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Abstract— In this paper, we consider a fading broadcast chan-
nel where users have different rate demands. In particular, we
assume users are divided into M groups, each group of which re-
quires the same rate, and where the ratio of the rates of the groups
are given. The transmitter would like to maximize the through-
put (sum of the rates to all users) while maintaining the rational
rate constraints. In general, this problem appears to be computa-
tionally intractable since the ergodic capacity region is described
as the convex hull of (an infinite) set of rates. In this paper, we
therefore, focus on the asymptotic regime of many users (large
n) where explicit results can be found. In particular, we propose
three scheduling schemes to provide the rational rate constraints
namely, weighted opportunistic (WO), time division opportunistic
(TO), and superposition coding (SC). The WO scheduling is a gen-
eralization of the opportunistic scheduling in which we transmit to
only the user that has the maximum weighted signal to noise ratio
(SNR). In TO, each group has its own time slot in which the trans-
mitter chooses the user with the best SNR from the corresponding
group. Superposition coding is the one that achieves the capacity
region. For each scheduling we give explicit scheme to guaran-
tee the rational rate constraints. We also analyze the throughput
loss due to rate constraints for different schemes. In particular, we
show that the throughput loss compared to the maximum through-
put (i.e., the sum rate capacity without any rate constraints) tends
to zero for large n, and finally, we analyze the convergence rate of
all the schemes.

I. INTRODUCTION

The down-link scheduling in cellular systems is known to
be one major bottleneck for future broadband wireless commu-
nication. Information theoretic results on broadcast channels
provide the limits for the maximum achievable rates 1 for each
receiver [6], [2], [3]. For example in a homogeneous network,
if the transmitter wants to maximize the throughput (or the sum
of the rates to all the receivers 2), the best strategy is to transmit
to the user with the best channel condition at each channel use.
This is the so called “opportunistic” transmission strategy [5].

For a homogenous network, opportunistic scheduling, how-
ever, treats all the users equally. In systems which are provi-
sioned to provide differentiated services to different users, the
transmitter has to give different services (or rates) to different
subsets of receivers, and yet at the same time, maximize the
throughput [1].

In this paper, we are interested in analyzing differentiated
rate scheduling schemes for broadcast channels. In particular

1Here we assume the channel is ergodic and rate refers to the average rate
over all channel realizations.

2We use users and receivers interchangeably.

we assume receivers are divided into M groups where the ratios
of the rates of users in different groups are given. Given these
ratios, the overriding question in this paper is to devise schemes
that provide the rational rate constraints and yet at the same time
maximize the throughput of the system. We are also interested
to see how much throughput loss the transmitter would incur by
imposing such constraints.

II. PROBLEM FORMULATION

We consider a scalar Gaussian broadcast system with n re-
ceivers. We also assume the channels between the transmit-
ter and the receivers are block fading, i.e., the channels remain
fixed over the coherence interval of T . Therefore, we can write
the relationship between X , the transmitted signal, and Yi, the
received signal at receiver i, as

Yi = hiXi + Wi (1)

where hi is the channel coefficient between the transmitter and
the i-th receiver and Wi is the additive noise. hi and Wi(t)
are i.i.d. complex circularly symmetric Gaussian random vari-
able with zero mean and unit variance, CN(0, 1). In terms of
channel knowledge, we assume that hi is known perfectly at
the transmitter and the receiver. We further assume that the
transmitter is subject to a short-term power constraint power,
so that the transmitted signal in every state must satisfy power
constraint P . We denote the (average) rate of the i’th user,
i = 1, . . . , n, over channel realizations by Ri.

In this paper, we are interested in analyzing differentiated
rate scheduling schemes for broadcast systems with large num-
ber of users, i.e., n >> 1. We consider a partition of the re-
ceivers in M groups G1, . . . ,GM , where different groups re-
quire different rates from the transmitter. We also assume that
the size of the groups are all of the same order and hence, the
cardinality of Gk is αkn where M and αk’s are fixed numbers
such that

∑M
i=1 αi = 1.

Assuming that the average rate of a user in the k’th group
denoted by Rk, 3 without loss of generality, we may assume
R1 < . . . < RM . We further impose the constraint that the av-
erage rate of a user in the i’the group is βi times the average rate
of a user in the M ’th group. In other words, we are interested

3Throughout the paper, we use superscript k to refer to any user in Gk .



in the optimization problem

max
n∑

i=1

Ri (2)

subject to
Rk

RM
= βk, k = 1, . . . , M, (3)

where β1 < . . . < βM−1 < βM = 1 and are fixed numbers
independent of n. It is clear that the best operating point in the
ergodic capacity region is the intersection of the boundary of
the capacity region CBC(R1, . . . , Rn) with the line defined in
(3). While this is easy enough to state, it is not so easy to do
since CBC is implicitly defined as the convex hull of an infinite
set of rates. Moreover, it is not so easy to see how any point on
the boundary of the capacity region can be mapped back to a
schedule.

Therefore, in this paper, we will look at the performance of
three scheduling schemes to provide the rational rate constraints
in (3), namely, weighted opportunistic, time-division oppor-
tunistic, and superposition coding. In order to obtain explicit
solutions, we will assume that the number of users n is large.
Weighted opportunistic scheduling is the one that transmits to
only the user that has the best weighted channel conditions. Of
course, the weights should be determined in such a way that
(3) is satisfied. In the time-division scheme we allow the trans-
mitter to divide each channel use to non-equal time slots. At
the k’th slot, the transmitter sends to the receiver with the best
channel condition from group Gk. Finally, superposition coding
is the one that achieves the ergodic capacity region [6], [2].

III. WEIGHTED OPPORTUNISTIC SCHEDULING

In this section, we consider a scheduling in which we are
sending to only one user at each channel use that has the maxi-
mum weighted signal to noise ratio, i.e.,

max
1≤i≤n

µi|hi|2. (4)

Since the rates of the users within the same group are the
same, it is clear that we only need to set M different µi’s corre-
sponding to M groups. The first question would be to figure out
the mapping between the βk’s in (3) and µk’s. In other words,
what values of µi’s give the desired ratios βi’s? Secondly, we
are also interested to obtain the loss we incur on the throughput
(i.e., sum of the rates) of the system by imposing (3) and using
this scheduling.

In order to find the rate of a user in G1, i.e. R1,w, using
weighted opportunistic scheduling, we may use (4) to write

R1,w =
∫ ∞

0

log(1 + Px)e−x(1 − e−x)α1n−1

×
M∏

j=2

(1 − e
−µ1

µj
x)αjndx. (5)

Equation (5) follows by noting that a user in G1 is chosen if its
own channel is better than α1n−1 users in G1 and its weighted
channel is better than αin users in Gi for i = 2, . . . , M .

Analyzing R1,w for any n involves the exponential integral
function and therefore explicitly finding the solution for µi’s

to guarantee βi’s becomes cumbersome and numerically in-
tractable. Therefore, we consider the regime of large number
of users and find µi’s that satisfy (3) in this regime.

Lemma 1. Suppose M and αi’s are fixed and n grows. Then if
µi’s are chosen such that

µi = 1 +
log βi

log n
, i = 1, . . . , M, (6)

then lim
n→∞

Ri,w

RM,w = βi for i = 1, . . . , M − 1. Furthermore

lim
n→∞

∑n
i=1 Rw

i

log log n
= 1. (7)

Proof: Assuming (6) holds, we first prove that R1,w =
α1β1 log log n∑M

k=1
αkβk

. We can write (5) as,

R1,w =
∫ ∞

0

log(1 + Px)e−xe
∑M

k=1
αkn log(1−e

− µ1
µj

x
)dx

=
∫ ∞

0

log(1 + Px)e−x−∑M
k=1

αkne
− µ1

µj
x
+O(ne

−2
µ1

µM
x
)dx

=
∫ ∞

0

log(1 + Px)e−x−e−x∑M
k=1

αke
− x log (β1/βk)

log n +O(n−γ)dx

where γ is some constant bigger than 1. We now consider
three regions for the integral above, namely, between log an ±
4 log log n, greater than log an + 4 log log n, and less than
log an − 4 log log n where a =

∑M
k=1

αkβk

β1

. We can bound the
second integral by noting that the average rate to the first group
is at most of the order log log n and therefore an upper would be
log log n multiplied by the probability that |h1|2 is greater than
log an + 4 log log n condition on the fact that |h1|2 ≥ µi

µ1

|hi|2
for i = 2, . . . , n. Hence the second integral can be written as

∫ ∞

log an+4 log log n

log(1 + Px)e−x−e−x∑M
k=1

αke
− x log (β1/βk)

log n +O(ne
−2

µ1
µM

x
)dx

= O

(
log log n

∫ ∞

log an+4 log log n

e−x−e−x∑M
k=1

αke
− log (β1/βk)

x
log n

dx

)

= O

(
log log n

n(log n)4

)

Similarly the integral for the third region becomes
O

(
log log n

n e−(log n)4)
)

.
We now focus on evaluating the first integral. In fact we may

change the variables to y = x − log an to get,

∫ log an+4 log log n

log an−4 log log n

log(1 + Px)e−x−e−x∑M
k=1

αke
− log (β1/βk)

x
log n

dx

= log log n

∫ log an+4 log log n

log an−4 log log n

e−x−e−x∑M
k=1

αke
− log (β1/βk)

x
log n

dx

=
log log n

an

∫ 4 log log n

−4 log log n

e−ye−e−y

dy

=
β1 log log n

n
∑M

k=1 αkβk

(
1 − O

(
1

(log n)4

))
. (8)



It is quite straightforward to write the rate for users in the
other groups in a similar way. Therefore for any group, we
obtain

Rk,w =
βk∑M

j=1 αjβj

log log n

n
+ O

(
log log n

n log4 n

)
. (9)

Clearly the ratios of the rates satisfy (3) in the limit of large n
and also the first order term in the throughput of this scheme is
log log n that leads to the second part of the Lemma.

Lemma 1 asserts that the average rates of users are quite sen-
sitive to the change of µi’s. In order to further understand the
impact of a change in µi’s on the rates, we consider a two group
system. Following the methodology in the proof of Lemma 1,
we can prove the following results. If

µ1

µ2
= 1 − o

(
1

log n

)
=⇒ lim

n→∞
R1,w

R2,w
= 1. (10)

where Ri,w is as defined in Lemma 1. Moreover, if

µ1

µ2
= c < 1 =⇒ lim

n→∞
R1,w

R2,w
= 0 (11)

where c is a constant independent of n.
We further look into the throughput loss that we would incur

by differentiated rate scheduling. From Lemma 1, it is clear
that the first order of the sum rate (i.e., log log n) remains un-
changed. In the next Lemma we show that the difference of the
sum rate capacity (maximum throughput) and the throughput of
this schemes converges to zero. We also obtain the convergence
rate.

Lemma 2. Suppose M and αi’s are fixed and n grows. Then,

∫ ∞

0

n log(1+Px)e−x(1−e−x)n−1−
n∑

i=1

Rw
i =Θ

(
(log log n)3

(log n)2

)

(12)
where the first term denotes the sum rate capacity achieved
by sending to the user with the best channel condition at each
channel use.

Proof: We prove this lemma for the case of M = 2 for the
sake of brevity, however it is quite straightforward to general-
ize to M > 2. We first divide the integral that represents the
difference of the throughputs into three regions as we did in the
proof of Lemma 1. The first term would be the integral when
log(n/2) − 4 log log n ≤ x ≤ log(n/2) + 4 log log n which is
denoted by region A. We can then write the first term as,

∫
A

n

2
log(1 + Px)e−x(1 − e−x)n/2−1

{
(1 − e−x)n/2−1

−(1 − e−
µ1

µ2
x)n/2 − (1 − e−

µ1

µ2
x)n/2

}
dx

= Θ

(
log log n

∫ 4 log log n

−4 log log n

e−y

(
1− e−y

n/2

)n/2−1
{(

1 − e−y

n/2

)n/2

(1 − e−
µ1

µ2
(y+log n/2))n/2 − (1 − e−

µ1

µ2
(y+log n/2))n/2

}
dx

)

Assuming that ε = log log n
log n , we can write the above equation

as,

Θ

(
log log n

(
2e−

1

logγ n − e−
1

logγ n (1+β1(1+ε))

1 + β1(1 + ε)

−e−
1

logγ n (1+ 1

β1
(1−ε)

1 + 1
β1

(1 − ε)

))

Θ(ε2 log log n) = Θ
(

(log log n)3

(log n)2

)
(13)

It is quite straightforward to show that the other terms would
contribute O

(
log log n
(log n)2γ

)
. This completes the proof.

IV. TIME-DIVISION OPPORTUNISTIC SCHEDULING

Another, in fact simpler, approach to guarantee the rate con-
straints is to do time-sharing between different groups by di-
viding each channel use of duration T to M slots of different
lengths 4. The i’th slot is dedicated to the i’th group and the
transmitter chooses the receiver with the best channel condi-
tions for transmission from Gi. Intuitively, we should be able to
achieve the rational rate constraints if we divide the slots into
the same ratios. (Lemma 3 shows this is the case.)

Here we denote the rate of a user in Gk using the this scheme
by Rk,t, similarly the rate of the i’th user will be denoted by t

i.
In the next lemma, we show that if the cardinality of all groups
is of the order of n, we can construct the length of slots such
that (3) is satisfied and the throughput of the scheme scales like
log log n.

Lemma 3. Suppose M and αi’s are fixed. Also, let li be the
length of the i’th slot and is equal to

li
T

=
αiβi∑M
i=1 βiαi

i = 1, . . . , M. (14)

Then lim
n→∞

Ri,t

RM,t = βi for i = 1, . . . , M − 1. Moreover,

lim
n→∞

∑n
i=1 Rt

i

log log n
= 1. (15)

Proof: It is quite easy to show that at the i’th slot in which the
transmitter sends information to the user with the best channel
condition among users in Gi, the total rate of information sent
to Gi is equal to

αiβi∑M
i=1 βiαi

log log αin (16)

Therefore since users in each group are equally likely to be cho-
sen, the rate to a user in the i’th group is equal to 1

αin
times the

rate to Gi as in (16). This proves the first part of the Lemma.
The second part of the lemma follows by noting that

∑M
k=1 = 1

and αi’s are fixed and are not vanishing to zero.
It is worth mentioning that in the time-division scheme at

the i’th slot, the transmitter will certainly not transmit to any

4Instead of one channel use, one might divide every K channel uses to slots
of different lengths



user outside group i even if the user has much better channel
condition. Therefore although simpler, one may guess that the
time-division scheme has a lower throughput than the weighted
opportunistic one. The next Lemma proves again the through-
put of this scheme converges to the sum rate capacity, however,
the convergence rate for the time-division scheme is a polyno-
mially larger than that of the weighted opportunistic scheduling
(i.e., Θ

(
log log n

log n

)
versus Θ

(
(log log n)3

(log n)2

)
).

Lemma 4. Suppose M and αi’s are fixed. Also, let li chosen
as in (14). Then
∫ ∞

0

n log(1+Px)e−x(1−e−x)n−1−
n∑

i=1

Rt
i = Θ

(
log log n

log n

)

(17)

Proof: Here we present the proof for the special case of hav-
ing two groups of the same size. The proof however can be
generalized easily and we omit it for the sake of brevity.

The difference of the throughputs can be written as,
∫ ∞

0

n log(1 + Px)e−x

{
(1 − e−x)n−1− 1

2
(1 − e−x)n/2−1

}
dx

We can now follow the same approach as in the proof of Lemma
1 and expand the integral to three parts, namely, log n/2 ±
4 log log n, larger than log n/2 + 4 log log n, and smaller than
log n/2−4 log log n. The last two integrals lead to O( log log n

log4 n
).

The first region can be then evaluated as,
∫ log n/2+4 log log n

log n/2−4 log log n

n log(1 + Px)e−x

×
{

(1 − e−x)n−1 − 1
2
(1 − e−x)n/2−1

}
dx

= Θ

(
log log n

∫ 4 log log n

−4 log log n

e−y

(
1 − e−y

n/2

)n/2−1

×
{(

1 − e−y

n/2

)n/2

− 1

}
dy

)

= Θ

(
log log n

∫ 4 log log n

−4 log log n

e−ye−e−y

(
e−e−y − 1

2

)
dy

)

= Θ
(

log log n

log n

)
(18)

This completes the proof for the two group case. The gener-
alization to the M group case follows by using the same tech-
nique.

In the next section, we look into a scheme that employs su-
perposition coding and clearly leads to the best throughput as
we actually work on the boundary of the capacity region. As
the analysis becomes complicated, we just consider two groups
and obtain a scheduling that maximizes the throughput while
the rational rate constraints of (3) are satisfied. It is worth men-
tioning that the ergodic capacity region of a broadcast channel
with two users has been studied in [2], here we look at a gener-
alization of the result of [2] in which we have n users divided
into two groups.

V. SUPERPOSITION CODING

In this section, we analyze the performance of superposition
coding for the case when there are only two groups of users
G1,G2 with equal sizes that have different rate demands. We
assume that the average rate provided to a user in the first group
is required to be β > 1 times the rate provided to a user in the
second group.

In order to maximize the rate (sum-rate) while keeping the
ratio of different group rates fixed and equal to β, we need to
find the point on the boundary of the capacity region of the
Gaussian broadcast channel with short-term power constraint
P that satisfies the differentiated rate constraint. We know that
every boundary point is the solution to the maximization prob-
lem

max
(R1,...,Rn)∈CBC

n∑
i=1

µiRi

for some positive values µ1, . . . , µn. In our case because of
the symmetry among the users in each group, the values of µis
will be the same for the users in the same group. Therefore,
we only need to characterize the boundary points that are the
maximizing solution to the problem

max
(R1,...,Rn)∈CBC

µ1(
∑
i∈G1

Ri) + µ2(
∑
i∈G2

Ri)

for µ1, µ2 > 0. The following lemma characterizes such
boundary points. The proof of this lemma uses the duality of the
broadcast channel and the multi-access channel for scalar chan-
nels [7]. We do not include the proof for the sake of brevity.

Lemma 5. Consider a scalar Gaussian broadcast system with
the model described in Section II . Consider the following opti-
mization problem

max
(R1,...,Rn)∈CBC

µ1(
∑
i∈G1

Ri) + µ2(
∑
i∈G2

Ri) (19)

where CBC is the ergodic capacity region of broadcast chan-
nel with short-term power constraint P and µ1 ≥ µ2 are two
positive numbers. Then the solution of the above optimization
problem is

n

2
Ri = E (log(1 + Px)|µ1x ≥ µ2y) +

E (log(
(µ1 − µ2)y(1 + Px)

µ1(y − x)
)|(x, y) ∈ R)

for i ∈ G1. Similarly, for i ∈ G2, we have

n

2
Ri = E (log(1 + Py)|µ1x ≤ µ2y) −

E (log(
(µ1 − µ2)x(1 + Py)

µ2(y − x)
)|(x, y) ∈ R)(20)

where x = maxi∈G1
|hi|2, y = maxi∈G2

|hi|2 and region R is
defined as

R = {(x, y) ∈ R+×R+|0 ≤ µ2

(µ1 − µ2)x
− µ1

(µ1 − µ2)y
≤ P}.



(µ1−µ2)P
µ2

1
y

1
x

slope: µ2

µ1

R2

R

R1

Fig. 1. The decision region for power allocation in the superposition coding in
two group case: If (x, y) ∈ R1, all the power is allocated to best user of group
one. If (x, y) ∈ R2, all the power is allocated to best user of group two. If
(x, y) ∈ R then power is split between the best users of the two groups as in
(21).

The power allocation policy corresponding to the superpo-
sition coding that maximizes (19) can be interpreted as fol-
lows: for each realization of channel coefficients, we only
send to the user with the best channel in each group. Letting
x = maxi∈G1

|hi|2, y = maxi∈G2
|hi|2 we have the following

possibilities:
1) If µ1x ≥ µ2y, we assign all the power to the best user of

the first group.
2) If 0 ≤ µ2

(µ1−µ2)x
− µ1

(µ1−µ2)y
≤ P then we split the power

between the two best users in the two groups as

Px =
(µ1 − µ2)Pxy + µ1x − µ2y

µ1(y − x)x
, Py = P − Px.

(21)
3) If µ2

(µ1−µ2)x
− µ1

(µ1−µ2)y
> P , all the power is assigned to

the best user in the second group.
We have plotted the decision region for power allocation in the
( 1

x , 1
y ) region in Fig. V. In the weighted opportunistic schedul-

ing the power allocation policy would be to send to the best user
in the first group if (x, y) is in R1 and to send to the best user
in the second group if (x, y) is in R∪R2.

The question that is remained to be answered is to figure out
how to choose µ1 and µ2 such that the rate constraint in (3)
satisfied. This is answered in the next lemma whose proof we
omit for lack of space.

Lemma 6. Suppose β < 1 is fixed, µ1 = 1, and µ2 = 1 −
1

(log n)α where α = β+3
β+1 (i.e., 1 ≤ α ≤ 2), then

lim
n→∞

R1

R2
= β. (22)

Finally we look into the throughput loss due to the constraint
of (3) using superposition coding. Using Lemma 2, it is clear
that the loss should tend to zero for large n and also the con-
vergence rate should be faster than (log log n)3

(log n)2 . In the next
lemma we prove that the convergence rate can not be faster than
(log log n)1+2α

(log n)2α where 1 ≤ α ≤ 2 is a fixed number.

Lemma 7. Suppose β > 1 is fixed and µ1, µ2 are chosen as in

Lemma 6. Then∫ ∞

0

n log(1 + Px)e−x(1 − e−x)n−1 −
n∑

i=1

Ri

= Ω
(

(log log n)1+2α

(log n)2α

)
(23)

Proof: Here is the outline of the proof. We can write the
throughput under constraints of (3) using (20) as,

α1n

∫ ∞

0

log(1 + Px)e−x(1 − e−x)α1n−1(1 − e−
µ1

µ2
x)α2ndx

+α2n

∫ ∞

0

log(1 + Px)e−x(1 − e−x)α2n−1(1 − e−
µ2

µ1
x)α1ndx

+E log
(

(1 + Px)y
(1 + Py)x

|(x, y) ∈ R
)

In fact the first two terms are the same as the throughput of
the weighted opportunistic scheduling with µ1 = 1 and µ2

are chosen as in Lemma 6. Therefore similar to the proof of
Lemma 2 we can show that the difference of the sum rate capac-
ity and the first two terms tends to zero like (log log n)1+2α

(log n)2α . The
third term however can be easily shown to be a positive when
(x, y) ∈ R. Therefore, the difference of the sum rate capacity
and the throughput of this scheme can not tend to zero faster
than (log log n)1+2α

(log n)2α . This complete the proof of the lemma.

VI. CONCLUSION

We considered a fading broadcast channel with n users de-
manding for different rates. In our model we assumed users are
divided into M groups each one is demanding different rates
and where the ratios of the rates of the groups are given. Users
in each groups have the same rate requirement. We considered
the problem of scheduling to users to maximize the throughput
of the system while maintaining the rational rate constraints. As
the problem in general seems to be computationally intractable,
we focused on the regime of large number of users. Three dif-
ferent scheduling are proposed, namely, weighted opportunis-
tic, time-division opportunistic and super position coding. We
gave explicit scheduling to guarantee the rate constraints. We
further showed that the throughput loss due to these constraints
tends to zero for all three schemes as n → ∞ and we obtained
their convergence rates.
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