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Abstract-In this work, we combine a pure phase-encoded Magnetic 
Resonance Imaging (MRI) method with a new tissue-classification tech- 
nique to make geometric models of a human tooth. We demonstrate the 
feasibility of three-dimensional imaging of solids using a conventional 
11.7-T NMR spectrometer. In solid-state imaging, confounding line- 
broadening effects are typically eliminated using coherent averaging 
methods. Instead, we circumvent them by detecting the proton signal 
at a fixed phase-encode time following the radio-frequency excitation. By 
a judicious choice of the phase-encode time in the MR imaging protocol, 
we differentiate enamel and dentine sufficiently to successfully apply a 
new classification algorithm. This tissue-classification algorithm identifies 
the distribution of different material types, such as enamel and dentine, 
in volumetric data. In this algorithm, we treat a voxel as a volume, not 
as a single point, and assume that each voxel may contain more than one 
material. We use the distribution of MR image intensities within each 
voxel-sized volume to estimate the relative proportion of each material 
using a probabilistic approach. This combined approach, involving MRI 
and data classification, is directly applicable to bone imaging and hard- 
tissue contrast-based modeling of biological solids. 

I. INTRODUCTION 
In this paper, we apply a new tissue-discrimination algorithm 

to a three-dimensional (3-D) proton magnetic resonance image of 
a tooth that was obtained using an atypical solid-state imaging 
technique. Conventional MRI methods image the distribution of 
mobile water protons in specimens where the linewidths are on 
the order of a few Hertz. However, the proton linewidths in solids 
are on the order of kiloHertz. These large linewidths drastically 
limit the applicability of standard liquid-imaging techniques for 
three reasons: mapping the spatial information into the frequency- 
domain requires large magnetic-field gradients; digitizing signals 
from this wide frequency spread requires a proportionally wide 
receiver bandwidth; and the increased noise from this wider receiver 
bandwidth necessitates more signal averaging, thereby increasing 
total imaging time. As a result, solid-state imaging has relied almost 
exclusively on experimental line-narrowing approaches aimed at 
suppressing effects from homonuclear dipolar coupling, and from 
chemical and susceptibility shifts [ 11-[3]. Recently, a novel approach 
that overcomes these line-broadening effects in MR images, first 
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introduced in one dimension in 1985 [4], has been successfully 
demonstrated using standard imaging accessories [ 5 ] ;  no hardware 
that is specific to solid-state spectroscopy or solid-state imaging 
was used. This so-called “constant time” imaging method uses pure 
phase encoding of all spatial information, unlike methods that use 
pure frequency encoding [6]-[8], or conventional Fourier Transform 
methods that use mixed phase and frequency encoding [9], [lo]. 
In contrast to chemical shift imaging, which also involves phase 
encoding of the spatial dimensions [l 11, the effects from the chemical 
and susceptibility shifts are circumvented by encoding only one 
k-space point at a fixed phase-encode time following the radio- 
frequency (RF) excitation. Therefore, the presence of chemical shift 
or dipolar interactions causes signal loss, but does not introduce 
spatial distortions [5]. We use a “constant time” protocol to image 
protons in a human molar tooth, using a conventional 11.7-T NMR 
spectrometer (500 MHz for ‘H) equipped with microscopic imaging 
accessories. 

We apply a new classification algorithm to the data collected from 
the human molar tooth. This classification process is the first step 
in creating geometric models of different materials. There has been 
much work done on material classification in sampled data [12], but 
many techniques introduce artifacts, particularly at the boundaries 
between different materials. These artifacts tend to appear as jaggy 
stair-steps or as anomalous additional surfaces in images and models 
derived from the classified data. Discrete statistical classification 
techniques are often used to map each sample in a dataset to a single 
material [ 131, [ 141. These techniques work well in regions where only 
one material is present, as in the interiors of homogeneous regions, 
but they are less accurate near boundaries between these regions, 
where each sampled point represents multiple materials (see Fig. 1). 

Methods that model each sample by representing it as a mixture 
of materials improve the classification results [15], [16]. These tech- 
niques classify each voxel based on a single measurement, effectively 
treating each voxel as a single point; instead, we reconstruct a 
continuous function from the data collected. Over each voxel-sized 
region, we create a histogram of this continuous function. 

Our classification technique builds on a statistical framework. 
Given the histogram of a voxel-sized region, we use Bayesian proba- 
bility theory and approximations of conditional and prior probabilities 
I171 to calculate the probability of a particular mixture of materials, 
We then find the most likely mixture for the region. We assume (as 
in Fig. I )  that each voxel is a mixture of materials, with mixtures 
like “A and B” occurring where partial-volume effects from the 
MRI sampling blur measurements of pure materials together. From 
this assumption, we derive basis functions that model histograms 
for pure materials and for mixtures of two materials. By using a 
reconstructed, continuous function derived from the data, and not 
just a single measurement, we incorporate more information into the 
classification process, thus increasing its accuracy. This additional 
information enables clear delineation of the air, enamel, and dentine 
boundaries in the tooth MR image. 

11. METHODS 

A. Imaging 

In this section, we outline the MR imaging methods used. The 
imaging experiments were canied out on a Bruker-AMX 500-MHz 
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Fig. 1. Effects of sampling on material boundaries: (top) object, and (bot- 
tom) sampled data. We start from the assumption that in a real-world object 
each point is exactly one material, as in the top image. The measurement 
process removes high frequencies from the data and blurs sharp boundaries 
between materials. This process creates voxels that artificially contain mixtures 
of materials. Points PI and P2 lie inside regions of a single material. Point 
P3 lies near a boundary between materials; the bottom image contains the 
“A&B” region, where materials A and B are mixed. 

89-mm vertical-bore system. A molar tooth was extracted from a 50- 
year old skull of a young woman, mounted at the end of a 10-mm 
glass tube, and positioned inside a 15-mm modified Alderman- 
Grant RF coil [18]. Because of the solid-state nature of teeth, some 
components of the spin-spin relaxation time constants, T2. are less 
than 500 ps, resulting in an apparent time constant, T., at 500 MHz 
of 50-400 p s  (see Section 111). The gradient stabilization time for 
our air-cooled, unshielded, 43-mm ID gradient coil set is 300 / I S .  

Because signal intensity rapidly decays within the switching-and- 
stabilization time, conventional imaging methods, which require that 
gradients be switched odoff within a single scan of the imaging 
sequence, are not feasible. To circumvent this problem, we used 
the pulse sequence shown in Fig. 2 [ 5 ] ;  it does not require any 
gradient switching within a scan. Magnetic field gradients (G) are 
switched on before the excitation and detection. They are incremented 

; Gradient stabilization time 

Fig. 2. Schematic diagram of the MlU pulse sequence used. The gra- 
dients are allowed to stabilize before the RF pulse is applied. After a 
fixed phase-encode time, the phase and amplitude of the magnetization are 
measured. The gradients are then tumed off. 

in equal steps along three orthogonal directions to scan k-space, 
where k = -yGTp/2x, Tp is the phase-encode time, and 2 is the 
gyromagnetic ratio. TP is set to provide contrast between the two 
components in the tooth (see Fig. 3), subject to the need to minimize 
total acquisition time and not overheat the gradient coils. 

The nonselective RF-pulse duration must be small enough that 
the entire distribution of frequencies, including any introduced by 
the largest-applied magnetic field gradient, is irradiated. We use the 
maximum available transmitter power of 50 W, which limits the 
minimum achievable duration of the tip angle, cy. The optimal signal- 
to-noise ratio for a given imaging time can be achieved if cy; TR, the 
pulse repetition time; and T I ,  the spin-lattice relaxation time, satisfy 
cos o. = exp ( - T R / T ~ )  [19]. If this relation is satisfied, o is the 
Ernst angle. Because we cannot satisfy this condition without either 
making the RF duration too long to irradiate the entire frequency 
spread or making TH so short that we exceeded the maximum 
allowable duty cycle for our air-cooled gradient coil set, we use the 
maximum allowable tip angle that irradiates the required frequencies, 
and the minimum pulse-repetition time that does not overheat the 
gradient coils. If a water-cooled gradient coil system were used, a 
shorter TH could be employed. This might allow use of the Emst 
angle for irradiation, thus leading to a shorter overall imaging time 
with optimal signal intensity. We emphasize that a single point in 
k-space is acquired for each excitation; thus, the total time for data 
acquisition of an image is .V~IVRTR, where Nk is the total number 
of encoded k-space points, and N H  is the number of averages. 

B. Tissue C1assi)lcation 
In this section, we outline the classification problem, state our 

assumptions about the data we classify, and sketch the algorithm 
and its derivation. A detailed derivation and description of the 
implementation is given in [20]. The input to our process is a sampled 
dataset that measures distinguishing properties of the underlying 



618 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 14, NO. 3, SE€TEMBER 1995 

Fig. 3. Contiguous frames from a 3-D, ‘H image of a human tooth recon- 
structed with 1283 isotropic voxels, 312 pm on a side. An RF pulse of 9”, 
2.7 ps at 50 W was used to excite the tooth. A phase-encode time of 80 p s  
and a maximum gradient strength of 47 G cm-’ were used. Repetition time 
of 30 ms and two averages accounted for a total experiment time of 36 h. 
The top view shows frames perpendicular to the crown-apical axis. The top 
row shows the dentine-enamel structures, while the bottom row highlights 
the root structures. The bottom view shows frames that are perpendicular to 
the bucca-lingual axis, further highlighting the progression of inner hollow 
structures. 

materials, such as the MR images shown in Fig. 3. We reconstruct a 
continuous, bandwidth-limited function from these samples. The final 
result of our classification process is a sampled volume dataset. Each 
sample estimates the relative volumes of materials in a small region. 

1 )  Assumptions: We make three assumptions about the measure- 
ment process: 1) a given material produces the same value wherever 
it occurs in the specimen, discounting noise, 2) the sampling theorem 
is satisfied, thus we can reconstruct a continuous function with little 
or no aliasing, and 3) noise in the data is additive and normally 
distributed. For many types of medical imaging data, including 
MRI, these assumptions hold reasonably well, or can be satisfied 
sufficiently with preprocessing [ 141, [21]. While the noise assumption 
(3)) is not strictly true due to the magnitude nature of reconstructed 
MR data, it is sufficiently accurate to produce good results. We also 
make an assumption about the objects we measure. At the scale of 
the measurements, we assume the objects contain no mixtures: each 
spatial location in the object is exactly one pure material. 

0 1000 2000 3000 4000 5000 6000 
Image Value 

Fig. 4. Histogram of tooth dataset. The three peaks in the histogram cor- 
respond to air, enamel, and dentine. The values near these peaks represent 
voxels that are pure materials; the values between the peaks (e.g., at A in the 
graph) represent voxels that contain a mixture of materials. 

2 )  Partial-volume “mixtures” introduced by the measurement 
process: Our assumption that each spatial location in the object 
is exactly one material does not imply that the same is true for 
the measured data, because of the data-collection and sampling 
process (see Fig. 1).  The data are bandwidth limited to the Nyquist 
frequency by the measurement process. This filtering, or partial 
volume averaging, causes measurements of mixtures of materials 
to appear in areas where sharp boundaries between pure materials 
occur in the actual object. These “mixtures” cause problems for 
many classification algorithms because their signatures may coincide 
with the signatures of other materials. The algorithm presented here 
reduces boundary artifacts introduced by this ambiguity with a new 
approach that explicitly models “mixtures,” and treats each voxel as 
a volume instead of a point sample. 

3)  The algorithm: This section gives a summary of the classifica- 
tion algorithm; details and more substantial derivations can be found 
in [20]. After we low-pass filter the MR data to remove aliasing, we 
calculate a histogram of the entire image, as shown in Fig. 4. We 
fit basis functions to this histogram. These inferred basis functions 
represent pure materials and their mixtures, and constitute a model 
of the materials that exist in the dataset. 

Now that we have some idea of the materials present in the dataset, 
we can identify combinations of those materials in each voxel-sized 
region. We compute histograms over each of these regions. We then 
fit each histogram with a linear combination of the inferred material 
basis functions discovered from the analysis of the histogram over the 
entire dataset. These fits provide an estimate of the relative volume of 
each material in each voxel-sized region. Finally, we find isosurfaces 
[22] in the density images for each material, and use these to represent 
the surfaces between materials (see Fig. 5). The isosurface calculation 
and rendering are accomplished using the Application Visualization 
System [23]. 

4) The form of the basis functions: Each basis function represents 
a region containing either a single material or a mixture of two 
materials. The mixtures are assumed to have been created by partial 
volume averaging during the data collection process. The basis 
function that represents single materials is a normal distribution; for 
mixtures, the distribution is the convolution of a normal distribution 
and a box function that is nonzero between the mean signatures of 
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Fig. 5. Three pairs of corresponding views from a polygonal model of 
the tooth that was created by classifying enamel, dentine, and air from the 
reconstructed data in Fig. 3: and then automatically finding surfaces between 
the materials. The classification process identifies mixtures of materials within 
voxel-sized regions, allowing a more accurate surface model than techniques 
that assign a single material to each voxel. Both dentine and enamel are 
shown in the left images: the enamel has been removed in the right images, 
thus showing the shape of the dentine-enamel interface. 

the materials comprising the mixture. The box function integrates to 
one. The form of the basis functions is derived from an equation for 
a continuous histogram and our assumptions about the measurement 
process and the objects we are measuring. 

111. RESULTS 

We show two views consisting of contiguous frames from a 
representative MR image of the tooth (18 mm x 12 mm) in Fig. 3. 
The roots and air-dentine-enamel interfaces are easily distinguished. 
The air-filled hollow structures inside the tooth show no signal. The 
dentine appears brightest, while the enamel appears as a dark gray 
halo around the top of the dentine structures. Fig. 5 shows the results 
of the classification, with surfaces rendered to indicate the enamel 
in white and the dentine in off-white. Computational removal of the 
enamel crown allows direct examination of the morphology of the 
dentine cap; it is here that the structure of the crown is initially 
determined as tooth development progresses [24]. 

In order to make a suitable choice of TP,  we measured T.; and 
T2, using a small portion of another molar that was bored out to fit 
inside a 2-mm tube. A 4-mm solenoid RF coil was used so that the 
smallest possible pulse widths ( ~ ~ ~ l ~ ~  5 17 p s )  could be employed. 
The Fourier-transformed spectra of the time-domain NMR signals, 
from both the free-induction decay and the spin-echo, provided two 
peaks of different widths having TJ values of roughly 100 ps and 400 
p s .  The corresponding Tr values were measured to be approximately 
150 ps and 2 ms, using the Can-hrcell-Meiboom-Gill (CPMG) 

method [25]. We digitized the peak and the latter half of the spin echo 
so that very short echo times could be used. We measured the peak 
intensity from individual spin echoes acquired at different echo times, 
always waiting 15 s between experiments so that TI processes had 
disappeared. We thus avoided spin-lock type effects, and eliminated 
any npulsr-width error effects on odd-echo intensities [26]. We fitted 
40 time-domain spin-echo intensities to a bi-exponential function 
using the Levenberg-Marquardt nonlinear least-squares algorithm 
[27]. Based on the T; values, a range of TP of 50-200 ps was 
considered; where TP = T;/2 for maximum sensitivity [5]. A longer 
Tr sacrificed sensitivity for greater resolution, while a shorter T r  
required a shorter RF duration. We chose a compromise value of 
Tp = 80 / /S .  

IV. CONCLUSION 

We have successfully combined a novel MRI application with 
a new classification algorithm to produce a geometric model of 
a human tooth. We have demonstrated the feasibility of imaging 
biological solids with a pure phase-encoded MRI method. Using 
a judicious choice of phase-encode time, we have also achieved 
good contrast between different hard tissues. Although detection of 
only one complex data-point for every phase-encoding step makes 
total acquisition periods long, the resultant images are free from 
the effects of chemical and susceptibility shifts, as well as from 
dipolar broadening. This MRI implementation exemplifies a simple 
experimental set-up that can be employed for imaging biological 
solids [28]-[30], and is especially suitable for studying objects with 
very short spin-spin relaxation time constants; thus it is applicable 
to other nuclei as well. In vitro investigations of bone-mineral 
composition, as well as of endogenous fluoride, can be made by 
detecting the 31P and ”F  MR signals [29], [31]. 

Our new algorithm for classifying volume data avoids artifacts at 
material boundaries by taking into account the mixtures introduced by 
the sampling and filtering processes. This is important for examining 
certain types of structures, such as the shape of the dentine-enamel 
interface shown in Fig. 5. Tooth morphology has been employed 
extensively in discussions of phylogeny and taxonomy [32], [33]. 
As the approach described herein highlights hard-tissue contrast and 
accurately models boundaries between materials, it will be directly 
applicable to morphometric and developmental studies of tooth and 
bone. 
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