP
slow-start at the beginning of a connection so as to find a
reasonable estimate of the bandwidth-delay product. TCP
starts with a window size of 1, and during its “slow-start”
phase, it increases its window by one segment for each ACK
received, doubling the window every RTT. Slow-start
terminates when the buffer overflow causes a packet loss,
and the window size is then halved.

To track this, a new CLAMP connection starts with
w(0) = MSS, where MSS is the connection’s maximum
segment size, and for each packet received, it sets

w(ty) — w(ty) + MSS

instead of using (14). CLAMP stops tracking slow-start
when Aw(t;) <0 in (14), or three duplicate ACKs are
generated, indicating packet loss. The receiver then sets
w(tgs1) — w(ty)/2 = w(t, — RTT). The reason for this is that
the observations at time ¢;, which indicate congestion,
reflect the AWND size one RTT earlier. This terminates
CLAMP’s slow-start in a way very similar to the sender’s
TCP slow-start. The only difference is that the condition

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS 237

Aw(ty) < 0 can terminate slow-start in addition to duplicate
ACKs. This allows the buffer to be much larger at the AP
without filling it up during slow-start.

CLAMP does not use the AP buffer to control the flow
rates, so the CLAMP buffer can be much larger than with
TCP New Reno. In fact, in the results in this paper, we use
a large buffer size of 6 Mbytes for CLAMP to avoid any
chance of buffer overflow for the CLAMP protocol. Thus,
we require the CLAMP agent to terminate slow-start at the
natural point when the pipe is full (which would occur
naturally with a buffer overflow if the buffer was a
smaller value).

It is necessary to place an upper limit on the growth of
the receiver window during slow-start to counter the
possibility that the sender-side slow-start terminates prior
to the pipe filling up (due to a small value of the sender-side
threshold ssthresh). Therefore, in practice, a receiver-side
threshold would also need to be used. In the present paper,
we assume that the sender and receiver thresholds are
larger than the bandwidth-delay product of our relatively
low-rate flows, and hence, we do not consider the issue in
our simulation.

The CLAMP slow-start is only invoked at the start of a
TCP connection to get an initial estimate of the bandwidth-
delay product. If a time-out occurs, TCP will revert to slow-
start, but CLAMP will just continue with CLAMP “conges-
tion avoidance,” that is, (14), with the view that it has a
reasonable estimate of the bandwidth-delay product. In
other words, handling time-outs is left to TCP.

5 PERFORMANCE EvALUATION OF CLAMP
THROUGH SIMULATION

In the following sections, we investigate the performance of
TCP New Reno over the Internet for a scenario in which all
flows terminate in devices in the same network, all
receiving information from a common AP. In these
experiments, the last-hop network is assumed to be the
bandwidth bottleneck. This assumption is reasonable for
many cellular networks, where the base station is connected
to the high-speed network core. In some scenarios, a flow
may be bottlenecked elsewhere in the Internet: Congestion
control is then provided by TCP New Reno [51].

The CLAMP protocol and TCP New Reno are both too
complex to treat analytically, so we have developed an
event-driven simulator to model the physical, link, and
transport layers. Our implementation of TCP follows TCP
New Reno [52], including the so-called “bugfix.” We study
various network scenarios and compare the performance of
TCP New Reno with and without the CLAMP protocol at
the receiver end of the connections.

With regard to CLAMP, it is no longer clear that it will be
able to provide the fairness promised in the fluid analysis of
Section 3.2. Now, the protocol has to cope with random and
time-varying service rates, wireless packet loss, and the fact
that it is limited to only the receiver-side control. TCP New
Reno is also operating at the sender-side and can potentially
take control. A major focus is to see how much of the fluid
analysis carries over to this more realistic scenario: Can
CLAMP reduce the interactions between the layer 4 flow
control and the layer 2 scheduling?

140

—CLAM’PAWND ' I '
- — —TCP CWND |
120H - BDP ’
' |
100} ; i I
= f [
8 Loy ! ,v:
£ b i) i
X I
ES L N T it Tl
S eo it ! il
B 60| i, iy ity
5 I"f' 'u"ﬁ u'n!' "I“ i m! ‘:u" W
I !‘ ,‘I :‘ | 1 || \I .l
40t
A
N RN A W
20t ,I,ll“llll"hllhl'llﬁhll ool
00 5‘0 160 1%0 260 250
Time (s)
(a)
18000 —— 7 T T T ‘ \
I| | [N "‘ il h || I
160001 || | " Wt
SR I
1a000r | | h ity :' oy !
! | (1 "y f“‘lf||‘ll [T S
W ‘m Wil oy I
ool i 1 L
— | | YA I
8 o il |:'\ T |'|I‘|HH|”1|"::| Wt i :: "
g 10000p N Byl w0y l'n,flwlw”n"u\ b b
by |I\\“ l:I\II oo ‘||“‘i|‘"\ ?J by :|| |
8 8000 l:\l:': :lhll :u L it Alih 11 hyi! !
I ! !
° :H:‘l' W ‘ I':\”' :J\II M L A ’
B DT IR e
e | L ARG L |
4000 ih ity :Ihll\l :'u‘i‘l Do 'H':l"kl':”f"‘:u':u:'n“ ‘IHI”I"\[I N
11 IR I I AN | KT
Rt ! ‘m“ \‘lh o i ||"U|’ill‘|||,u| (I i
20001\'.”H,‘,"HH:INH:\ A ”IH'{u\:‘”"‘,:"'I": !
T (TN [T TN y 1 (|
o
0 50 100 150 200
Time (s)

(b)

Fig. 2. Deterministic link cross traffic from 50 to 200 seconds and from
100 to 150 seconds. (a) Window dynamics. (c) Queue dynamics.

5.1 Window Dynamics for a Deterministic Link
Before considering random channels, let us consider a static
channel with dynamic traffic. Section 3.2 provides a
mathematical fluid model to describe the equilibrium
behavior of CLAMP, but in this section, we illustrate the
behavior in a more dynamic environment, in which flows
come and go and the flow-control algorithm must be able to
adapt to the fluctuations in the system load.

In the first experiments, we consider a deterministic link
of 10 megabits per second (Mbps) that is shared by a
number of receivers. A deterministic link could model a
wireline network with a number of users connected to a
central hub. Alternatively, it could be a wireless network
with sufficient diversity (frequency, time, or space) that can
be treated as essentially error-free and with a constant rate.
By presenting results for a constant bit rate link, we are able
to see more clearly the dynamics of the CLAMP window
flow-control algorithm and contrast it with that of TCP New
Reno (without CLAMP at the receiver).

In Fig. 2a, we plot the dynamics of flow 1 starting at time 0
and terminating at time 250 seconds. This flow initially gets
all the bandwidth, which is 10 Mbps, but at time 50 seconds,
it is joined by flow 2, and at time 100 seconds, by flow 3.
Flow 3 leaves at time 150 seconds, and flow 2 leaves at

238 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

time 200 seconds. All flows have a propagation delay of
50 ms and share the same queue.

There are two experiments for this scenario, both with
TCP New Reno at the senders: One with CLAMP switched
on and the other with CLAMP switched off. Since there is
no wireless loss, and CLAMP prevents congestion loss, the
CWND will exceed CLAMP’s AWND and need not be
plotted. The plotted TCP (CWND) is the CWND from the
experiment in which CLAMP is not used. The buffer at the
AP has a size of 19,500 bytes, a is 5,500 bytes, and 7 is
500 bytes. With these values, the average queuing delays in
the two experiments are approximately equal.

The window and queue dynamics from both experi-
ments are depicted in Figs. 2a and 2b, respectively. It is
clear from the window evolution that CLAMP tracks the
dynamics of flow arrivals and departures in a way
similar to TCP New Reno but with much fewer fast
timescale fluctuations. Note that the queue for CLAMP
tracks the queue size predicted by the fluid model quite
closely in terms of the given parameters a, 7, and k, the
number of flows.

The window evolution depicted in Fig. 2a can be
interpreted as a rate-versus-time plot as well due to the
fact that the queuing delay is small in this experiment. The
figure shows how CLAMP reacts to the changes of load,
decreasing the rate in proportion to the number of flows
with the queue size increasing (slightly) with the number of
flows, as predicted in Section 3.2. TCP’s queuing fluctua-
tions are much greater, but it also achieves a fair rate
allocation between the flows, which is an example of the
fairness of TCP when the propagation delays are the same.

Fig. 2a contrasts the window dynamics of CLAMP with
that of TCP. The TCP dynamics are the well-known
additive increase and multiplicative decrease in the
window size. The additive increase occurs once per RTT,
and the multiplicative decrease occurs on the first packet
loss within an RTT. With CLAMP, there is an additive
increase term 7, but the multiplicative decrease term is
multiplicative in the rate, not in the window size, and both
terms operate simultaneously and on every packet, thus
getting averaged over an RTT. The net effect is a window
size that varies more smoothly, as illustrated in this
example, and the aim is to avoid buffers from emptying
unnecessarily.

5.2 Wireless Channel Model and Link Layer

We now consider performance when the last-hop network
is time varying. The main scenario that we have in mind is a
cellular network in which the receivers are highly mobile
and the base station plays the role of the AP. Our event-
driven simulator requires a different layer 1 and 2 model
for the time-varying scenarios. The model used in these
simulations aims to be as simple as possible while
describing the variable rate transmission characteristic of
optimal wireless links and providing a reasonable model
for packet loss.

The multipath fading process between the base station
and each receiver is a stationary stochastic process accord-
ing to Jakes” model, with G = 20 generators and Doppler
frequencies of either 0.6 or 60 Hz (a 1.8 GHz carrier and

mobile speeds of either 0.1 or 10 m/s, respectively). That
gives a signal-to-noise ratio (SNR) at time ¢ of

V25 st

n=1

2
)

N(t) = SNRe

where we take SNR,,. =4(=6dB) as the mean SNR,
wy = 27 fycos(35 (n 4 0.5)) is the angular frequency of the
nth path, and f; is the Doppler frequency. We will use the
above model for all mobiles in our experiments, using the
same average SNR. Thus, large-scale propagation effects
are not explicitly modeled.

Frame transmissions over the physical channel occur in
slots of 7y, =3 ms. A slot is the time period of one
transmission attempt. A single 3 ms slot can contain data
from multiple packets, and packets can be split between
slots. The coding rate for the slot is calculated at the start of
each slot, and B(s) information bits are transmitted, where

B(s) = Tyot min(Wylog(1 + (1 — m)N(87aot)), Crmax), (18)

where Cp,x = 10 Mbps is the maximum possible rate that
can be transmitted over the channel, W, = 4.3 MHz models
the bandwidth, and m is a “backoff margin,” which is
adaptively tuned such that the packet error rate after
retransmissions is approximately a target nominal packet
error rate, as specified in the simulation.

In order to capture the bursty nature of errors, we use
a simple error model: If the SNR at the end of the slot,
N((s + 1)7yot), is such that

B(S) > Tsl()tWO 10g(1 + N((S + 1)7—Sl()t))a

then an error is declared. This will occur if the channel
deteriorates sufficiently during the slot so that it can no
longer support the selected rate. If the SNR is sufficiently
high at both the start and end of a slot, then it is assumed
to be sufficiently high throughout the slot. The backoff
margin m is included to allow some degradation to occur
without causing an error.

If n consecutive attempts to a given destination fail,
then all packets that would have been completed by that
transmission are dropped. We use different values of n for
fast and slow fading, as discussed in the experiments.
Packets that are started in the initial 3 ms slot but would not
be completed are not dropped but buffered to reattempt in
the next slot.

We will see later that this approach to link-layer coding
results in higher throughput over slowly varying channels,
as compared to fast fading channels. This is due to the fact
that we are exploiting channel-state information at the
transmitter and that information is less reliable in a fast
fading environment, requiring a larger backoff margin.

5.3 The Scheduler

The AP maintains separate queues for each receiver (mobile
device) and acts as an Internet Protocol (IP) router, routing
packets that are destined for the mobiles into the appro-
priate queue based on the address of the mobile. Thus, all
TCP flows destined for the same mobile are put into the
same output queue.

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS 239

A\ T
81/\\ R1/
‘a0 \ P
NYZAN B
S G
Ny / “‘ R ‘
(- Rayleigh Fading \ 4
_4/ ARQ retransmissions

Fig. 3. Simulation network topology.

The scheduler is based on the principle of multiuser
diversity. At each slot, a new scheduling decision is made,
and the general preference is for scheduling a mobile that is
in a good channel state. However, fairness must also be
considered: Some users may be in bad locations, thus
getting much lower rates, if only channel quality is
considered.

In this study, we implement a scheduler along the lines
of the proportionally fair scheduler [53] used in Qual-
comm’s high data rate (HDR). This scheduler gives
proportional fairness when users have arbitrary average
SNRs. Since we assume that the average SNRs are the same,
it gives equal rates to each mobile. At each slot, the
scheduler picks the queue ¢ with the largest utility that has
data to send in this slot. The utility U; is calculated as

Hi

Uz' : 9
T

(19)

where p; is the current rate for the mobile ¢ at the beginning
of the slot and r; is the exponential moving average of the
rate obtained by mobile ¢ with an averaging time constant of
100 ms. Precisely, r; is obtained from

ri(n) =0.97r;(n — 1) 4+ 0.03u;(n),

where n indexes time, which is in slots. In the fast fading
scenarios (below), the coherence time of an individual
user’s channel is 16.67 ms, and we want the smoothing time
constant for the rate achieved by the mobile to be
significantly larger than this to allow the scheduler to
allocate slots to good channels rather than in a round-robin
fashion. In the slow fading scenario, the scheduler will act
more like a weighted round robin with better channels
getting higher weights. We chose a time constant of 100 ms
to give the scheduler the chance to schedule based on the
channel quality in the fast fading scenario yet be able
to adapt to the changing dynamics of flow arrivals and
departures.

5.4 Wireless Network Topology

Fig. 3 depicts the topology of the time-varying wireless
simulation experiments of this section. Due to space
limitations, we have focused on a specific scenario with a
small number of long-lived TCP flows and a range of
different propagation delays.

Sources 51, S», S3, and Sy represent servers that are TCP
rate controlled and the links from S; to X model the entire
paths through the Internet. Node X is the wireless access
router that contains the CLAMP router software agent. The

TABLE 1
Link Configuration

Node 1 | Node 2 | Capacity | Delay | Pk loss rate
S; X 100Mbit/s | d;/2 0
X R; see text | 1 msec 1073

TABLE 2
Simulation Parameters
Parameter Value

TCP Packet Size | 1500 Bytes
CLAMP 1 500 Bytes
CLAMP b 1
CLAMP a Variable
dy 30 ms
do 130 ms
ds 10 ms
dy 180 ms

wireless access router transmits to the TCP/CLAMP clients
R; — R, over a common broadcast radio channel. Clients R;
and R, are both running in the same physical device and so
have a common queue at router X and common radio
propagation conditions, as described below. Clients R; and
R, have separate queues, so in this experiment, there are
three channels to be scheduled. All links are bidirectional,
with the characteristics shown in Table 1, and the wireless
bandwidth is Wy = 4.3 MHz with a maximum bit rate of
10 Mbps. The packet loss rate is 107%, which is achieved via
the fade margin and link-layer retransmissions. The number
of retransmission attempts at the link layer is n = 5 in the
slow fading scenario and n = 15 in the fast fading scenario.
Other simulation parameters are given in Table 2.

In the following experiments, we will plot the through-
put (and other measures) against the average queuing
delay, where the average is taken across all queues. For
pure TCP Reno, the average queuing delay is controlled by
the choice of buffer size at the AP: The queuing delay is
increasing in the buffer size. For TCP Reno + CLAMP, the
average queuing delay is controlled by the choice of the
parameter a. It will be shown (see Fig. 9) that the queuing
delay is an increasing function of the parameter a. By
running simulations across a range of values of buffer size
for TCP and a for CLAMP, we are able to generate the
following graphs. In Section 5.9, we will discuss the
problem of choosing the appropriate parameters both for
CLAMP and for TCP. As discussed in Section 4.3, we use a
large buffer size of 6 Mbytes for CLAMP to avoid any
chance of buffer overflow for the CLAMP protocol.

5.5 Fair Resource Allocation

We are particularly interested in the fairness of resource
allocation to the long-lived TCP flows since the congestion-
avoidance part of TCP tries to reach long-term equilibrium
throughputs for these flows. Fig. 4 plots the throughput of
each flow against the mean queuing delay (averaged over
all flows) both for CLAMP (Figs. 4a and 4c) and for pure
TCP New Reno (Figs. 4b and 4d).

In the following, we will denote flows by their propaga-
tion delays. For a moderate average queuing delay (50 ms

240
3 .
—— 30ms
~oo 130ms

7 25 1o 10ms(shared) ||
3 — — — 180ms(shared)
2 9l
2 | /S
B | /e
g 15
5 4
a |/ o T
5 1r T oo T I
= - - -~
3 ~
=
" os}

0 . . N . .

0 50 100 150 200 250 300

Mean delay (ms)
(@)
1.5

0.5} -

Throughput per flow (Mbit/s)

....... 130ms
————— 10ms(shared)
— — — 180ms(shared)
0 " 1 . : z
0 50 100 150 200 250 300

Mean delay (ms)

(©)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

3 .
— 30ms
<o 130ms
250 1o 10ms(shared) ||
o — — — 180ms(shared)

N

-

Throughput per flow (Mbit/s)
[4,]

I
&
\
\
\
\

ol= . : ; :
0 50 100 150 200 250 300
Mean delay (ms)
(b)
1.5 T -
—— 30ms
....... 130ms
g‘ ————— 10ms(shared)
5 — — — 180ms(shared)
S 4l
3 T
= LT =
5 e .
Q.
5
o
S 0.5¢
=
[
K=
'_ — — -
O —_1 il L 1 1 1
0 50 100 150 200 250 300

Mean delay (ms)

(d

Fig. 4. Throughput per flow for CLAMP and TCP New Reno. Dotted-dashed lines are for flow 3, whereas dashed lines are for flow 4, both sharing a
common queue at the AP. (a) CLAMP, with 0.1 m/s. (b) TCP New Reno, with 0.1 m/s. (c¢) CLAMP, with 10 m/s. (d) TCP New Reno, with 10 m/s.

or less), TCP New Reno is unfair to flows with large
propagation delays. RTT unfairness exists, even for flows
that do not share the same queue, such as the 30 ms
and 130 ms flows, where the 30 ms flow has an unfair
advantage. Ideally, the scheduler allocates equal rates to all
queues. However, in both scenarios (slow and fast fading),
the 30 ms flow receives more bandwidth than the 130 ms
flow and significantly more bandwidth at “desirable”
queuing delays such as 50 ms (or less).

It is well known that TCP (both Reno and New Reno) is
unfair to flows with long propagation delays [6]. This
assumes that all flows share the same queue, are served in
the FCFS order and get the same channel rate when
serviced. Certainly, the 10 ms and 180 ms flows share the
same queue and are served in the FCFS order so the fact
that the 180 ms flow is treated unfairly is well known, but
the magnitude of the unfairness, as depicted in Figs. 4b and
4d, is striking. Our results here extend to flows that are in
separate queues in spite of a scheduler that tries to allocate
bandwidth fairly to the users (queues). The problem is that
the scheduler is only fair if the queues are always back-
logged and TCP New Reno is unable to satisfy this
assumption. Thus, the propagation delays have an impact
on rate allocation in the TCP New Reno experiments.

The fairness situation is quite different for CLAMP.
Section 3.2 predicted that CLAMP will keep the queues full
and share rates fairly between flows that share the same

queue. In the high-speed mobility scenario depicted in
Fig. 4c, this is shown to be approximately true. All three
queues achieve approximately equal rates, and the 10 ms
and 180 ms flows, which share the same queue, also get
approximately equal rates.

There is a discrepancy in that there is less fair sharing
between the 10 ms and 180 ms flows as the queuing delay
increases, as shown in Fig. 4c, which is not what the fluid
model would predict. We investigated this and found that
the 10 ms flow is experiencing more time-outs than the
other flows and, significantly, more between 25 and 100 ms
of queuing delay. The 10 ms flow experiences more
variability in its RTT, hence the larger frequency of time-
outs for this flow. As the queuing delay increases beyond
100 ms, the frequency of time-outs for the 10 ms flow
decreases and its rate improves. The “fairness” depicted at
about 30 ms is coincidental: The time-outs have brought the
rate for the 10 ms flow down to that of the 180 ms flow, but
were it not for the time-outs, the 10 ms rate would be higher
and the 180 ms rate would be lower.

CLAMP is less fair in the low-speed mobility scenario, as
shown in Fig. 4a, but is still much fairer than TCP New
Reno. At an average queuing delay of 50 ms, the 30 ms flow
gets a higher rate than the 130 ms flow, and the shared
flows get a combined rate between these two rates. Within
the shared queue, the 10 ms flow has a small advantage
over the 180 ms flow. At queuing delays larger than 250 ms,

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS 241

the 10 ms flow gets a higher rate than at lower delays. This
is because CLAMP starts losing control at a high queuing
delay (see Section 5.7 for an explanation and illustration).

We might expect that the fast fading scenario is more like
the “fluid model” in that there is more averaging. The
scheduler averages rates over a period of 100 ms, and in the
fast fading scenario, the channel fluctuations are much
faster than this: The channel coherence time is 16.67 ms.
Thus, we might expect fairness to be achieved when the
average queuing delay is significantly larger than the
coherence time, for example, at 100 ms of queuing delay.
In this case, the queues rarely empty, and the rates achieved
per flow are insensitive to the propagation delays.

In the slow fading scenario, the coherence time is
significantly longer than the averaging period of the
scheduler. In this case, the channel fluctuations do not
average out over the queuing delay, and the queue can
drain of packets. The larger the propagation delay of a flow,
the more this affects the rate allocated to the flow. This
effect reduces as the queuing delay increases. Once the
queuing delay exceeds the maximum propagation delay of
any flow sharing the queue, the queue will not drain, due to
self clocking.

This analysis predicts that CLAMP will avoid interacting
with the scheduler, provided that the channel fluctuations
are much faster than the average queuing delay. The
scheduler can then allocate capacity independently of
propagation delays. This hypothesis is supported by the
above simulation results.

Fast fluctuations happen automatically in high-speed
mobility scenarios due to multipath fading, as considered
here. However, it is also possible to induce fast fluctuations
(at a controlled rate), even when the mobility is slow (or
nonexistent), by using the technique of opportunistic
beamforming [54]. CLAMP may be fruitfully combined
with such techniques to provide fair allocation in a wireless
network.

5.6 Total Throughput and Mean Time to Download

Fig. 4 reports on the individual rates per user to illustrate
the fairness achieved by the two protocols. In Fig. 5a, the
sum rate across flows is depicted. Together, these figures
indicate that CLAMP’s benefit is of providing fairness
rather than of increasing the total throughput: There is not
much between the two protocols in terms of the total
throughput in the scenario investigated here. The very
similar throughput-delay trade-off shows that both proto-
cols are able to exploit multiuser diversity: As the queuing
delay increases, there is more multiuser diversity.
Throughput, in bits per second, is only one measure of
performance. Since CLAMP allows the scheduler to allocate
rates more fairly between flows, we might expect that the
average time to download a file of, say, 1 Mbyte, is less
under CLAMP than under pure TCP, where the average
time to download is dominated by the low rate flows. In
Fig. 5b, the average time to download a file of size 1 Mbyte
is plotted against the mean queuing delay for both TCP
New Reno and CLAMP. As can be seen, at small to
moderate mean queuing delays, CLAMP provides a very
significant gain with respect to this measure of perfor-
mance. For example, at 50 ms of average queuing delay, and

7
6 L
0
-l
2
540
=)
2
o 3r
S
T,]
L2 —— CLAMP 0.1m/s
— — —TCP 0.1m/s
vt |== CLAMP 10m/s |
------- TCP 10m/s
0 1 1 1 1 1
0 50 100 150 200 250 300
Mean delay (ms)
(a)
40 . ‘ — . : ,
| ——— CLAMP 0.1m/s
| — — —TCP 0.1m/s
s ' —— CLAMP 10ms/]
\ N EESPREE TCP 10m/s
= 30r \ y
£ \
@ \
< 25¢ \
%’ \
Q \
% 20 \
g SO e
2 15f S
Q .}
£ =z
§1°’ ! TTe——
b —_—— o
5k
0 ‘ " . ‘ .
0 50 100 150 200 250 300

Mean delay (ms)

(b)

Fig. 5. Performance comparison: CLAMP versus TCP. (a) Total
throughput versus delay. (b) Time to download 1 Mbyte versus delay.

at the mobile speed of 0.1 m/s, TCP files take, on the
average, more than twice as long to download as they do
under CLAMP. The average time to download is a better
metric than throughput in capturing how users perceive
performance since users experience latency, not bit rate.

5.7 Window and Queue Dynamics

In this section, we plot the evolution of the window sizes
over time for one of the flows in the above experiment. Fig. 6
plots the window dynamics for the 30 ms flow. Space
considerations prohibit plotting the other flows, but qualita-
tively, they are similar. We illustrate with 300 seconds of
window evolution, starting after time 2,700 seconds. This is,
of course, much longer than a typical file transfer, but we ran
this experiment for a long time in order to take the averages
needed in Figs. 4 and 5. Also, after 2,700 seconds, the fade
margins have long since converged, and we see the
equilibrium behavior in Fig. 6. In practice, these margins
may be known by the AP at the start of a flow, but the
simulator uses an adaptive algorithm to find the fade
margin.

We have chosen two different parameter settings for TCP
and CLAMP, which correspond to the average queuing
delays of 50 and 180 ms, respectively. Also plotted is the
TCP CWND for the CLAMP experiment. For a queuing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

242

501
i

100 - — — —
/1 / | 1o —— CLAMP AWND
90F /| J | i | — — — CLAMP CWND [/
[A / | i /A TCP CWND
Lo gl J 1 / | o i] T |
or o [: l .
ro oy [N [! (-
0r 0 [R TE Lo ” o
s I oy N T A !
g 60F 111 I ” P I I "
= ! | [
2] |Hr|; :"rlll :4/ 14 :‘
< 50f ! ;o 1 L p
H / R I Lo N |
° oy) ! [N T 1
£ L I ! I |
s 40 oo o 1" |
0
2700 2750 2800 2850 2900 2950 3000
Time (s)
(a)
100 ———— - . - —
/ | / | / —— CLAMP AWND
90F 1 1 ! | I | — — — CLAMP CWND |{
J | ! | " J TCP CWND
Lo/ I / | N | 1
gor I / I I) I A
! | / | I | | !
701, | | | - , | !
| |
I Ly Lo P I /
60! ! [| [
(I ! i I
! L T by
P | IR
| o [
i ! % AN
|
I
|

window (kBytes)

10+
0
2700 2750 2800 2850 2900 2950 3000
Time (s)
(b)

Fig. 6. Windows versus time for a flow with 30 ms propagation delay,
with fast fading (10 m/s mobility). (a) 50 ms queuing delay. (b) 180 ms

queuing delay.

delay of 50 ms, the AWND is almost always smaller than the
CWND in the CLAMP experiments, only losing control to
TCP occasionally and for very brief periods. The frequency
and duration that CLAMP loses control, at 180 ms of
queuing delay, is higher, due to the higher bandwidth-
delay product: It becomes more likely that the CWND can
drop below the AWND value at a high queuing delay.
However, for the sake of mice TCP flows (and other delay-
sensitive traffic), it is desirable to operate at a low-moderate
queuing delay (50 ms or less).

Fig. 7 plots the queue evolution over time, this time for
the 130 ms flow. This flow gets less rate under TCP than
under CLAMP due to its relatively large propagation delay.
This is reflected in the mean queue size, which is lower
under TCP, and in the frequency with which the queue
drops to zero, which is higher under TCP. One observation
is that the queue is very variable, even under CLAMP.
CLAMP is not able to control the instantaneous queue size
due to the coherence time of the channel being much
shorter than the propagation delay of the flow.

Fig. 7 illustrates queue fluctuations when CLAMP is in
equilibrium, and it does not indicate that the queue
fluctuations are particularly reduced by CLAMP, as com-
pared to TCP. In the next section, we will see a similar

40 :
—— CLAMP
- - —TCP

35 g

30f

25

queue (kBytes)
N
o

o
T

il

I

e

ot
2700 2800 2850 2900 2950 3000
Time (s)
(@
40 ; :
— CLAMP
- - -TCP
35 .
30
i [
_. 251 | l
3 | Il I !
& Wl /l ' ! 1
= 20h| f | i 1 01 At A ! i i
St I M‘:‘ ! o | o U0 AT
g MRG0 il I P e ‘;H‘ (R
S sl | gt FRA n} RS AAC T Y B
TR AT R e R e | O T NS
D | 1) b, s, g, £
MR | 1R Rt
oy R RN T o1 S O N
U o] I (R T T AT OO A | S T LR T
5 HWII i 'IJUH 1\'!‘\1‘”\5\”‘\ :l‘ I M‘l i“\‘ iy il {\‘ } ::':Mr | ‘\W:‘]\‘l”:“ :”yl
R I AT R AL ” R iy i
L 3 N 00 B A
2700 2750 2800 2850 2900 2950 3000
Time (s)
(b)

Fig. 7. Queue versus time for flow with 130 ms propagation delay, with
fast fading (10 m/s mobility). (a) 50 ms queuing delay. (b) 180 ms
queuing delay.

queuing behavior in a setting with flow arrivals and
departures (see Fig. 8). Thus, we cannot claim that CLAMP
can control the queue size at the AP. The wireless channel is
highly variable, and the CLAMP protocol must average the
queue size and the channel rates of the flows. In doing so, it
can influence the statistics of the queues at the AP but not the
instantaneous values. By changing the statistics, it can
reduce the frequency with which the queue empties and
thereby improve the performance of the scheduler.

5.8 Flow Dynamics

In Section 5.1, we considered the window and queue
dynamics as flows arrive and depart, but there was no
fading. In Section 5.5, we have considered the equilibrium
behavior of the protocols under dynamic fading but
without the dynamics of flows arriving and departing. In
this section, we consider both flow dynamics and fading:
We study a scenario in which a long-lived TCP flow
coexists with a number of short-lived TCP flows, which
start and finish at random times.

In this experiment, the wireless channel is as described in
Section 5.2, with a maximum rate of 10 Mbps and fast
fading (10 m/s mobility), but there is only a single receiver
with multiple flows sharing the same queue at the AP. One

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS 243

~
T

)
T
L

Rate (Mbps)

Queue (Bytes)

Fig. 8. Flow dynamics: one long-lived flow and Poisson process of
smaller flows. (a) Rate allocated to long-lived flow. (b) Queue dynamics.

flow is long-lived, for example, a file transfer running in the
background, which lasts for 150 seconds. In addition, there
are short-lived flows, which arrive as a Poisson process
with a rate of 0.26 arrivals/s during the first 100 seconds.
Each short-lived flow consists of a random number of
packets, between 1 packet and 4,000 packets, using the
triangle distribution. This models a Web browsing session
running in parallel with the large download.

In Fig. 8, we plot the dynamics of the rate allocated to the
long-lived flow and the total queue size at the AP (a
function of all the flows in the system). We conclude that
CLAMP and TCP both track the changing dynamics in a
similar manner. The fluctuations in rate are less under
CLAMP, but the queue fluctuations are quite similar (apart
from a single spike in the queue size for CLAMP). Note that
the spike could be avoided if we restricted the buffer size
for CLAMP. The spike offsets the otherwise smaller values
for the CLAMP queue size. The parameters were chosen to
get the same average queue size for CLAMP and TCP. The
buffer size for TCP is 65 Kbytes.

5.9 Choosing the Parameters

To provide a basis for comparing TCP with TCP+CLAMP,
we have plotted the performance (above) as a function of

150 T -
—— CLAMP 0.1m/s
’%T — — —TCPO.1m/s |, ’
=S —+— - CLAMP 10m/s »/_'_ 1
g TCP 10ms/ /
e
é 100 J %
2 ’ e
e
o / s
O / S
|— 7 _
o / e
& 50 / e
o Vi e /v/
= / T
3 / g
O / —
/ _/"./
oz . . ‘ ‘ .
0 100 200 300 400 500 600

Mean delay (ms)

Fig. 9. TCP buffer size and CLAMP « versus queuing delay.

the average queuing delay, but the average queuing delay is
a function of the underlying parameters. A question arises
as to how these parameters can be set to obtain a particular
desired point on, say, the throughput-delay trade-off curve.
For TCP New Reno, we vary the buffer size at the AP. For
CLAMP, we hold the buffer size fixed and vary the
parameter a. Unfortunately, for the fading scenarios
considered above, we have no analytical formula to
describe the throughput-delay curve. The problem of buffer
dimensioning for time-varying channels is an open area of
research and is beyond the scope of this present paper.

In Fig. 9, we plot both the TCP buffer size and the
CLAMP parameter a against the average queuing delay.
This figure suggests that the problems of setting the buffer
size (for TCP) and the parameter a (for CLAMP) are quite
similar problems. There is no reason to suppose that one
is more difficult than the other. It is possible to tune
parameter a adaptively, but such algorithms are a topic for
future research. In this present paper, the parameter is held
fixed during a particular experiment, although we plot the
results of different experiments across a range of parameter
values.

5.10 Lower Data Rate Scenario

With regard to parameter settings, it is of interest to see if
the CLAMP parameters need to be retuned for every
network scenario. We have already examined two fading
rates (fast and slow), and here, we consider a much lower
channel rate. An important issue is the setting of the
parameter 7, which is set in the mobile receivers and is not
likely to be tunable. In the HDR experiments, we used
7 = 500 bytes, and we use the same value for the lower data
rate scenario.

Identical experiments were undertaken for the same
topology, as described in Tables 1 and 2, except that the
bandwidth was reduced to W, = 620 kHz, and the max-
imum wireless link rate was reduced to Cy = 1.44 Mbps.
Due to the lack of space, we do not provide all the plots, but
Fig. 10 presents the results for fairness at a high fading rate.

None of the general conclusions change: CLAMP does
not increase the total throughput of the system, but it does
allow the scheduler to provide fair service across users, and
it provides fairness automatically to flows destined for the
same receiver.

244 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

0.25 -
— 30ms
130ms
» 0.2r — - — - 10ms(shared) |4
3 — — — 180ms(shared)
2
3 015
9]
Q.
2 01f
Ny - — e — — i A
= .
> e
S
£ 005 /
0 . . .
0 50 100 150 200
Mean delay (ms)
(a)
0.25 T
— 30ms
130ms
» 02t -— = 10ms(shared) |4
il — — — 180ms(shared)
2
Zoast
B T~
a : ~
3 01p - T T = — o
Ny
[=2]
=}
[
£ 0.05f [
0 e L ' L
0 50 100 150 200

Mean delay (ms)

(b)

Fig. 10. Throughput per flow in the lower data rate scenario. Dotted-
dashed lines are for flow 3, whereas dashed lines are for flow 4, both
sharing a common queue at the AP. (a) CLAMP, with 10 m/s. (b) TCP,
with 10 m/s.

Although 7 is fixed, there is flexibility in the CLAMP
protocol for the a parameter to be tuned to the conditions of
the network. We observe that, in each scenario (a combina-
tion of data rate and fading rate), the total throughput
versus delay has a fairly well-defined “knee,” but the knee
occurs at a different average delay in each case. It might be
desirable to operate the system near the “knee,” and this
would require the AP to make a judicious choice of the
parameter a.

We observe that the knees occur at lower delays in the
lower data rate scenario. It is not surprising that the delay
depends on the statistics of the service process, and we can
contrast this behavior with what happens in a nonfading
wireline scenario when the output rates are deterministic.
In that case, the queuing delay should increase as the output
rate of the queue decreases because the average queue size
to meet a particular utilization does not depend on the
service rate (this holds for the M/M/1 queue, for example).
The present wireless scenario is quite different: The amount
of queuing that is required for a particular utilization
depends on the rate of fading and, more particularly, on the
whole distribution of the service process. In this case, the
size of the average queue that is required to keep all queues
from emptying increases with the data rate.

6 CONCLUSIONS

This paper has studied the interaction between congestion
control and scheduling in fading wireless channels. The
scheduler attempts to allocate the bandwidth to the users in
such a way that a user will only be allocated a rate when its
channel is good but subject to fairness constraints. We
observe a considerable interaction between TCP New Reno
and the scheduler to the extent that rate allocations are
determined, in part, by the propagation delays of the flows
in the network.

Our approach was to provide a detailed packet-level
simulation of a wireless network with a single AP, sending
data to a number of mobile receivers. We model the
physical-layer fading process, link-layer rate adaptation,
scheduling, and flow control. Each mobile is provided with
a separate queue at the AP and access to the radio channel
is provided by the scheduler. TCP New Reno does the flow
control, which is subject to possible intervention by the
proposed CLAMP receiver-side algorithm, which allows us
to measure the impact of Reno’s window fluctuations on the
performance of the scheduler.

CLAMP is based on a fluid model algorithm that is
designed to avoid interaction between layers 2 and 4. The
experiments have tested if this remains true in a more
complicated model, in which there is fading, and CLAMP
can only intervene at the receiver side. Experiments are
mainly focused on a particular scenario with three mobile
receivers, one of which is receiving two flows simulta-
neously. Parameters are selected to provide insight into
the effect of propagation delays and rates of fading on
performance.

For these experiments, we conclude that the fairness of
the scheduler is compromised by TCP New Reno. Flows
with large propagation delays get much worse perfor-
mance, even if the scheduler is attempting to schedule
them fairly. When we employ the receiver-side algorithm
CLAMP to remove the window fluctuations, we find that
the scheduler is able to achieve much better fairness than
with pure TCP New Reno. As with TCP New Reno, the
CLAMP throughput increases with the AP queuing delay.
When the average queue size is larger, the queues empty
less often. Nevertheless, for moderate queuing delay, the
scheduler is able to provide a much fairer allocation under
CLAMP than under TCP New Reno.

In the scenarios tested, better fairness is achievable when
the fading is faster, but throughput is reduced at faster
fading due to the increased fade margin required. Techni-
ques such as incremental redundancy coding should
alleviate this problem, but we did not investigate this.
Inducing channel fluctuations in a controlled way [54] is a
promising technique and may allow CLAMP + scheduler to
operate fairly, even in slow fading scenarios.

Our approach has been to focus on a single-hop wireless
downlink, in particular on the issues of time-varying
channels and channel-state-aware scheduling. Although
we have made specific assumptions about the channels for
the simulation, the CLAMP algorithm can, in principle, be
applied to any network.

ANDREW ET AL.: ACTIVE QUEUE MANAGEMENT FOR FAIR RESOURCE ALLOCATION IN WIRELESS NETWORKS

A cleaner solution from a systems-level perspective
would be a sender-side implementation in which the
feedback signals are sent back to the sender in the ACKs,
who then can set an appropriate CWND value. In that case,
the flow control is primarily achieved via CWND. There is
no inherent reason that the CLAMP control cannot be
affected at the sender side. However, this requires extend-
ing CLAMP to the scenario in which all routers in the
network provide congestion-indication feedback to the
source. There has been much work on price-based conges-
tion control for the core Internet [55], [56], [57], and CLAMP
provides one such approach, but others are also possible.

A long-term goal is to generalize CLAMP to handle

multiple bottlenecks and to incorporate the principles
learned from studies such as the present one into a robust
sender-side control that can handle the vagaries of time
varying and lossy wireless channels, as well as the scaling
problems associated with high-speed networks.

ACKNOWLEDGMENTS

This project was supported by the Australian Research
Council under grant DP0557611, “Control Protocols for
Wireless Networks.”

REFERENCES

[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge Univ. Press, 2005.

[2] SH. Low, F. Paganini, and J.C. Doyle, “Internet Congestion
Control,” IEEE Control Systems Magazine, vol. 22, pp. 28-43, Feb.
2002.

[3] N.T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T.
Anderson, and B.N. Bershad, “Receiver-Based Management of
Low Bandwidth Access Links,” Proc. IEEE INFOCOM, pp. 245-
254, 2000.

[4] L. Kalampoukas, A. Varma, and K.K. Ramakrishnan, “Explicit
Window Adoption: A Method to Enhance TCP Performance,”
IEEE/ACM Trans. Networking, vol. 10, pp. 338-350, June 2002.

[5] B.Sardar and D. Saha, “A Survey of TCP Enhancements for Last-
Hop Wireless Networks,” IEEE Comm. Surveys, vol. 8, pp. 20-34,
http:/ /www.comsoc.org/pubs/surveys, 2006.

[6] T. Lakshman and U. Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random
Loss,” IEEE/ACM Trans. Networking, vol. 5, pp. 336-350, June 1997.

[71 T.V.Lakshman, U. Madhow, and B. Suter, “TCP/IP Performance
with Random Loss and Bidirectional Congestion,” IEEE/ACM
Trans. Networking, vol. 8, pp. 541-555, Oct. 2000.

[8] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, and R.H. Katz,
“A Comparison of Mechanisms for Improving TCP Performance
over Wireless Links,” IEEE/ACM Trans. Networking, pp. 756-769,
1997.

[9] H.M. Chaskar, T. Lakshman, and U. Madhow, “TCP over Wireless

with Link Level Error Control: Analysis and Design Methodol-

ogy,” IEEE/ACM Trans. Networking, vol. 7, pp. 605-615, Oct. 1999.

D.A. Eckhardt and P. Steenkiste, “Improving Wireless LAN

Performance via Adaptive Local Error Control,” Proc. 11th IEEE

Int’l Conf. Network Protocols (ICNP '03), pp. 327-338, Mar. 2003.

R. Ludwig, A. Konrad, A. Joseph, and R. Katz, “Optimizing the

End-to-End Performance of Reliable Flows over Wireless Links,”

Kluwer/ACM Wireless Networks J., vol. 8, pp. 289-299, Mar.-May

2002.

M. Meyer, “TCP Performance over GPRS,” Proc. IEEE Wireless

Comm. and Networking Conf. (WNCNC "03), pp. 1248-1252, Mar. 2003.

H.-K. Shiu, Y.-H. Chang, T.-C. Hou, and C.-S. Wu, “Performance

Analysis of TCP over Wireless Link with Dedicated Buffers and

Link Level Error Control,” Proc. IEEE Int’'l Conf. Comm. (ICC '01),

pp. 3211-3216, 2001.

(10]

(11]

(12]

[13]

(14]

[15]

[1o]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

245

K. Ratnam and I. Matta, “WTCP: An Efficient Mechanism for
Improving TCP Performance over Wireless Links,” Proc. Third
IEEE Symp. Computers and Comm. (ISCC '98), pp. 74-78, June 1998.
M. Sagfors, R. Ludwig, M. Meyer, and J. Peisa, “Queue Manage-
ment for TCP Traffic over 3G Links,” Proc. IEEE Wireless Comm.
and Networking Conf. (WCNC "03), pp. 1663-1668, Mar. 2003.

J. Ma, J. Ruutu, and J. Wu, “An Enhanced TCP Mechanism—Fast-
TCP in IP Networks with Wireless Links,” Wireless Networks,
vol. 6, pp. 375-379, Nov. 2000.

M. Chan and R. Ramjee, “TCP/IP Performance over 3G Wireless
Links with Rate and Delay Variation,” Proc. ACM MobiCom,
pp- 71-82, Sept. 2002.

M. Chan and R. Ramjee, “Improving TCP/IP Performance over
Third Generation Wireless Networks,” Proc. IEEE INFOCOM,
vol. 3, pp. 1893-1904, 2004.

S. ElRakabawy, A. Klemm, and C. Lindemann, “TCP with
Adaptive Pacing for Multihop Wireless Networks,” Proc. ACM
MobiHoc, pp. 288-299, May 2005.

S. Pilosof, R. Ramjee, D. Raz, and P. Sinha, “Understanding TCP
Fairness over Wireless LAN,” Proc. IEEE INFOCOM, vol. 2,
pp. 863-872, Mar. 2003.

D. Leith, P. Clifford, D. Malone, and A. Ng, “TCP Fairness in
802.11e WLANSs,” IEEE Comm. Letters, vol. 9, pp. 964-966, Nov.
2005.

V. Rughunathan and P. Kumar, “A Counterexample in Conges-
tion Control of Wireless Networks,” Proc. Eighth ACM/IEEE Int’l
Symp. Modeling Analysis and Simulation of Wireless and Mobile
Systems (MSWiM ’05), pp. 290-297, Oct. 2005.

V. Kawadia and P. Kumar, “Experimental Investigations into TCP
Performance over Wireless Multihop Networks,” Proc. ACM
SIGCOMM Workshop Experimental Approaches to Wireless Network
Design (E-WIND '05), pp. 24-29, Aug. 2005.

R. Oliveira and T. Braun, “A Dynamic Adaptive Acknowl-
edgement Strategy for TCP over Multihop Wireless Networks,”
Proc. IEEE INFOCOM, vol. 3, pp. 1863-1874, Mar. 2005.

Y. Bai, A. Ogielski, and G. Wu, “Interactions of TCP and Radio
Link ARQ Protocol,” Proc. 50th IEEE Vehicular Technology Conf.
(VTC '99-Fall), vol. 3, pp. 1710-1714, 1999.

Z. Kostic, X. Qiu, and L.F. Chang, “Interactions between TCP and
RLP Protocols in a Cellular System,” Proc. 53rd IEEE Vehicular
Technology Conf. (VTC '01-Spring), vol. 3, pp. 2244-2248, May 2001.
M. Malkowski and S. Heier, “Interaction between UMTS MAC
Scheduling and TCP Flow Control Mechanisms,” Proc. IEEE Int’l
Conf. Comm. Technology (ICCT ’'03), pp. 1373-1376, 2003.

N. Samaraweera, “Non-Congestion Packet Loss Detection for TCP
Error Recovery Using Wireless Link,” IEE Proc. Comm., vol. 146,
no. 4, pp. 222-230, 1999.

S. Biaz and N. Vaidya, ““De-Randomizing’ Congestion Losses to
Improve TCP Performance over Wired-Wireless Networks,” IEEE/
ACM Trans. Networking, vol. 13, pp. 596-608, June 2005.

P. Cheng and S. Liew, “TCP Veno: Enhancement for Transmission
over Wireless Access Networks,” IEEE |. Selected Areas in Comm.,
vol. 21, pp. 216-228, Feb. 2003.

C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang,
“TCP Westwood: Bandwidth Estimation for Enhanced Transport
over Wireless Links,” Proc. ACM MobiCom, pp. 287-297, 2001.

C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang,
“TCP Westwood: End-to-End Congestion Control for Wired/
Wireless Networks,” Wireless Networks, vol. 8, pp. 467-479, Sept.
2002.

K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for Wireless IP
Communications,” IEEE |. Selected Areas in Comm., vol. 22, pp. 747-
756, May 2004.

V. Tsaoussidis and H. Badr, “TCP-Probing: Towards an Error
Control Schema with Energy and Throughput Performance
Gains,” Proc. Eighth Int’l Conf. Network Protocols (ICNP '00),
pp- 12-21, Nov. 2000.

C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP Congestion
Control over Internets with Heterogeneous Transmission Media,”
Proc. Seventh Int’l Conf. Network Protocols (ICNP '99), pp. 213-221,
Oct. 1999.

V. Tsaoussidis, H. Badr, and R. Verma, “Wave & Wait Protocol
(WWP): An Energy-Saving Transport Protocol for Mobile IP
Devices,” Proc. Seventh Int’l Conf. Network Protocols (ICNP ’'99),
pp- 301-308, Oct. 1999.

246

(371

[38]

(39]

[40]

[41]

(42]

[43]

[44]

[43]

[40]

[47]

(48]

(49]

[50]

(51]

(52]

(53]

(54]

[55]

[56]

(571

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.2, FEBRUARY 2008

X. Lin, N. Shroff, and R. Srikant, “A Tutorial on Cross-Layer
Optimization in Wireless Networks,” IEEE]. Selected Areas in
Comm., vol. 24, pp. 1452-1463, Aug. 2006.

A. Eryilmaz and R. Srikant, “Fair Resource Allocation in Wireless
Networks Using Queue-Length-Based Scheduling,” Proc. IEEE
INFOCOM, vol. 3, pp. 1794-1803, Mar. 2005.

L. Ying, R. Srikant, E. Eryilmaz, and G. Dullerud, “Distributed
Fair Resource Allocation in Cellular Networks,” IEEE Trans.
Automatic Control, vol. 52, pp. 129-134, Jan. 2007.

S. Bae, K. Xu, S. Lee, and M. Gerla, “Measured Analysis of TCP
Behavior across Multihop Wireless and Wired Networks,” Proc.
IEEE Global Telecomm. Conf. (GLOBECOM "02), vol. 1, pp. 153-157,
Nov. 2002.

Z. Fu, H. Luo, P. Zerfos, L. Zhang, and M. Gerla, “The Impact of
Multihop Wireless Channel on TCP Performance,” IEEE Trans.
Mobile Computing, vol. 4, pp. 209-221, Mar. 2000.

L.L.H. Andrew, S.V. Hanly, and R.G. Mukhtar, “Analysis of Rate
Adjustment by Managing Inflows,” Proc. Fourth Asian Control
Conf. (ASCC '02), pp. 47-52, 2002.

R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt, “Flow
Aggregation for Enhanced TCP over Wide-Area Wireless,” Proc.
IEEE INFOCOM, pp. 1754-1764, 2003.

L.L. Andrew, S.V. Hanly, and R. Mukhtar, “CLAMP: A System to
Enhance the Performance of Wireless Access Networks,” Proc.
IEEE Global Telecomm. Conf. (GLOBECOM '03), vol. 7, pp. 4142-
4147, Dec. 2003.

T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: A
True End-to-End TCP Enhancement Mechanism for Mobile
Environments,” Proc. IEEE INFOCOM, pp. 1537-1545, 2000.

J.E. Marshall, H. Gérecki, K. Walton, and A. Korytowski, Time-
Delay Systems: Stability and Performance Criteria with Applications.
Ellis Horwood, 1992.

D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,”
Computer Networks and ISDN Systems, vol. 17, pp. 1-14, 1989.

F. Paganini,].C. Doyle, and S.H. Low, “Scalable Laws for Stable
Network Congestion Control,” Proc. 40th IEEE Conf. Decision and
Control (CDC "01), pp. 185-190, 2001.

LL.H. Andrew, S.V. Hanly, and R.G. Mukhtar, “CLAMP:
Maximizing the Performance of TCP over Low Bandwidth
Variable Rate Access Links,” technical report, Univ. of Melbourne,
http:/ /www.ee.unimelb.edu.au/people/hanly/T_Reports/
clamp_tr-2004-02-01.pdf, 2007.

Transmission Control Protocol, IETF RFC 793, Information Sciences
Inst., Univ. of Southern California, 1981.

L.L.H. Andrew, S.V. Hanly, and R.G. Mukhtar, “CLAMP:
Differentiated Capacity Allocation in Access Networks,” Proc.
22nd IEEE Int’l Performance Computing and Comm. Conf. (IPCCC
'03), pp. 451-458, Apr. 2003.

S. Floyd, T. Henderson, and A. Gurtov, The NewReno Modification
to TCP’s Fast Recovery Algorithm, IETF RFC 3782, 2004.

E. Chaponniere, P. Black, J. Holtzman, and D. Tse, Transmitter
Directed Code Division Multiple Access System Using Path Diversity to
Equitably Maximize Throughput, US Patent 7123922, Patent and
Trademark Office, 2002.

P. Viswanath, D. Tse, and R. Laroia, “Opportunistic Beamforming
Using Dumb Antennas,” IEEE Trans. Information Theory, vol. 48,
pp- 1277-1294, June 2002.

F. Kelly, A. Maulloo, and D. Tan, “Rate Control in Communication
Networks: Shadow Prices, Proportional Fairness and Stability,”
J. Operational Research Soc., vol. 49, pp. 237-378, 1998.

S.H. Low and D.E. Lapsley, “Optimization Flow Control I: Basic
Algorithm and Convergence,” IEEE/ACM Trans. Networking,
vol. 7, pp. 861-875, Dec. 1999.

J. Mo and J. Walrand, “Fair End-to-End Window-Based Conges-
tion Control,” IEEE/ACM Trans. Networking, vol. 8, pp. 556-567,
Oct. 2000.

Lachlan L.H. Andrew received the BSc degree
in computer science in 1992, the BE degree in
electrical engineering in 1993, and the PhD
degree in engineering in 1996 from the Uni-
versity of Melbourne, Victoria. Since 2005, he
has been a senior research engineer in the
Department of Computer Science, California
Institute of Technology (Caltech). Prior to that,
he was a senior research fellow at the University
‘ of Melbourne and a lecturer at RMIT, Australia.
His research interests include the performance analysis of congestion
control and other resource allocation algorithms for wireless and wired
networks. He is a member of the Institution of Engineering and
Technology (IET) and a senior member of the IEEE.

Stephen V. Hanly received the BSc (Hons) and
MSc degrees from the University of Western
Australia and the PhD degree in mathematics
from Cambridge University, UK, in 1994. From
1993 to 1995, he was a postdoctoral member of
technical staff at AT&T Bell Laboratories. He is
currently an associate professor and reader in
the Department of Electrical and Electronic
Engineering, University of Melbourne, where

y i he has been involved in teaching and research
since 1996 He is an associate editor of the IEEE Transactions on
Wireless Communications. He was the technical cochair of the 2005
IEEE International Symposium on Information Theory (ISIT). He is a
corecipient of the Best Paper Awards in INFOCOM 1998 and the 2001
Joint IEEE Communications Society and Information Theory Society,
both for his work with David Tse. His research interests are information
theory and wireless networking. He is a member of the IEEE.

Rami G. Mukhtar received the BSc, BE, and
PhD degrees from the University of Melbourne in
2003. He then worked for NEC Australia,
participating in the development of chipsets for
Universal Mobile Telecommunications System
High-Speed Downlink Packet Access (UMTS
HSDPA) cell phone handsets. From 2004 to
2005, he also represented NEC in the 3GPP
RAN4 Standardization Working Group. In 2005,

Yl he joined VaST Systems Technology Corpora-
tion. He is currently a principle engineer with the Model Constructor
Tools Group, VaST, leading the development of tools for developing
high-speed timing accurate microprocessor models. He is a member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

