Negative dynamic conductance from photon-assisted tunneling in superconducting junctions

Michael L. Roukes and John W. Wilkins
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

(Received 21 May 1982; accepted for publication 30 July 1982)

We show that a superconductor-insulator-superconductor (SIS) junction may exhibit regions of negative dynamic conductance if it is irradiated by a time-varying signal source which deviates from the conventionally treated constant ac voltage limit. This phenomenon reflects the strong dependence of the junction absorption cross section upon dc bias voltage. Analytic estimates for the magnitude of the negative conductance and its impact upon the frequency down conversion process are obtained in the constant ac current limit.

PACS numbers: 74.20.Fg, 74.30.Gn, 74.50. + r, 84.30.Qi

The desire for low-noise, high-frequency heterodyne converters has led to the natural consideration of superconducting tunnel junctions for this role. Recently the possibility of frequency conversion with concomitant amplification, termed “conversion gain,” using the quasiparticle current in these devices has been indicated by computer simulations and laboratory experiments.1–3 These results, however, seem to be counterintuitive since the quasiparticle current is predominantly dissipative at usual operating conditions.

Necessary criteria for achieving power gain from two-terminal devices have been studied.4,5 Two general gain processes have been elucidated: parametric amplification (based on nonlinear reactance) and amplification via negative conductance. Because reactive currents are expected to play a minor role in superconductor-insulator-superconductor (SIS) mixers,6 the first type of gain mechanism appears to be inapplicable. In this letter we demonstrate the possibility of dynamical negative conductance effects in quasiparticle tunneling.

Photon-assisted quasiparticle tunneling in SIS junctions was first observed by Dayem and Martin.6 The theory of the effect has been developed by Tien and Gordon,7 Riedel,8 Werthamer,9 and Larkin and Ovchinnikov.10 All of these theories model the interaction of the junction with the time-varying field as a simple adiabatic, time-dependent contribution to the energies of electrons on one side of the tunnel barrier. This interaction simply results in the phase modulation of single particle operators for that side of the junction.

The implicit assumption in such a treatment is that the source of the time-varying field acts to keep the magnitude of the ac voltage across the junction constant, irrespective of dynamical effects which may occur. Experimentally, this situation is realized when the characteristic admittance of the signal source, Y_s, is much larger than the junction admittance to the time-varying signal, Y_1. In general Y_s is composed of static and dynamical pieces, $Y_s = f_{\omega_0} C_j + G_{\omega_0}(\omega_s V_0 V_1)$. The first term on the right represents the capacitive susceptance of the junction (C_j is the junction capacitance). The second term, which can be approximated as purely real for $f_{\omega_0} < d_0$, is the sum of the normal conductance of the junction, G_{nn}, and dynamic conductance due to absorption of field energy. Here V_0 represents the dc bias voltage and the ac voltage appearing across the junction is assumed sinusoidal, $V_i(t) = V_i \cos \omega_i t$.

Recently, however, large conductance and low capacitance junctions have been fabricated.11 For such devices and common signal source admittances, the constant V_i assumption of existing theory may not even be approximately correct. For sufficiently small Y_s and large Y_1 the opposite limiting case is approached; that of constant ac current biasing (constant I_1). For that case, the ac voltage across the junction contains all harmonics of ω_s due to the nonlinearity of the junction admittance. For simplicity we suppose that the first harmonic dominates and the dynamical contribution to Y_1 outweighs the static part; specifically we write $V_i = f_{\omega_s}/G_{\omega_0}(\omega_s V_0)$.

When dc bias and time-varying voltages are simultaneously impressed across an SIS junction the conventional photon-assisted tunneling theory predicts that a dc current will flow, of magnitude

$$I_0(\omega_s, V_0 V_1) = \sum_{\alpha \approx -\infty}^\infty J_\alpha(eV_0 + n\hbar\omega_1).$$

(1)

Here J_α is a Bessel function of the first kind with argument α, $\alpha = eV_i/\hbar\omega_1$ if V_i is constant. If I_1 is constant and the first harmonic dominates, α becomes

$$\alpha = eI_1/\hbar\omega_1 G_{\omega_0}(\omega_s V_0).$$

(2)

The junction response function, as defined by Werthamer,4 is denoted by $j_{\alpha}(E)$.

The expression (1) contains the familiar “steps” in the photon-assisted dc tunnel current when V_0 passes through voltages given by $(\Delta + n\hbar\omega_1)/e$, n being an integer.

When the dc bias voltage is in the range of the first photon-assisted current step below the gap voltage, $2\Delta - \hbar\omega_1 < eV_0 < 2\Delta$, and α is small, only the $n = 1$ term in the series (1) is appreciable. If the time-varying source fails to keep V_i constant, α becomes functionally dependent on the dc bias point, V_0 [cf. (2)]. The low-frequency conductance is then

$$G_0(\omega_s, V_0 V_1) \approx \frac{\alpha^2}{2} j_1(eV') \left(\frac{2}{\alpha \frac{d\alpha}{dV_0}} + \frac{1}{j_1(eV')} \frac{dj_1(eV')}{dV_0} \right),$$

(3)

where $eV' = eV_0 + \hbar\omega_1$ and the Bessel function involved has been expanded for small argument.
When \(V_i \) is constant, only the second term in (3) contributes to \(G_o \). For SIS junctions with identical superconducting electrodes, \(d j_i / d V_i > 0 \) everywhere. Thus, a physical mechanism to explain negative conductance or conversion gain in the constant \(V_i \) limit is not immediately apparent. Smith et al.11 first pointed out, however, that for junctions driven with a small signal source admittance, \(V_i \) will not be constant and suggested that the (negative) first term of (3) might be sufficient to make \(G_o \) negative.

If the source admittance \(Y_s \) is small enough, \(G_o \) assumes a form appropriate for the constant \(I_i \) limit. In this regime (2) applies and indicates that, for small \(\alpha \),

\[
G_o(\omega_i, V_0, I_i) \approx I_i(\omega_i, V_0, I_i) \times \left(-2G_1 \frac{d G_1}{d V_0} + \frac{1}{j_i(e V_i')} \frac{d j_i(e V_i')}{d V_0} \right).
\]

Below we argue that the first term on the right can be sufficiently large as to make \(G_o \) negative.

To make further progress the functional dependence of the ac junction admittance, \(G_i(\omega_i, V_0, I_i) \), upon the dc bias point must be ascertained. That \(G_i \) is an increasing function of \(V_0 \) follows from the argument below. The rapid increase in \(j_i(e V_0) \) when \(e V_0 \approx 2 \Delta \) gives rise to the photon-assisted current step when \(e V' = e V_0 + \hbar \omega_1 \) approaches \(2 \Delta \). This sharply increase in the photon-assisted current must be accompanied by an equally sharp rise in energy absorption from the time-varying field. The abrupt behavior of both reflects the sudden availability of phase space for tunneling which occurs when the Fermi energy of one electrode is \(2 \Delta \) above that of the other. As a result, the junction single-photon absorption cross section dramatically increases as \(V_0 \approx 2 \Delta - \hbar \omega_1 \), and continues to increase as more quasiparticle states contribute to the tunneling process.

Harris has analyzed the Werthamer–Larkin–Ovchinnikov (WLO) expression for \(j_i \).13,14 Because the superconducting density of states for each side of the junction is assumed by WLO to have the ideal BCS form, even at finite temperatures the predicted quasiparticle current step is infinitely sharp. Realistically, effects such as gap anisotropy and sample inhomogeneities result in a smearing of the current step over an energy interval \(\delta E \). If \(\hbar \omega_1 < \delta E \), no sharp increase in \(G_i \) is to be expected when \(V_0 \approx 2 \Delta - \hbar \omega_1 \), in fact the increase in (photon-assisted) tunneling in this region is no longer abrupt and the current step vanishes.

Calculation of \(G_i \) can proceed from the WLO expression for the dissipative part of the photon-assisted quasiparticle current in the form given by Tucker,15

\[
I_i(t) = \sum_{n=1}^{\infty} j_i(e V_0 + n \hbar \omega_1) \times \left(\frac{2}{\pi} \int_0^\infty \left[J_n(\alpha) J_{n+m}(\alpha) + J_m(\alpha) J_{n+m}(\alpha) \right] \cos(m \omega_1 t) \right).
\]

If smearing effects and leakage currents are small enough such that, for \(2 \Delta - \hbar \omega_1 < e V_0 < 2 \Delta + j_i(e V_0) \) is negligible, then (5) may be expanded to lowest order in \(\alpha \) to yield the ac current \(I_i \), at frequency \(\omega_1 ; I_i = |j_i(e V_0 + \hbar \omega_1)| \). Accordingly we see that \(G_i(\omega_i, V_0, I_i) \approx e j_i(e V_0 + \hbar \omega_1)/2 \hbar \omega_1 \omega_1 \), which is independent of \(I_i \), to this approximation. This and expression (4) lead directly to the constant \(I_i \) value of the low-frequency conductance at \(V_0 \).

\[
G_o(\omega_i, V_0, I_i) \approx -I_i(\omega_i, V_0, I_i) \frac{d}{d V_0} \left[\ln j_i(e V_0 + \hbar \omega_1) \right],
\]

\[
= -I_i \frac{d}{d V_0} \left[\ln G_i \right].
\]

The possibility of negative conductance arises because, in the small \(\alpha \) limit, \(I_o \approx \alpha^2 j_i(2 \Delta / e) \). As the argument of \(j_i \), \(e V_0 + \hbar \omega_1 \), increases from \(2 \Delta \) upward, \(j_i \) monotonically increases, resulting in decreasing \(I_o \).

It is instructive to utilize the form of the junction response function obtained for identical BCS superconductors at zero temperature.9 In this limit \(j_i \) vanishes below the gap voltage and \(j_i(2 \Delta / e) = (\pi/4)(G_{an} 2 \Delta / e) \). In the region just above \(2 \Delta \), \(j_i \) increases approximately linearly with slope \(G_{an} \).

In this limit, \(G_i \) near the edge of the first photon-assisted current step has the value

\[
G_i(\omega_1, 2 \Delta - \hbar \omega_1, V_i) \approx \frac{e}{2 \hbar \omega_1} \frac{\pi}{4} \frac{G_{an} 2 \Delta}{e}.
\]

This is precisely the value obtained by considering not the local derivative of \(I_i \) at the dc bias point \(V_0 = 2 \Delta - \hbar \omega_1 \), but its finite difference value. This is depicted in Fig. 1, which shows that \(G_i \) may be much larger than \(G_o \). Although (7)

\[
\begin{align*}
&\text{FIG. 1 Connection between finite-difference estimation of the ac junction conductance } G_i, \text{ and the derivation for small signals, Eq. (7). The value for } G_i \text{ calculated at the bias point } V_o \text{ corresponds to the slope of the chord connecting points on the } I-V \text{ curve at } e V_0 = \pm \hbar \omega_1. \text{ The current step at } 2 \Delta \text{ is assumed smeared over a voltage } \delta E. \\
&\text{FIG. 2. Simple conceptual model for an SIS junction down converter. A large (pump) signal at } \omega_1, \text{ from current generator } I_p, \text{ with shunt admittance } Y_s, \text{ current biases the junction at this frequency. A small signal voltage, } V_s \text{ (cos } \omega_2 t), \text{ is also imposed by a second source which is impedance matched to the junction at } \omega_2. \text{ The junction, represented by components within the dashed box, delivers a converted signal current at } \omega_2 \text{ with output conductance } G_{o}(\omega_2, V_{o}, I_{i}) \text{ to a load } G_1. \text{ For clarity, circuitry to effect a separation of signal and pump sources is not shown. (Analysis for the case of matched pump and signal source is presented elsewhere.)}
\end{align*}
\]
indicates G_I grows without bound as ω, is reduced, smearing of the quasiparticle current step acts to impose a ceiling on the ac conductance. Practically, one expects an upper bound of order $G_{\text{ss}}(2\Delta /\delta E)$, where δE is the energy scale of the step smearing.

Use of (6) and (7) provides an estimate of the magnitude of the negative conductance in the limit of a sharp current step. The result obtained is $G_{\text{dc}}(V_o I_o) \approx -\frac{1}{2} G_{\text{ss}}(I_o / I_s)^2$, where I_s is the zero temperature critical current, $(\pi/4)G_{\text{ss}} 2\Delta /e$. The assumption of small α imposes the constraint $I_s \ll I_s$ on these approximations, therefore, high current density (large G_{ss}) junctions are most favorable for observation of this effect.

To qualitatively understand heterodyne conversion in the constant I_s limit, two effects arise from the application of the time-varying field at ω, to be noted. First, the shape of the I-V curve is changed; $G_{\text{dc}}(V_o)$ becomes $G_{\text{dc}}(V_o, V_o I_o)$. Second, the application of another time-varying signal, $v_2(t) = V_2 \cos(\omega_2 t)$, where $V_2 < V_1$ and $\omega_2 \approx \omega$, produces a quasi-dc current component at the intermediate (difference) frequency $\omega_1 = |\omega_2 - \omega_1|$. For $\omega_1 \approx \omega_2$, a small V_2 will not appreciably change the low-frequency I-V curve described by $G_{\text{dc}}(\omega, V_o I_o)$, and the magnitude of the tunnel current at ω_1 for constant I_s, is approximately $I_{\text{ss}} \approx e I_s V_2/2\hbar\omega$. A simple conceptual model for down conversion consistent with these two effects is shown in Fig. 2. G_I, I_s, and G_{ss} are strongly dependent upon the photon-assisted tunneling process.

Conversion gain \mathcal{G} is defined as the ratio of the if power dissipated in the load to the available signal power at ω_2. For the simple model of Fig. 2 conversion gain becomes possible when G_{ss} is negative. At the dc bias point $V_0 = 2\Delta - \hbar\omega_1$,

$$\mathcal{G} = \left(\frac{\Delta}{\hbar\omega_1}\right) \left[\frac{2}{\pi} \frac{(I_s)^2}{G_{\text{ss}} - 1} \right]^{-1}.$$

Large gain is available as G_I approaches $\frac{1}{2\pi} G_{\text{ss}}(I_s / I_s)^2$, a small quantity since the assumption $I_s < L_s$ is implicit in Eq. (8). Gain results from the fact that negative G_{ss} effectively reduces G_I.

Practical application of the negative conductance phenomenon requires understanding the effect of a smeared qua-

Note added in proof: Since the submission of this paper an amplification of Ref. 12 has appeared [A. D. Smith and P. L. Richards, J. Appl. Phys. 53, 3806 (1982)].

16Experiments nominally operating in the positive (but small) G_{ss} region may see gain due to dynamic excitations into the negative G_{ss} region, see Ref. 17.