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We calculate the deep-inelastic response of liquid *He. Using a universality hypothesis for the bridge
function, we obtain a new, highly consistent ground-state Jastrow wave function with condensate frac-
tion n9==0.081. The dynamics of final-state interactions is accounted for by a Monte Carlo sampling of
the scattering wave function of the recoiling He atom. The results, in excellent agreement with recent
neutron-scattering measurements, indicate that the response has a more complicated dependence on the
structure of the ground state than is assumed by all previous theories.

PACS numbers: 67.40.—w, 61.12.Bt, 61.20.Ja

Deep-inelastic neutron scattering (DINS) from liquid
“He (LHe) at very high momentum transfer offers the
possibility of measuring the single-particle momentum
distribution n(k), and thus the Bose-Einstein condensate
fraction no.! However, the naively expected signature of
the condensate, a §-function peak in the scaled structure
factor F=(q/M)S(q,w) at energy transfer o =q°%/2M,
is not seen in experiments performed at momentum
transfers ¢ as high as 23 A ~'. This is because of finite
experimental resolution and because of final-state in-
teractions (FSI), i.e., strong scattering of the recoiling
He atom in the liquid, resulting in the broadening of the
free-particle recoil spectrum. Hence, comparison of ex-
periment to theory requires the calculation not only of
static properties, such as n(k), but also of the dynamics
that determine the FSI. Whereas the former can be
essentially computed exactly [e.g., through Green’s func-
tion? or path-integral Monte Carlo® (PIMC) methods],
the latter have so far eluded all attempts of (stochastical-
ly) exact evaluation, except for the case of few-body sys-
tems.*

In this Letter, we report a calculation of the dynamic
structure factor of LHe (at 7=0 and saturated vapor
pressure) in the high-momentum-transfer limit. An
essential ingredient, and the starting point of our calcu-
lation, is a good ground-state wave function. We take
the Jastrow form, y=[I1,;f(r;,), which suitably de-
scribes the strong correlations between particles while
offering great computational advantages. The pair-
correlation function, which is known experimentally, is
related to f by

g(r)=r*rexpl—g(r)+1+c(r)+B()],

where the direct correlation function ¢ is obtained from g
through the Ornstein-Zernicke equation, and B is an
infinite set of elementary diagrams, termed the “bridge
function.” A common assumption (the hypernetted-
chain approximation) is to take B to be at most the sum
of a handful of diagrams, and to choose f to minimize
the variational ground-state energy. This is known to
describe rather poorly the structure of systems with

strong short-range repulsion.® A better assumption,
based on the short-range character of B, is the universal-
ity hypothesis of Rosenfeld and Ashcroft,® who showed
that, with great accuracy, the bridge function, suitably
scaled, is independent of the details of the short-range
potential. Thus, B for LHe can be taken to be that of a
hard-sphere gas at packing fraction 0.2.° Given this B,
we can extract f from the experimental g. The latter is
obtained as the Fourier transform of the static structure
factor S(k), measured by neutron scattering’ (0.8 <k
=<10.8 A7), x-ray scattering® (0.13 <k <1.12 A7),
and extrapolated linearly for k— 0 to give the proper
phonon spectrum. Consistency checks can assess the
quality of our wave function. The pair-correlation func-
tion calculated by MC sampling of |w/[* shows very good
agreement with the input experimental g (Fig. 1). The
total energy per particle is E/N = —6.4 K (close to the
experimental value of —7.2 K).
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FIG. 1. Pair-correlation function for *He. The solid line is
the experimental result at 1 K. The circles are the ground-
state calculation, assuming a Jastrow wave function and the
universal bridge function (the Jastrow factor is the dotted
line). Inset: The calculated one-body off-diagonal density ma-
trix (the diamonds are the PIMC results at 7=1.18 K).

2792 © 1990 The American Physical Society



VOLUME 65, NUMBER 22 PHYSICAL REVIEW LETTERS 26 NOVEMBER 1990

Success in the computation of the dynamical effects the component of the momentum of the He atom along
hinges on the essentially one-dimensional character of q before it is struck by the neutron. Thus, in the IA,
the problem. Although our expressions can be given a DINS simply measures the longitudinal one-body mo-
firm theoretical foundation,’ they can be derived intui- mentum distribution of the ground state.
tively as follows. In the impulse approximation (IA) If we now allow for interactions during the recoil, it is
(i.e., in the limit of scattering-free recoil), one finds easy to show that the only relevant scattering events at

high g are those in which the recoiling atom strikes a

+ oo R
—Q—SIA(q,w) =FA(Y) = 1 f ds py(s2)e™ | ) bagkground atom.. Wg therefore need the propagator for
M 2rp v —= a single atom moving in the instantaneous potential gen-
erated by the static background. At high momentum

where p(r) is the one-body density matrix, related to transfers, we express this propagator through the scatter-
n(k) by Fourier transformation, p is the number density, ing wave functions of the recoiling particle,’ obtaining a
Z=q/q is the direction of recoil, and Y =Mw/q —q/2 is g-dependent scaled response (hereafter, we assume y to

| have unit norm, and set A =1)

(™ ds v (s ; . 0g(z1+s) | MV Gzits)
F(q,Y)—f_w 22¢ fd ri-doryw(n+sz, . . i), ... 'rN)Tq(ZT—exP is|q —q—— ,
(2)
where ¢, is the 1D outgoing scattering state of the recoiling particle in the potential
N
Viz)=2 VilxZ+yi+(z;—2)"2
ji=2
due to all other particles along the straight line of recoil. This state satisfies
d2
F+q2—2MV(z) 04(z) =0, 3)
z

which is reminiscent of the eikonal scattering equation (to which it reduces with further approximations). Traditional-
ly, the effects of FSI are described by a “broadening” function R(q,Y) defined as

F(q,Y)=f_+:dY'F;A(Y')R(q,Y—-Y'). 4)

It is most useful to visualize the scattering process in real space, where the MC calculation is done. Thus we Fourier
transform (1) to get

ﬁ[A(S) =P|(Si) =fd3r| e dsl‘/v l//(r,+si,r2, e ,I'N)I[I(l'],l'z, P ,rN). (5)

Here s represents the recoil distance of the struck particle, and F1a(s) is the overlap of the ground-state wave function
with itself, after displacing an atom by a distance s. The presence of the condensate is signaled by a nonzero limit of
this overlap as s — oo: lim;_. «F (s) =no. Similarly, from (2) we find

¢q(2|+s)
¢q(21)

_ MV(z,+s)

ﬁ(q,s)=fd3r| o ddrnyr sz, o), L y) p

q

exp [ —is } . (6)

Thus F(g,s) probes not only the overlap of two ground- I

state configurations, but also the extent to which the ed for only by a fully consistent treatment of Egs. (3)

recoiling He atom scatters while it moves from the initial and (6).

to the final position. Weak scattering will slightly de- We readily cast Eq. (6) in a form suitable for MC
phase the initial and final states, giving F an imaginary evaluation. We simulate a cubic box (L=18.05 A,
part. Strong scattering will deflect an atom away from N =128) with periodic boundary conditions. Ground-
the straight-line recoil, effectively resulting in absorption state configurations can be generated according to |y
(i.e., in a decrease in the real part of F with respect to with the Metropolis algorithm. Once this is done, atom i
F1a). Both effects are governed by the presence of the is displaced in the z direction by a distance smax=L/2,
surrounding medium and by its structure, as is evident and Eq. (3) is integrated backwards, from z; +5may to z,,
from Eqgs. (2) and (3). The interplay between ground- imposing outgoing boundary conditions at z,+smax. '
state structure and FSI, whose importance has been pre- We use the Aziz pair potential. ' )
viously pointed out by Silver,'® can be properly account- Figure 2 shows the results of calculations of F for
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FIG. 2. Y Fourier transform of the structure factor at
g=23.1 and 10.2 A~'. The IA coincides with p,(s)/p (Fig. 1,
inset).

g=10.2 and 23.1 A 7', together with the IA, Eq. (5)."3
Note that a signature of long-range order is completely
absent in the dynamic response [lim; . oF(s)=0].
Comparison to experiment is possible after convolving
the calculated response with the measured instrumental
resolution,'* RS*(Y). This is essential at the higher
values of g, where RJ*™(Y) is rather broad. For lower
q’s, FSI account for essentially all the broadening of the
condensate peak; therefore, a theory of FSI is most
stringently tested in this regime. The predicted response
is shown in Fig. 3, together with the experimental data. '’
In each case, we show for comparison the results ob-
tained with the IA [broadened by R;*™(Y)] without
FSI.

Multiple-scattering (MS) series have been derived for
the FSI, and finite-order truncations thereof have been
compared to the DINS data.'® In these theories the §(Y)

condensate peak is ultimately broadened only by the in-
strumental resolution. Our calculations, which contain
all orders of a MS expansion, show that this is incorrect,
and that the peak is broadened by FSI even in the case
of infinite instrumental resolution (Fig. 2), preventing
the straightforward extraction of no from experiment.

In Fig. 4, we present calculations of the FSI broaden-
ing R(q,Y) for various q. Note that R(g,Y) becomes
sharper as g increases from 10 to 23 A ™', In contrast,
hard-core perturbation theory'® (HCPT) shows very lit-
tle change in R(q,Y) as a function of g, therefore pre-
dicting that F(q,Y) is too large and narrow at the lowest
g’s.'* This is perhaps not surprising, because HCPT ap-
pears to be valid only in the g-— oo limit for strictly
hard-core interactions, whereas Egs. (2) and (3) are ex-
act through O(1/q) for arbitrary potentials.

The most significant feature of the present work is that
the full many-body density matrix is retained.'” All pre-
vious theories of FSI involve a reduction to the two-body
density matrix p,, which is usually in turn approximated
through p; and g(r).'® This approximation allows
R(g,Y) to be expressed solely in terms of g(r), which is
known experimentally, and thus, in principle, one can ex-
tract the momentum distribution from Eq. (4). Unfor-
tunately, our calculations show that the FSI have a more
complicated dependence on the structure of the initial
state than is naively accounted for by the radial pair
correlation g(r), at least at the smaller momentum
transfers where the experimental resolution is sharpest.
High-resolution measurements at larger g are needed if
one is to attempt an extraction of no uniquely from ex-
perimental input. At present, the condensate fraction
remains a theoretical input to calculations that are com-
pared to the data a posteriori.

In summary, we have carried out the first consistent
calculations of deep-inelastic neutron scattering from
liquid “He and have shown that both the ¢ and the Y

0.6
F q=10.2 A

Flg,Y)(A)

-JllllllIllIIIlll!lT"lIIlll-q—lll||II‘llTl

IIIWllllll

T q=23.1 &
- IA

3 —  FsI

ILAI;lJ_llIlIJl\

by 1 JJ 1 11 I 11 11 A—I—l_:
-4 -2 Q 2 4
YA

FIG. .3. The Qeep-inelastic response at ¢ =23.1 and 10.2 A ™' (data points at T=0.75 K from Ref. 15). Both our ground-state
calculations (solid line) and the impulse approximation (dotted line) have been broadened by the measured instrumental resolution
R{*™(Y) (note that the latter is much sharper at the lower g, as shown by the 1A).
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FIG. 4. Calculated FSI broadening function.

dependence of the data are very well reproduced by a
(modified) eikonal description of the final-state interac-
tions and by a ground-state wave function with conden-
sate fraction no==0.081.
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