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JOINT-SPACE TRACKING OF WORKSPACE TRAJECTORIES 
IN CONTINUOUS TIME 

Neil H. Getz* and Jerrold E. Marsdent 

ABSTRACT ing equations of motion of the form 

We present a controller for  a class of robotics ma- 
nipulators which provides exponential convergence to 
a desired end-effector trajectory using gains specified 
in  joint-space. This is accomplished without appeal 
to the use of discrete inverse-kinematics algorithms, 
allowing the controller to be posed entirely in contin- 
uous time. 

1. Introduction 

This' paper describes an application of dynamic in- 
version (see [l] in this proceedings) to the control of 
robotic manipulators. A dynamic inverter used to 
solve inverse-kinematics is combined with a tracking 
controller. The combined system is a dynamic con- 
troller for end-effector tracking, and provides expo- 
nentially decaying tracking error. 

In Section 2, after some necessary definitions, we 
precisely define the robotic control problem in which 
we will be interested. In Section 3 we describe some 
current methods of robot manipulator control, look- 
ing very briefly at some of their strengths and short- 
comings. In Section 4 we apply dynamic inversion to 
construct an exact tracking controller for the tracking 
of end-effector trajectories. In Section 5 an example 
of output tracking for a simple model of a two-link 
robot arm is used to illustrate the application of the 
implicit tracking theorem. 

2. Problem Definition 

~ ( 6 ) i j  = l qe ,  e )  + (1) 

where the inertia matrix M ( 8 )  E RnXn is positive 
definite and symmetric for all 8 E R". The vector 
K ( 8 ,  8) contains all Coriolis, centrifugal, frictional, 
damping, and gravitational forces. 

We will refer to a vector 8 E Rn, each of whose el- 
ements parameterize a single joint of a manipulator, 
as the configuration of the manipulator, and the 
space of all configuration vectors as the joint-space. 
We will refer to a vector t, which parameterizes the 
position and orientation of the end-effector of the ma- 
nipulator with respect to a fixed reference frame, as 
the pose of the end-effector and let X be the set of 
all such poses. Let F : R" + X ;  8 ++ F(6) denote the 
forward-kinematics map taking a configuration 8 
to its corresponding end-effector pose 2. Depending 
upon the particular manipulator, t may take values 
in various sections of SE(3) ,  the group of positions 
and orientations in Euclidean space. We will view X 
through a coordinate chart from Rn. The map F(0) 
will be assumed to be C2. The codomain of .F is the 
workspace. 

The workspace tracking problem considered here 
is as follows: 

Problem 2.1 Find a control ~ ( 6 , t )  such that for all 
initial configurations 80 E E%" in an open subset of 
Rn, the pose t ( t )  of the end-effector converges expo- 
nentially to the desired end-effector trajectory Z d ( t ) .  

A 
Let the joint angles of the robotic manipulator be 
denoted 6 E R", and the corresponding generalized 
torques' be T E R". We will concern ourselves with 
the control of open-chain robotic manipulators2 hav- 

Assumption 2.2 Assume that the desired end-ef- 
fector trajectory t d ( t )  is C4, that the forward-kine- 
matic map F(6) is also C4, that DF(8)  and its inverse 
are bounded, and that for all t E B,., D 2 F ( z  + 8* ( t ) )  
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Given a particular end-effector pose xp E X ,  the 
inverse-kinematics problem is to find 8, satisfying 
tp = F(Qp). In general, multiple solutions 8, exist. 
We will restrict the space from which we draw de- 
sired output trajectories Z d ( t ) ,  t E R ,  to those output 
trajectories which have corresponding continuous iso- 
lated inverse-kinematic solutions 6, ( t )  . For simplicity 
we concerned ourselves with manipulators for which 
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the dimensions of the joint-space and workspace are 
equal, and for which D F ( 6 )  is nonsingular almost ev- 
erywhere. For such manipulators, the inverse func- 
tion theorem tells us that for a pose trajectory o d ( t ) ,  

t E R+, which never leaves the workspace, if &(t) 
satisfies F(0, (t)) = x:d(t) for all t 2 0, and if for each 
t ,  DF(B, ( t ) )  is non-singular, then @,(t) is an zsolated 
inverse-kinematic solution corresponding to od(t). 

Since there are, in general, multiple continuous 
isolated solutions 6,  ( t )  of F ( 6 )  = z d ( t )  we will assume 
that a particular one has been chosen. It is only a 
matter of choice of initial conditions for the tracking 
controller described below ( Proposition 4.1) that will 
cause the manipulator to follow one inverse-kinematic 
solution over another. 

3. Manipulator Tracking-Control 
Methodologies 

Current techniques of tracking control for robotic ma- 
nipulators can be divided roughly into two classes ac- 
cording to whether the controller is realized in terms 
of workspace coordinates or joint-space coordinates. 
These classes are as follows: 

1. Joint-Space Control of Joint-Space Trajectories. A 
discrete inverse-kinematics algorithm is applied to a 
time-parameterized sequence of chosen points { o d ( t k ) } ,  

called via points, along a continuous desired pose 
trajectory t e od(t) E X .  This discrete inversion pro- 
duces a corresponding time-parameterized sequence 
of joint-angle vectors (Bd(tk)}.  One may then cre- 
ate, via a spline, a smooth time-parameterized curve 
6 ( t )  E Rn through the sequence {Bd(tk)}, and then 
track e( t )  using a tracking control algorithm described 
in terms of 8(t), 8(t) ,  and e”(t). See [a,  31. 

2. Workspace Control of Workspace Trajectories. One 
transforms the dynamic equations of the robot into 
workspace coordinates by differentiating x = 3(0) 
twice, 

solving for 8, 

substituting the result for 6 into the manipulators 
dynamical equations (1) 

M ( q D F ( q - 1 2  = 

and left multiplying by ( D 3 ( 6 ) - 1 ) T ,  

(DF( 8 )  -1)TM (6)D.q e)  - 1 2 = (OF( e)  -1)T. 

+( DF( 8 )  - I)* 7 

(DF(S) - l  (E;=, &DF(6)6jii) I<(@, 4)) . 
(5) 

One then chooses gain matrices B1 and B2 for error 
feedback in terms of workspace errors 2 - o d ( t )  and 
x - kd(t), to obtain a tracking controller for tracking 
the desired z d ( t )  E X as in 

7- = -DF(6)-1 (E;=l &DF(Q)&i)  K ( 6 ,  i) 
+A4 ( 6 )  DF(  6 )  21, 

21 = &(t) - B2(x - i d ( t ) )  - B l ( z  - 2 d ( t ) ) .  (6) 

See [4]. 
Each of the above approaches has its advantages, 

but neither is entirely satisfactory for all robotic ma- 
nipulator tasks. In the first class of controllers, if ac- 
curacy of end-effector pose is to be achieved, one must 
solve a great number of individual inverse-kinematic 
problems in order to find the corresponding sequence 
of points in joint-space. If a disturbance causes the 
end-effector to move substantially from its desired 
trajectory, a new sequence of workspace points may 
have to be inverted in order to fulfill desired error 
dynamics. The joint-space spline from one via point 
to the next may correspond to a workspace path that 
diverges substantially from the desired workspace tra- 
jectory for points midway between the via points. 
This can cause a lack of uniformity in the workspace 
tracking error. This approach has also necessitated a 
combined discrete-time, continuous-time approach to 
workspace tracking control of robotic manipulators. 
Intrinsically, it is not “real-time” since the next via 
point in the joint-space must be determined before 
the spline from the previous via point can be cre- 
ated, time-parameterized, and tracked. Joint-space 
control does have an advantage in that joint param- 
eterizations are global. Thus one need not change 
coordinates in the middle of a control task. 

In the second class of controllers control gains are 
posed in terms of the workspace errors o - Z d ,  and 
x - xd. Using this approach one need not solve for 
an inverse-kinematic solution, though D F ( 6 )  must be 
inverted. This method too can be undesirable since 
the inputs to the manipulator are often joint torques. 
Avoidance of saturation of the joint torques, for in- 
stance, is made difficult. If D F ( f f )  cannot be con- 
veniently inverted symbolically, then, once again, a 
mixed discrete and continuous time control scheme is 
necessitated by the use of numerical matrix inversion. 
In addition, since the workspace is usually SE(3) ,  and 
since no global parameterization of SE(3)  exists, this 
approach can necessitate the overhead of coordinate 
changes in the controller implementation. However , 
specifying control gains in the workspace coordinates 
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can be advantageous for certain combinations of ma- 
nipulator and task. 

This paper describes an alternative to the two 
classes of tracking controllers described above based 
on dynamic inversion [5, 61 and the implicit tracking 
results from [7]. Our method allows one to pose the 
controller and the feedback errors in the joint-space 
while continuously providing an estimate of 0, ( t )  sat- 
isfying zd(t)  = F(0, ( t ) ) .  This allows continuous-time 
control in the joint-space. The continuous-time ap- 
proach also has the virtue of a degree of independence 
of choice of computational machinery. For realization 
of the control via digital computer one must choose an 
integrator in order to integrate the dynamic inverter. 
The issue of accuracy, however, is made solely a mat- 
ter of the choice of integrator. Using our method, 
we also retain the advantage of global control coordi- 
nates. 

4. Workspace Trajectory Tracking 

We now apply dynamic inversion to the problem of 
tracking workspace trajectories. Given a desired end- 
effector trajectory t ++ zd(t) ,  the inverse-kinematic 
solution 0 , ( t )  to F(0) = zd(t)  is defined implicitly as 
a continuous isolated solution of F ( 0 ,  t )  = 0 where 

F ( 6 , t )  := F(0) - Z d ( t ) .  (7) 

The use of dynamic inversion for the tracking of im- 
plicitly defined trajectories is described in [6, 71. Those 
arguments will be specialized here to the case of robotic 
manipulator control. 

From the form of the manipulator dynamical equa- 
tions (l), and the assumption that M(B) is non-sing- 
ular, it is clear by substitution into (1) that the feed- 
back torque 

T = -K(0 ,  e )  + M ( 0 ) u  (8) 

e = U. (9) 

causes the controlled manipulator dynamics 

to be linear from input to state, as well as decoupled3. 
Let e ( t )  := 6-6, ( t )  denote the tracking error between 
the manipulator configuration 0 ( t )  and the inverse-ki- 
nematicsolution e&) at timet. Let @,,@ E JR, i E 14 
be a choice of fixed numbers such that the roots of 
the polynomial in s, 

s2+/3:s+/3;, i E 1 4  (10) 

have strictly negative. real parts. 
explicit signals 8, ( t ) ,  0, ( t ) ,  and 6, ( t ) .  Choosing 

Suppose we had 
as 

3By..the dynamics being decoupled we mean that for each 
i E p ,  8; = vi where each v; is distinct. Thus each 8; may be 
made to track any ydi(t) which is C 2 .  

- 

results in controlled manipulator dynamics having ex- 
ponentially stable tracking error. 

If the trajectory &(t) were given explicitly, our 
job would be over. However, we.do not have explicit 
expressions for 0 , ( t ) ,  e , ( t ) ,  and 0 , ( t )  since we do not 
have an explicit expression for 0, ( t ) .  We will con- 
struct estiniators for e, and 6, that will depend upon 
the state B of a dynamic inverter as well as the desired 
workspace trajectory ~ d ( t ) .  We will substitute those 
estimators for 0, and 0, in 11. 

We may construct estimators for the time deriva- 
tives of 0, ( t )  as follows: Differentiate F(0,) - zd(t)  = 
0 with respect to t to obtain 

Let I', be the solution to 

oqqr - I = 0. (13) 

Solve (12) fo: e, ,  and substitute r for 
~ l ( r , t )  for e* to get 

and 

E 1 ( r ,  t )  := rid(t). (14) 

To obtain an estimator for e, ,  differentiate (12) with 
respect to t giving 

" a  
aoi c -DF(e,)e*ie* - DF(O,)e* - &(t)  = 0. 

(15) i=l  

Solve for e, and replace 0 by 0, , 8, by E1(C t ) ,  and 
& by E2(T, 0, t )  to get 

E y r ,  0, t )  = 
-r (id - E;=, ~ ~ ~ ( e ) ~ ' ( r , t ) ~ l ( r , t ) )  '(16) 

Note that E:(I',,t) = i,, and E2(r,,0,,t) = e*. 
Also, by Assumption 2.2, E1(T,,t) and E2(r* , t )  are 
C2 in their arguments. 

Now let 

where we denote the estimators for r and 6 by F and 
6 respectively. 

In order to dynamically estimate a linear dynamic 
inverse for F ( 0 ,  t ) ,  we define 

F q r ,  0) := DF(B)T - I (18) 

with F r ( r ,  0) E JR"'". The dynamicinverse of F r ( T ,  0) 
defined by is G : Rnxn ~ n x n  + Rnxn 

G ~ ( , ,  r )  = r . ,. (19) 
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We obtain an estimator for f* by differentiating 13, 
solving for k,, and replacing DF(O,)-l to get 

@(r, Q , t )  := -r (d/d t )DF(6 , ) le .=El(r , t )  7. 

Combining estimation, control, and manipulator 

(20) 

dynamics we make the following claim. 

Proposition 4.1 Let F(0) and z d ( t )  E X be C4. 
Let 6, ( t )  be a continuous isolated solution of F ( 6 )  = 
zd( t ) .  Let DF(O,(t)) and i ts  inverse be bounded for 
all t ,  and f o r  all z E a,., r > 0, let D 2 F ( z  + B , ( t ) )  
be bounded. Let Bj := diag(&, . . . , p",), j E {1 ,2} .  
Then the control system 

M ( q e  + ~ ( 6 ,  e) = (21)  

v ( p , 8 , t )  = E2(i ' ,8 , t )  

(23) 
-B1( i  - E1(f,t)) - Bo(B - e),  

where E1(i ' ,  t )  and E2(i' ,  e, t )  are given by (14) and (16) 
respectively, causes B ( t )  to converge to 6,(t) exponen- 
tially. 0 

Proof: This is a straightforward application of the im- 
plicit tracking theorem, Theorem 2 of [?I. See also [6]. 

0 

Remark 4.2 Equations (21) are the equations of mo- 
tion for the manipulator. Equations (24) provide 
exponentially convergent estimates f ( t )  and 6( t )  of 
r,(t) and 6 , ( t ) ,  Equations (22)  and (23)  determine 

A the input r as a function of 6 ,  f', and 6 .  

5 .  A Two-Link Example 

In this section we work through an example of the 
application of Proposition 4.1 to the control of a sim- 
ple model of a two-link robotic arm diagrammed in 
Figure 1. The links of the robot arm are assumed 
rigid and of length 11 and 1 2 .  The masses of each link 
are assumed, for simplicity, to be point masses ml 
and m2 located at the distal ends of link 1 and link 
2 respectively. The desired position of the end-effec- 
tor at time t is z d ( t ) .  The actual position is z ( t ) .  We 
wish to make the end-effector (end of the second link) 

Figure 1: A two-link robot arm with joint angles 
6 = (61,82), joint torques r = (TI] r ~ ) ]  end-effec- 
tor position 2, desired end-effector position xd, link 
lengths 11 and 1 2 ,  and link masses ml and m2. 

track a prescribed trajectory zd(t )  in the Euclidean 
plane. The joint-space of the arm is parameterized by 
6 E T2 where T2 is the two-torus. For our purposes 
we may view T2 through a single chart from R2. We 
will assume that we may exert a control torque at 
each joint and will denote the vector of input torques 
by r E R2. In this case F : R2 + R2; 6 +- F(0) maps 
the configuration space to the Euclidean plane. Let 
ci := cos(Qi), cij := cos(8i + e,), si := sin(Bi), and 
sij := sin(& + B j ) ,  with i , j  E {1,2}. For the two-link 
arm, the forward-kinematics map is 

(25)  

The workspace of the two-link robot arm is the range 
of F, namely {z E R2 : 2 = F ( 6 ) , B  E 'ITz}. We wish 
to determine a r such that the end-effector position 
~ ( t )  = 3 ( 0 ( t ) )  converges to the desired end-effector 
position zd(t). 

The equations of motion for the two link manip- 
ulator (see [a], Section 6.8) are 

where 

and 
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The matrix M ( 8 )  is a positive definite symmetric 
mass matrix, V ( 8 , i )  is the vector of centrifugal and 
Coriolis forces on the manipulator, and W(8) is the 
gravitational force on the arm. Let B , ( t )  be the solu- 
tion of F ( 8 , t )  = 0, where F ( 0 , t )  := F(6) - q ( t ) .  If 
we knew 8, ( t ) ,  8, (t), and e, ( t )  we could set 

t = v(e, e) + w(e) 
(30) 

+M(8)  (e* - B y e  - e,) - Bl(8 - 0,)) 

where B1 = diag(Pt,P;) and B2 = diag(PF,@), But, 
for generality, we will assume that we don't know 8, 
or its derivatives. We will use dynamic inversion to 
obtain estimators for these quantities.g 

In the case of our two-link robotic arm, closed 
form solutions for the inverse-kinematics exist (see 
Craig [2],  p.122) and are known. For demonstration 
purposes we will use dynamic inversion to invert the 
kinematics and we will use the closed form of the in- 
verse-kinematic to check our results. As long as xd is 
kept away from the boundary of the workspace, the 
two possible inverse-kinematic solutions of F ( 8 ,  t )  = 
0 never intersect. We will choose one inverse-kine- 
matic solution, by our choice of initial conditions for 
dynamic inversion, and track it.  

For the two-link arm we have as an estimator for 
8, ( 4  , 

P(r,t) := r .  id@). (31) 

An estimator for i ( t )  is 

where 

Combining (34) with the control law 

?(8, e$) = V(8,  6 )  + W(8) + M ( 0 ) .  
(EZ(i.ld,t) - B y e  - El(?$)) - By8 - e) 

gives our controller. 

Simulation. We choose x d ( t )  to be a time-parameterized 
figure-eight in the workspace, 

x d ( t )  = [3.75cos(d), 2 + 1.5sin(2?rt)lT. 
(36) 

Figures 2 through 4 show the results of a simula- 
tion. The integration was performed in Matlab [SI 
using the adaptive step size Runge-Kutta integra- 
tor ode45. The parameters used in the simulation 
are B1 = B2 = I, p = IO, 11 = 3[m], Z2 = 2[m], 
ml = m2 = l[kg], g = 9.8[m/s2]. The initial con- 

ditions were 8(0) = [ O , T / ~ ] ' ,  8(0) = 
e(0) = [O,O]*, and 

(37) 

Figure 2 shows the resulting end-effector path F(6) 

Wnrkspace Paths 

-1 O....._ 

- 5 - 4 - 3 - 2 - 1  0 1 2  3 4 
I, Iml 

Figure 2: Workspace paths: F(8) (solid), F(8) 
(dashed), and F(8*) (dotted). 

(solid), desired path x d  = F(&) (dotted), and the 
image F(8) of the estimator e for 8, through the for- 
ward-kinematics map 7 (dashed). Both F(8) and the 
path of the end-effector c( t )  can be seen to converge 
to the desired path. Figure 3 shows a similar pic- 
ture, but in joint space. Again, the convergence of 
both the estimator e for the inverse-kinematic solu- 
tion, and the actual joint-angles 8 to the inverse-kine- 
matic solution corresponding to the desired trajectory 
can be seen. Figure 4 shows the norm of the estima- 
tion error O(t) - 8 ( t ) ,  (top) and of the tracking error 
[Q(t) ,  6(t)lT - [B , ( t ) ,  6,(t)]' (bottom) graphed versus 
time. 

The particular inverse-kinematic solution chosen 
was due to the choice of r(0). We may cause the arm 
to track the other inverse-kinematic solution simply 
by choosing a different set of initial conditions for the 
dynamic inverter (See [6], Chapter 5). 
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Joint-Space Paths 
3 1 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 
0 ,  Indl 

Figure 3: Joint space paths: B (solid), 4 (dashed), 
and 6 ,  (dotted). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

= 5  

‘ 0  0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

6. Summary 

The implicit tracking cont,roller of [7, 61 has been 
applied to the robot control problem of tracking of 
workspace trajectories using joint-space control. This 
approach provides exponentially convergent tracking 
of the inverse-kinematic solution corresponding to a 
continuous end-effector trajectory in the workspace. 
This results in exponential tracking of the desired 
end-effector path in the workspace. The controller 
has been posed in continuous time, using a dynamic 
inverter to  produce approximations of the joint-space 
signals necessary for control. 

A similar continuous-time dynamical handling of 
inverse-kinematics has been presented by Nicosia et 
al. in [9]. Their approach fits well into the framework 

of dynamic inversion. Both G(z0,B) = DF(B)-l . w 
and G(w,B) = DF(B)T are used by those authors 
as dynamic inverses. Derivative estimation similar 
to  that used above is also used by Nicosia et al. [9], 
though rather than assuming knowledge of the deriva- 
tives of the desired end-effector trajectory as we have 
done, they use an observer to  estimate those deriva- 
tives. They also rely upon the availability of DF(O)-’. 
Though such reliance is often feasible in practice, we 
have avoided it,  relying instead upon dynamic esti- 
mation of a dynamic inverse. This has allowed us 
to keep all inverse computation in continuous-time 
rather than having to  rely upon discrete matrix in- 
version routines, letting us avoid a mixed discrete and 
continuous time control approach. 

Though the two-link robot arm of Section 5 had 
simple rotary joints, it should be kept in mind that 
dynamic inversion may be used for inverse-kinematics 
of manipulators with more complex joint geometries. 
As long as our assumption on the rank and smooth- 
ness of F(6)  hold, our approach will work for such 
manipulators. 
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