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ABSTRACT What is the relationship between the tempo-
ral jitter in the arrival times of individual synaptic inputs to
aneuron and the resultant jitter in its output spike? We report
that the rise time of firing rates of cells in striate and
extrastriate visual cortex in the macaque monkey remain
equally sharp at different stages of processing. Furthermore,
as observed by others, multiunit recordings from single units
in the primate frontal lobe reveal a strong peak in their
cross-correlation in the 10-150 msec range with very small
temporal jitter (on the order of 1 msec). We explain these
results using numerical models to study the relationship
between the temporal jitter in excitatory and inhibitory syn-
aptic input and the variability in the spike output timing in
integrate-and-fire units and in a biophysically and anatomi-
cally detailed model of a cortical pyramidal cell. We conclude
that under physiological circumstances, the standard devia-
tion in the output jitter is linearly related to the standard
deviation in the input jitter, with a constant of less than one.
Thus, the timing jitter in successive layers of such neurons will
converge to a small value dictated by the jitter in axonal
propagation times.

When a cortical neuron is presented with the appropriate
stimulus it rapidly and reliably increases its probability of
firing. Indeed, individual neurons from cortical area MT in the
behaving monkey respond to a dynamic random dot motion
stimulus with a highly reproducible temporal modulation of
their firing rate, precise to a few milliseconds (1). Further-
more, the time that it takes for an MT cell to significantly
modulate its firing rate—as determined by averaging over
many presentations of an identical stimulus—is almost always
less then 10 msec (2). This occurs in neurons that are at least
six synapses removed from the periphery. This precision is
surprising because the propagation of an input through a
multilayer network with continuous mean rates causes rise
times to become increasingly shallow (3).

Yet, this does not appear to be the case in cortex. The rise
times of signals—as defined via the poststimulus time histo-
gram—in extrastriate areas, such as V4 or MT, can be as rapid
as those in primary visual cortex (V1). As the sensory triggered
“wave” of activity propagates through many layers of neurons,
such a signal does not appear to become appreciably rounded
off, but is instead only delayed between consecutive stages.
This can be assessed directly by comparing the rise time of
neurons in a single cortical area to the same stimulus. The cell
in Fig. 14 responded within about 30 msec to the onset of a
black and white grating, whereas the neuron in Fig. 1B
responded only after 100 msec. Yet the rise time in both
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neurons is equally fast, even though the signal must have
traversed more processing stages in the second case.

Fig. 1C gives further testimony to this. The solid and broken
lines show the average rise times for the visual responses of
neurons in V1 and a higher order extrastriate cortex area, V4
(see Fig. 1 legend, and ref. 4). The average response latency
(measured as the time when the response reaches one-half its
peak value) was 64 msec for the V1 neurons and 90 msec for
the V4 neurons. This difference in latency presumably corre-
sponds to many synaptic levels of processing interposed be-
tween areas V1 and V4. Yet, the average rise time of the firing
rate in both sets of neurons is indistinguishable. How can
neurons in later stage of processing retain a sharp onset when
the signals are processed by neurons with passive membrane
time constants of tens of milliseconds?

A similar problem arises in Abeles’s synfire model of cortical
processing (5, 6). He proposes that sensory events trigger
wave-like patterns that criss-cross cerebral cortex. Underlying
this model are small and coupled groups of neurons receiving
synchronized input that excite all members of the group. This
tightly coupled cell assembly excites a second group of neurons
that triggers synchronized spiking activity in a third group of
neurons, in a so-called synfire chain. Neurons might belong to
more than one group, depending on their connectivity (7).
Abeles formulated this model in response to his puzzling
finding that the cross-correlation function of firing of cortical
cells frequently shows a narrow peak far removed from zero
(up to 100 msec), raising the question of how such a wave of
synchronized firing activity can propagate through many layers
of intervening neurons, where the neurons possess passive time
constants on the order of 10-20 msec (8, 9).

We seek to address this issue at the single cell level in the
following manner. Suppose an instantaneous sensory event in
the world triggers a volley of activity in n synaptic inputs. Let
us assume that the arrival time of this input is centered around
t = 0 and that its standard deviation in time, henceforth called
input jitter, is oi,. If we further suppose that these n synapses
excite a pulse generating neuron, we can compute the standard
deviation in time, termed the output jitter ooy, of the spike
triggered in response to this input. If ooy > o, then it is clear
that each consecutive layer of spiking neurons will introduce
more and more temporal jitter, compromising the ability of
higher level neurons to sharply respond to this sensory input
and rendering synfire assemblies difficult. Inversely, if oou <
oin (as we will find) then, depending on other sources of
temporal jitter, the temporal variability in spike times response
to an abrupt input converges toward a fixed point. In the
following, we investigate analytically the case of a perfect
integrate-and-fire (I&F) model. Computer simulations using

Abbreviations: I&F, integrate-and-fire; AMPA, a-amino-3-hydroxy-
5-methyl-4-isoxazoleproprionic acid.
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Fic. 1. Visual responses from isolated cells in the visual cortex of
one behaving monkey. (4 and B) Responses from two isolated units
that were stimulated with a high contrast, stationary black and white
square wave grating that appeared at ¢+ = 0 and remained on for the
duration of the plot. Each histogram is the average of responses to 100
stimulus presentations. The vertical axis plots responses in units of
spikes per second. (4) Responses from a unit in V1 with a very early
onset (latency 27 msec, peak 37 msec). Rise time, marked by arrows,
is defined as the interval during which response rises from 10% to 90%
of the peak, was 6 msec for this neuron. (B) Responses from another
V1 unit with much longer latency (99 msec). Although this neuron
presumably is situated many synaptic stages later than the neuron in
A, its rise time is similar, 7 msec. (C) Comparison of average rise times
in cortical visual areas V1 and V4. The solid trace represents the
average response profile of 73 units in V1, and the broken trace the
average for 183 units in V4. All units were driven with a Gabor
stimulus, temporally counter-phased at 4 Hz on an isoluminant gray
background. Before averaging, each unit’s response was normalized to
the same rate of firing and shifted to bring the time when its response
reaches one-half its peak value to ¢ = 0. The average response profiles
for V1 and V4 were individually scaled to bring them to the same
(arbitrary) peak value. The resulting curves show the average rise times
of responses for units in V1 and V4. The rise times are remarkably
similar, 8 msec in V1 and 7 msec in V4 (both after smoothing),
although the average latency in V1 was 64 msec and that in V4 was 90
msec. The similarity in rise time raises the question of how a volley of
synaptic inputs, triggered by a visual stimulus, can propagate through
many layers of cortical processing without losing its sharp onset.

two different single cell models complement our results and
confirm that under physiological circumstances, ooyt << Gin.

The 1&F Model

We begin with the simplest model of a spiking cell (10). This
I&F model consists of a capacitance, C, and a voltage thresh-
old, Vi (Fig. 24). Each synaptic input dumps positive or
negative charge onto the capacitance, de- or hyperpolarizing
the membrane. Once V}, is reached, an output spike is
generated and the membrane potential is reset to zero. The
I&F unit is assumed to receive input from # excitatory synaptic
inputs of equal weight, ag, each of which can be activated
independently of each other.

First we assume that ng, = n, where ny, = Vin/ag is the
number of inputs needed to reach threshold. Under these
conditions, the time, oy, for which the I&F unit generates an
output pulse is the time that the nth input arrives, given by
max(ty, ta, . . . 1,). The probability distribution of spike times for
the I&F unit is

Plto <t} = P{max(ti,ty, - - - t,) < t}

= P{t; < tforalli} = (P{t; < t})", [1]
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FiG. 2. Three single neuron models that are investigated for the
relationship between temporal jitter in the synaptic input and jitter in
the timing of the output spike. (4) I&F unit; each synaptic input
charges the capacitance, C. If a voltage threshold, Vi, is reached, an
output spike is generated and the voltage is reset (black arrow indicates
closing the reset switch). (B) Leaky I&F unit; with the addition of a
resistance, the subthreshold regime (i.e., for Viy < Vip) acquires a time
constant 7 = RC. (C) Morphology of the reconstructed layer 5
pyramidal cell from visual cortex of the anesthetized adult cat (9) that
was used. (D) A fraction of the equivalent circuit used in the
numerical, compartmental simulations (via the single cell simulator
NEURON).

where P{t; <t} is the distribution for all of the synaptic inputs
(the last step holds because all synaptic inputs are assumed to
be independent of each other). The probability density of spike
times, pout(?), is the derivative of this distribution:

d
pout(t)dt = Ep{tout < t}dt . [2]

Using Eq. 1, we can transform this into

dP{t, < 1}
i

=n(P{t; <1)" 'piput)dt . [3]

Poud)dt = n(P{t; <t})" !

Here pinput(f) is the probability density of the synaptic input.

Let us assume that pipu(f) is a normal density with a
temporal input jitter oin, as in Fig. 3 (for normal density). This
allows us to make several observations. For n = 1, it trivially
follows that the density of spike times is identical with the
synaptic input density. For larger ns, the resulting density
becomes narrower. Indeed, it can be shown that the output
jitter, i.e., the standard deviation of poy(t), for n + 1 inputs, is
less than the jitter for » inputs. Thus, this rudimentary model
achieves the goal of transmitting signals without temporal
smear, although activity is significantly delayed. Indeed, jitter
would be systematically reduced at each successive level in a
multilayer network of such neurons because, as is evident upon
inspection of Fig. 3, oout < oin (in the case of normally
distributed synaptic input).

For an arbitrary density, pinput(f), Pout(t) scales with the input
jitter. When changing the input jitter from oy, to o;, one can
rescale time replacing ¢ with toi/o;,. This leads to the same
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F1G. 3. Probability density of spiking pout(t) of Eq. 3 associated
with the I&F unit of Fig. 24. Here, n = nu,; that is, the number of
excitatory inputs is equal to the number of inputs needed to bring the
unit to threshold. n = 1 reproduces the probability density of the
synaptic input itself, pinput(f) (assumed to be Gaussian distributed
around zero, with oin = 1 msec). If n = ny = 10 inputs are required,
the mean of pou(¢) is shifted to 1.6 msec, but becomes narrower, with
oout = 0.6 msec. This is even more the case if n = ng, = 100 inputs are
required to reach threshold: the mean shifts to 2.6 msec with ooy =
0.4 msec. In other words, as individual synaptic inputs are made
smaller and smaller, requiring the summation of more and more
inputs, the jitter in the timing of the output pulse becomes less and less.
For normally distributed synaptic inputs as used here and for large ns,
Oout << Cin.

density function times a scaling factor ain/0;, (to account for
the broader spread of the probability density, which has to sum
to one). In other words, increasing the input jitter by «
increases the output jitter by a.

Now let us deal with the more general case of n > ny, and
where pinpui(f) is the uniform density on the interval [0, 1].
(Pinput(t) = 1for t € [0, 1]; pinput(t) = 0 otherwise.) This assures
us that at ¢ = 1 the voltage will be exactly nag (in the absence
of a threshold).

The probability that the voltage at time ¢ has attained the
value npag is given by the beta density (11-13):

(n+1)!

o) = (] — ) nm), 4
Pall) = e (1 ) 4

The standard deviation of this distribution is

(ng, + D+ 1 —ny)
(n+2)*n+3)

[5]

In the case of the uniform probability density assumed here,
on=1/2 \/3. This allows us to rescale Eq. 5, and we can write
for the output jitter

o n e Do+ 1=y
Tou = Tin2 \3 V' +2)%n +3)

[6]

To arrive at some intuitive feeling for this result, let us assume
that the number of inputs # is far above the number needed to
reach threshold ny,. Making the approximations that n + 3 ~
n+2=~n,thatn + 1 — ng, ~ n, and ny, + 1 =~ ny, we arrive
at (Wlth Ay = Vth/aE)

1 W,
Oout = Oin2 V/g ; —h . [7]

ag
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Or, the output jitter is inversely proportional to the number of
excitatory synaptic inputs. This makes sense, since the time it
takes to reach threshold will be proportional to the drift that
is dictated by n. The jitter in this time is inversely related to the
drift. Of course, our derivation only holds under conditions
when the membrane leak can be neglected.

The Leaky I&F Model

Although this I&F model has desirable properties, it is not
physiologically plausible and leaves many questions open.
What happens if pinpui(f) is not uniform? Furthermore, neu-
rons are not perfect integrators. Rather, they have a passive
membrane time constant that is on the order of 10-20 msec in
pyramidal cells in vivo (for review, see ref. 8). If only a small
number of synapses are active, the membrane potential can
decay significantly between inputs. These concerns are ad-
dressed using the leaky or forgetful 1&F model. It is obtained
from the I&F model by addition of a resistance R, endowing
the unit with a passive time constant 7 = RC (Fig. 2B).
Although quite simple, leaky I&F units have been successfully
used to mimic many aspects of the temporal dynamics of
cortical pyramidal cells (5, 14-17).
In the subthreshold region, the voltage is governed by

dVut) V)  I@)
a1 * c’

[8]

where the current I(¢) is given by the superposition of random
excitatory inputs. The input comes in the form of n short,
depolarizing current pulses of amplitude ag, and m hyperpo-
larizing current pulses of amplitude a;. Each input has an
associated probability density function pinpu(f), with a mean of
!mean and input jitter oyy.

Each excitatory input pulse depolarizes the membrane,
pushing V4, closer to the threshold Vi, whereas the inhibitory
input displaces Vi, away from Vi,. Unlike the nonleaky 1&F
model, V;, decays exponentially to zero in the absence of input.
What can we say about the relationship between i, and ooy,
that is the standard deviation in time in which V,, reaches
threshold? We have not managed to place firm boundaries on
the jitter for a leaky I&F unit, forcing us to rely on computer
simulations.

We numerically solve Eq. 8 via Matlab. We assume Vi, = 16
mV, 7 = 10 msec and ag = a; = 0.23 mV/, such that ng, = 70
simultaneous excitatory synaptic inputs that are required for
the unit to fire. Fig. 44 illustrates one sample path for Vi(¢),
for excitatory, rectangular current pulses (using « functions did
not lead to any significant difference) of 1 msec width, 0.23 nA
amplitude, and with a Gaussian input probability density pinput.
For n = 250 excitatory inputs in the absence of any inhibition,
approximation gives ooy =~ 0.116 oy (Fig. 54). The simulated
curve is always below the estimate, confirming the intuition
that for large number of synaptic inputs the decay can be
neglected.

What happens in the presence of inhibition? On general
grounds, one expects the overall jitter to increase, due to the
introduction of additional degrees of freedom. Indeed, if 62
inhibitory synapses are added, the output jitter is larger than
in the no-inhibition case, yet still substantially below the
identity function (Fig. 5B). We conclude that a leaky I&F unit
can reduce the jitter in its input in the presence of massive
synaptic input.

A Cortical Pyramidal Cell

It could be argued that an I&F unit does not represent a
reasonable model of a cortical cell. Although substantial
evidence has accumulated in favor of neurons having an abrupt
voltage threshold (for a detailed discussion see refs. 17 and 18),
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FiG. 4. Sample voltage trace (A4) in the leaky I&F unit (Fig. 2B),
and the somatic membrane potential (B) in the simulated pyramidal
cell (Fig. 2 C and D). pinput(t) is a Gaussian, with a mean at r = 0 and
a standard deviation of gj, = 3.5 msec. The input current for the leaky
I&F in A is the staircase-like curve denoted (). This is qualitatively
similar for the pyramidal cell model (B). All pulses last 1 msec. The
membrane time constants are 7 = 10 msec (4) and 7 = 9 msec (B).
One unit of pulse is marked by the arrow on the left. In the pyramidal
cell, the input current is delivered by excitatory and inhibitory
conductance increasing synapses scattered throughout the dendritic
tree (see text for details). Horizontal arrows in 4 and B indicate Vin.
The potential is reset to zero in the leaky I&F unit. Both traces are
computed with excitation and inhibition.

voltage-dependent channels inactivate and can change the
effective threshold depending on the history of V;,,. We address
this point by carrying out simulations in a detailed model of a
regular-firing, neocortical pyramidal cell. The arcanae of these
simulations are described in detail in ref. 18, and we will only
summarize the salient points here.

The morphology of this cell (Fig. 2C) was derived from a
layer 5 pyramidal cell in primary visual cortex filled with
horseradish peroxidase during in vivo experiments in the
anesthetized, adult cat (9). Fig. 2D illustrates part of the
compartmental model that was simulated using the single cell
simulator NEURON (19, 20). In the complete model the cell
has 163 branches, consisting from 1 to 10 compartments, with
the most distal tip 1387 wm from the soma. The soma
comprises only 2% of the total membrane area. The basal
dendrites, including the apical obliques that are located in layer
5, account for approximately 60% of the membrane area, with
the apical trunk and apical tuft taking the remainder.

We assume here that the dendritic tree is passive, with Ry,
=100 kQcm? R; = 200 Qcm, Cy, = 1 wF/cm?2, and Ejeq = —66

Proc. Natl. Acad. Sci. USA 94 (1997)
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F16.5. Relationship between input and output jitter for excitatory
input only (4) and with both excitation and inhibition present (B). The
approximation we find for the nonleaky I&F (Eq. 7) is indicated in A4,
with slope of 0.116. We added a line with unity slope for comparison.
The numerical simulations always fall below the identity line, as does
the output jitter associated with our anatomical and biophysical
accurate model of a pyramidal cell with a passive dendritic tree. Error
bars correspond to sample standard deviation from 5 runs from 50
threshold passages. These results show that in a cascade of such
neurons in a multilayered network and in the absence of large timing
uncertainty in synaptic transmission and inhomogeneous spike prop-
agation times (see text), the timing jitter in spiking times will converge
to zero.

mV. We mimicked the synaptic background activity by incor-
porating the steady-state conductance (and driving potential)
effect of 4000 excitatory inputs of the voltage-independent
AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic
acid) type 500 GABA4 and 500 GABAg inhibitory synapses,
all activated independently of each other on the basis of a
Poisson process with a rate of 0.5 Hz (21). Synapses are not
distributed uniformly along the membrane. Inhibition is more
prevalent on and near the soma, whereas excitation is more
distal (22, 23). This distribution was modeled by making the
surface density of synapses a function of distance from the
soma. This lowers the effective Ry, to about 11 kQcm? at the
soma (where the density of inhibitory synapses is large) and to
50 kQcm? for distal locations.

The somatic membrane includes eight voltage-dependent
conductances, two sodium conductances (fast and persistent),
a delayed rectified potassium conductance, a calcium and a
calcium-dependent potassium current, an 4 and an M type of
potassium conductance, and an anomalous or inward rectified
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conductance (for details, see ref. 18). The final somatic input
resistance was 12.5 M(), the time constant 9 msec, and the
somatic resting potential —65.6 mV. For this cell, the voltage
threshold to initiate an action potential Vi, ~ —49 mV.

To mimic the synaptic input, we randomly generated 500
locations for excitatory synapses and 125 locations for inhib-
itory synapses, taking into account their anatomical distribu-
tions (see above). For each block of trials one-half (» = 250 and
m = 62, respectively) of these synapses were randomly trig-
gered. Excitation is of the fast, voltage-independent AMPA
type and is modeled by an « function with #,..x = 0.5 msec,
8peak=1.5 nS, and Ey,, = 0 mV. Inhibitory synaptic input is of
the GABAA type, with #pcac = 10 msec, gpeak = 1 1S, and Egy,
= —70 mV. We simulated input jitter times, oj, of 0.5-3.5
msec. For larger values of gy, frequently trials would not lead
to the generation of a spike (at our level of excitation). Fig. 4B
shows sample traces of 1}, at the soma, while Fig. 5 plots the
resultant jitter. It is obvious that the variance of the output
jitter of this pyramidal cell is approximately linear in the input
jitter and always falls below the identity line.

Spiking Jitter Following a Step Increase in Firing Rate

So far we have treated the case of a wave of elevated firing
probability arriving at a neuron and triggering a spike. How
does this situation relate to a step increase in activity (similar
to that generated by an appropriate visual stimuli when
recording from a cortical cell)?

Let us assume that the input to a nonleaky I&F unit abruptly
switches at t+ = 0 from a low spontaneous value to a much
higher rate. Since the rise time in the average firing rate (Fig.
1C) occurs within a fraction of a time constant, we will neglect
the membrane decay during this portion of the input. We will
approximate the voltage trace by Wiener process with drift.
We will express the new, elevated value for the drift as w,, =
agAg — arh; and the variance parameter 0% =a% \g + ai,
where Ag and A; denote the new excitatory and inhibitory input
rate. Assuming that the nonleaky I&F unit had the voltage V)
at this time, it is straightforward to compute (24-26) that the
probability density of the first spike following the input is given
by the inverse Gaussian density

Vi — Vo Vi = Vo = pat)?
pike(t | Vo) = - ?
pspzks( | U) \//Zng'vzv e exp 20‘3.; P 91

Assuming that V) is uniformly distributed within the interval
[0, Vin], we can average over all possible values of Vy:

Vin

1
ﬁspike(t) = 7 j pspike(t|VO)dV0 . [10]
th 0

From this average we can compute the mean and standard
deviation of the first spike to occur following the step increase
in input. The mean latency is

V,
E@pie(1)) = 2:’ : [11]

w

and the jitter around this latency is

— Ow Vth
Std(pspike(t)) = 7 3 [12]
My

Assuming that the nonleaky I&F unit discharges at a rate of 50
Hz following the input increase, by back substitution (and
assuming, as before, ag = a1 = 0.23 mV, Ag = 4\;) we have
Ae = 4.63 msec™ ! and a latency of first spike of 10 + 1.55 msec.
Thus, we have transformed a problem of jitter following a step
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increase in the input to the problem treated above, e.g., a
probability density of the time of first spike pgpike(f) in output.
Instead of a Gaussian density as we have assumed in our
simulations, the spikes would be distributed according to Eq.
9. Yet for our parameter values, the difference between these
two distributions is negligible. Moreover, the value of standard
deviation lies within the range of assumed jitter levels.

Discussion

The aim of this study was to explain some puzzling observa-
tions regarding the preservation of highly accurate spike
timing in cortical networks. Naive intuition suggests that in a
layered network of mean-rate “units” (such as those at the
heart of most neural networks), precise temporal information
will become smeared out. Experimentally, as we have shown in
Fig. 1, this is not true for neurons in different cortical areas in
the macaque monkey. We can show analytically that for an
uniformly distributed synaptic input to a nonleaky I&F model,
a linear relationship exists between oo, and oi,, With the
constant of proportionality depending inversely on n. Using
numerical methods to deal with temporal dispersion and
nonlinear processing existing in biophysical realistic models of
individual neurons, we can show that under physiological
conditions ooy ~ a o With @ <1. o depends on various
parameters, in particular on ny, and n, and is larger if both
excitatory as well as inhibitory synaptic input is included.
Lastly, we show that the situation of an abrupt increase of the
excitatory and inhibitory synaptic input to a nonleaky I&F unit
gives rise to a probability distribution of spikes with a certain
jitter that now propagates to the following layer of processing.
For a cascade of such neurons the output jitter will converge
to zero. However, in real networks this is unlikely to be the case
since we have neglected several additional sources of timing
variability. The two most dominant sources are likely to be (i)
the inhomogeneous spike propagation times between consec-
utive layers of neurons due to variations in the diameter and
length of the associated axons and axonal termination (wiring
jitter) and (if) jitter in the delay between presynaptic spike and
the opening of the postsynaptic synaptic channels (synaptic
jitter). Thus, even if all neurons in one layer spike at precisely
the same time, the synaptic induced conductance change in
their postsynaptic target cells will not be perfectly synchro-
nized. Manor and others (27) simulated spike propagation in
a highly branched layer 5 pyramidal cell axonal tree from
somatosensory cortex and found that the jitter in the arrival
times at the different synaptic boutons due to purely geomet-
rical factors was on the order of £0.5 msec.Thus, the output
jitter for many layers of such a network will converge to a
fixpoint that is different from zero but bounded by the “jitter”
in the anatomical connections and in synaptic jitter, which
would presumably be in the order of several milliseconds.
The effect of strong dendritic nonlinearities is unclear.
However, if such voltage-dependent membrane components
would act to more rapidly depolarize the membrane, such as
dendritic spikes, the output jitter should be smaller than
estimated here. o, can be maximized by combining excitatory
inputs with the largest amount of inhibition compatible with
the cell still firing (since inhibition increases the variance of the
membrane potential). This is precisely the situation we simu-
lated in Fig. 5B: any more inhibition and the cell would have
failed to generate spikes in a growing fraction of all trials.
Several groups have previously investigated the preservation
of spike timing using the dynamic equations describing net-
work activity (in particular refs. 28 and 29). Not taking into
account any processing at the single cell level and assuming a
mean-field approach, both studies conclude that the jitter
between two consecutive stages decreases as 1/ Vn; that is, for
relatively large number of afferent excitatory synapses, oout
will remain small. We investigate the specific case of a non-
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leaky I&F unit, and conclude that the dependency on n could
be even stronger (see Eq. 7) and show that this approximation
is also valid for a biophysical quite detailed model of a layer 5
pyramidal cell. Thus, our simulations are in qualitative agree-
ment with those of Abeles (29) and Herrmann (28).

We conclude that layers of pulse-generating neurons can
preserve the temporal jitter of spike times and that this jitter
will converge to a small fixpoint. This property of neurons
provides one of the biophysical substrates necessary for ex-
ploiting the detailed timing information inherent in spike
trains as is frequently asserted (30-32).

Note. We recently learned that Diesmann et al. (33) have indepen-
dently studied the relationship between input and output jitter in a
different type of neuron model and have arrived at qualitatively similar
conclusions.
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