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The hydrodynamic transport properties of hard-sphere dispersions are calculated for volume
fractions (¢) spanning the dilute limit up to the fluid—solid transition at ¢ = 0.49. Particle
distributions are generated by a Monte Carlo technique and the hydrodynamic interactions are
calculated by Stokesian dynamics simulation. The effects of changing the number of particles
in the simulation cell are investigated, and the scaling laws for the finite-size effects are
derived. The effects of using various levels of approximation in computing both the far- and
near-field hydrodynamic interactions are also examined. The transport properties associated
with freely mobile suspensions—sedimentation velocities, self-diffusion coefficients, and
effective viscosities—are determined here, while the corresponding properties of porous media
are determined in a companion paper [ Phys. Fluids 31, 3473 (1988)]. Comparison of the
simulation results is made with both experiment and theory. In particular, the short-time self-
diffusion coefficients and the suspension viscosities are in excellent agreement with experiment.

I. INTRODUCTION

Recent developments in the fluid mechanics of particu-
late systems have made it possible to advance significantly
our understanding of how the bulk properties of a suspen-
sion are determined by its microstructure. The solution to
the theoretical problem of two spheres interacting under
conditions of low particle Reynolds number"? has made an
important contribution to these efforts, principally through
the application of pairwise additivity assumptions. Exam-
ples of the application of pairwise additivity in the study of
suspension mechanics are Batchelor’s>* and the Glendin-
ning-Russel’ calculations of sedimentation velocities and
self-diffusion coefficients for suspensions, the Batchelor—-
Green® calculation of the O(¢?) coefficient for the effective
viscosity of a suspension with volume fraction ¢ €1, and the
development of Brady and Bossis,’ of a method for simulat-
ing the trajectories of spherical particles suspended in a shear
flow. It should be noted, however, that the pairwise additiv-
ity used by Brady and Bossis was an additivity of forces,
rather than the additivity of velocities used by other workers
(in the framework of Sec. I11, an additivity of resistance, as
opposed to mobility, interactions).

Recently, Durlofsky et al.® have improved upon the
purely pairwise additive approach of Brady and Bossis by
ptoposing a method that includes many-body, far-field inter-
actions among finite numbers of spheres and uses pairwise
additivity only to account for near-field, or lubrication inter-
actions. Short-range lubrication interactions are only two-
body effects, and thus the method of Durlofsky et al. is re-
markably accurate. Brady et al.® have since extended this
method for use in simulating infinite suspensions of parti-
cles, and this modified theory, which goes under the name of
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Stokesian dynamics, was shown to produce results that com-
pare favorably with known exact solutions'®"* for the per-
meabilities, spin viscosities, and shear viscosities of cubic
lattices of spheres. A summary of the general Stokesian dy-
namics method is given in Brady and Bossis."

One advantage of the Stokesian dynamics method pro-
posed by Brady et al. is that it places no restrictions on the
locations of the particles other than those required by the
imposition of periodic boundary conditions. Thus it can be
readily applied either to dynamic simulations, in which par-
ticle trajectories are followed over time, or to Monte Carlo
simulations, in which transport properties for instantaneous
configurations of particles are calculated and averaged over
several realizations. Furthermore, the Stokesian dynamics
method allows the simultaneous investigation of sedimenta-
tion, permeability, rheology, diffusion, etc.; any and all hy-
drodynamic properties can be determined for any micro-
structural arrangement of spherical particles.

In this paper we present the results of a series of Monte
Carlo simulations from which the transport properties of
unbounded, disordered systems of hard spheres were deter-
mined. (Dynamic simulation studies are discussed in Refs. 7
and 13-17.) The hard-sphere distribution represents a con-
venient reference microstructure in that it is often amenable
to analytical analysis, even though it might not be the micro-
structure obtained by any particular suspension of spherical
Brownian particles. Results for those properties that one
normally associates with particulate suspensions, such as
sedimentation velocities, short-time coefficients of self-diffu-
sion, and effective viscosities, will be given in this paper. Ina
companion paper,'® we shall present the corresponding
properties of porous media, such as permeabilities and short-
time coefficients of hindered diffusion.

Calculations have been carried out over volume frac-
tions ranging from infinite dilution up to the fluid—solid
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transition, which occurs at approximately ¢ = 0.49 for hard
spheres.'® In addition, we compare the effects of three differ-
ent levels of approximation in modeling the hydrodynamic
interactions, and we examine the effect of changing the
length scale over which we impose periodic boundary condi-
tions in modeling the infinite nature of the dispersions, there-
by obtaining the scaling laws for finite-size effects. In all
cases where it is possible, we compare our results both with
alternative theories and with experimental data, thereby
providing some criteria for assessing the accuracy of our
method. For the cases of the short-time self-diffusion coeffi-
cient and the high-frequency dynamic viscosity of a Brow-
nian suspension, for which the hard-sphere microstructure
is the proper microstructure, our simulation results are in
excellent agreement with experiment.**?

The Monte Carlo approach used to perform these simu-
lations consisted of generating several samples, calculating
the transport properties of interest for each sample, and then
averaging in order to obtain values describing the macro-
scopic behavior of the suspension. In the next section we
describe our sample-generating techniques. This is followed
by Sec. III, which gives a brief description of the Stokesian
dynamics method and the averages used to define the macro-
scopic properties. In Sec. IV our results are presented, ana-
lyzed, and compared with theory and experiment. Finally,
we conclude with an examination of the implications of this
work for future research involving simulations of hydrody-
namically interacting particles.

il. SAMPLING TECHNIQUES

The procedure used to generate the hard-sphere micro-
structure varied according to the volume fraction of the sus-
pension. For ¢ <0.25, sphere locations within the periodic,
simple cubic unit cell were chosen by random sequential ad-
dition. For 0.25 < ¢ <0.49, the spheres were placed in an
arbitrary initial configuration and then moved using a ran-
dom-stepping routine in order to ensure that the sample was
disordered. To check that the samples generated using the
latter, random-stepping method were sufficiently random-
ized, and that one configuration was statistically indepen-
dent from another, the linear correlation between the initial
and final coordinates (x) of the particles was monitored
through the correlation coefficient r.. For example, the cor-
relation between particle positions in two samples A and B
could be checked by plotting x , vs X for the N particles, and
then calculating the three linear correlation coefficients. If
the particles had not moved significantly from their previous
positions, then one would expect values of 7. close to unity,
whereas sufficient randomization should result in a much
lower level of correlation. Because this method of monitor-
ing spatial correlation is only approximate and is based pri-
marily on intuitive arguments, we accepted 7. <0.5 as being
a reasonable criterion for statistical independence and did
not attempt a rigorous statistical analysis.

For ¢ = 0.25 this criterion was easily met by moving
each particle 500 steps between samples, where the length of
each step was chosen so that the probability of success (i.e.,
no overlap) was about 0.5-0.7, values that agree closely with
those suggested by Binder.?® Radial distribution functions

3463 Phys. Fluids, Vol. 31, No. 12, December 1988

calculated from samples used in our calculations of hydro-
dynamic transport properties generally agreed with those of
Barker and Henderson,?* to within 10%, although the maxi-
mum values at contact were sometimes in error by as much
as 20%. Using more than ten samples produced excellent
radial distribution functions. To check the consistency of the
two sample-generating methods used, we performed simula-
tions using each of them at ¢ = 0.25 and found that the two
sets of results did not differ significantly. In addition, our
results at ¢ = 0.40 were found to be independent of the ini-
tial configuration chosen and did not change when the num-
ber of randomization steps was doubled from 500 to 1000
steps per particle.

Ill. HYDRODYNAMIC TRANSPORT PROPERTIES BY
STOKESIAN DYNAMICS

Once the locations of the & particles are specified, the
transport properties can be determined by Stokesian dynam-
ics. We begin by forming the grand mobility matrix .#,
which relates the kinematic and dynamic quantities of inter-

est’:

(U - <l1>) _ (Mup Mus)(F) )

—(E) Mg Mys/\S/°

Here, U — (u) is a vector of dimension 6N containing the
translational and rotational velocities of all N particles rela-
tive to the suspension average velocity {(u), (E) is a vector of
dimension 5N that repeats the suspension average rate of
strain for each particle, F is a 6N vector containing the force
and torque exerted by the particles on the fluid, and S is of
dimension 5N and contains the particle stresslets (the sym-
metric and traceless portion of the first moment of the force
distribution integrated over the particle surfaces). The sub-
matrices of the grand mobility matrix give the coupling of
the kinematic (U) and dynamic (F) quantities: M relates
particle velocities to forces and torques, M relates veloc-
ities to stresslets, M relates the rate of strain to the forces
and torques, and Mz relates the rate of strain and the stress-
lets. The only assumption made in writing (1) is that the
particle Reynolds number is small.

Inverting the grand mobility matrix .# in (1) results in
the grand resistance matrix £ that relates F and S to U and
E:

(F) _ (RFU RFE) '<U - (u)) 2
S Rsy Ry/ \ —(E) /'

The grand resistance matrix has been partitioned in the same
manner as was the grand mobility matrix .#. Both .# and
2 are symmetric and positive definite, owing to the dissipa-
tive nature of Stokes flow.

We have written the translational and rotational veloc-
ities and the forces and torques together as a single vector for
convenience. It should be appreciated, however, that the ma-
trix Ry (as well as M) can be further partitioned into
submatrices if we write out explicitly the force and torque:

(F) 3 (Rm Rm) .(U — (w) ) .
L Ry R Q- ()’
Here, L is the torque exerted by the particles on the fluid, and
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© — (o) is the particles’ angular velocity () relative to the
suspension average velocity ({®) ). Ina similar fashion, Rz
can be further partitioned into (Rzz R, ;). We shall use the
shortened notation of (1) and (2) unless otherwise stated.
Where necessary, we shall break R, in (2) into its subma-
trices in (3), and hope that no confusion will arise with the
use of the subscript FU in the different contexts of (2) and
(3). We have placed a caret above the force and the matrix
that couples the force only, as opposed to the larger matrix
without the caret that couples both force and torque.

The construction of the mobility and resistance matrices
is discussed in detail in Brady et al.,’ and so will not be re-
peated for the sake of brevity. We will, however, summarize
the essential features of our approach in order to explain the
significance of the levels of hydrodynamic interactions used
in the calculations presented in Sec. IV. The grand mobility
matrix .« in (1) is approximated by a far-field, multipole
expansion in powers of 1/r, where r is the distance between
two particles. Care is taken to sum all the long-range hydro-
dynamic interactions properly for the N periodically repli-
cated particles by using O’Brien’s method?’ of renormaliza-
tion together with the Ewald summation technique. The
Ewald-summed, far-field mobility matrix is denoted by .#'*.

As discussed by Brady et al.,’ the near-field lubrication
interactions, which become progressively more important as
particles move closer together, are included via the resis-
tance matrix in a pairwise additive fashion, thereby making
use of the short-range nature of these interactions. Thus the
approximation to the true resistance matrix, including both
far-field, many-body interactions and near-field, lubrication
effects, is '

R* = (M*)"" + Py (4)
Once formed, the grand resistance matrix can be partitioned
as in (2) for use in calculating transport properties.

We shall compare various levels of hydrodynamic ap-
proximations in our discussion of hydrodynamic transport

properties. First, there are three different levels at which we,

can form the mobility matrix before inversion. If only the
translational velocity-force couplings are used in the far-
field mobility matrix, then

(AR = (ME) ™ (5a)
where one needs the My matrix of (1) to be further parti-
tioned into submatrices as in (3). If the complete transla-

tional/rotational velocity force/torque couplings are used,
then the far-field mobility matrix is given by

(A*) ' = (ME) (5b)

Using (5a) results in what we shall refer to as the “F (force)
method,” while using (5b) describes what we call the “F-T
(force-torque) method.” Inverting the full, far-field grand
mobility matrix .# * of (1) results in the most accurate of the
three methods, the so-called “F-T-S (force-torque—stress-
let) method.””*®

The lubrication matrix, #,,,, is formed by inverting a
two-body, F-T~S mobility matrix containing only far-field
interaction terms and subtracting the invert from the com-
plete two-body resistance matrix, thereby leaving only near-
field interactions. More detailed information concerning the
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formation of .#* and #,,, can be found in Refs. 8 and 9.
Note that the size of the mobility matrix that must be invert-
ed in (4) increases from 3N X3N to 6N X 6N and then to
11N X 11N as one progresses from the F to the F-T to the F-
T-S method. Since the time required to invert a matrix
grows as the cube of the matrix dimension, it is clearly desir-
able to have some idea of how the three methods compare in
terms of accuracy, and therein lies one motivation for the
comparisons that will be made in the next section. Also, in
addition to comparing the levels of hydrodynamic interac-
tions used in forming the far-field mobility matrices, we shall
compare results with and without lubrication effects, there-
by assessing the importance of the near-field interactions.

All the information needed to calculate the macroscopic
transport properties of the dispersion are contained in the
mobility and/or resistance matrices. The definitions and
averages for the hydrodynamic transport properties for sus-
pensions of freely mobile particles will be presented here; for
a discussion of porous media, see Ref. 18.

The sedimentation velocity of a suspension (U), is
usually defined as the average translational velocity of the
particles relative to zero volume flux axes, i.e., such that the
suspension average velocity ({u)) is zero. The angle brackets
defining the average denote a sum over all particles (as-
sumed identical here) and an average over all realizations of
the suspension microstructure:

(U) 1 T 1 N Ua

TN
where a labels one of the N particles and # labels a realization
of the microstructure. From the grand resistance matrix in
(2) we have, with no imposed shear flow ((E) =0),

(U) = (Ry~"F) = (R}; ')'F, (6)

where the last equality comes from the fact that all particles
are identical.

Since our definitions of U and F contain both transla-
tional and rotational parts, Eq. (6) defines both the sedi-
mentation velocity, or the translational velocity resulting
from a force with no applied torque, and the “‘rotational
velocity,” or the angular velocity resulting from a torque
with no applied force. Written out in terms of the subma-
trices of (3), (6) becomes

((U)) 3 «Rr‘w R?n)‘ ‘) (f«*) )
(@) Rf, R%, L

The average sedimentation velocity, which we denote by U,
is obtained by setting L = 0, while the average rotational
velocity, which we denote by (1,, is obtained by setting
F = 0. Note that these properties are averages of the entire
mobility matrix [shown in (7) as the inverse of the resis-
tance matrix].

In an isotropic, statistically homogeneous media such as
that obtained here for the hard-sphere distribution (R%, ')
is proportional to the isotropic unit tensor I, giving scalar
coefficients of sedimentation and rotation:

U, =UF, (8a)
0, =0L. (8b)
The cross terms in (7) vanish upon averaging. Although
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there are only scalar coefficients of average sedimentation
and rotation, each realization of the suspension microstruc-
ture produces three separate values for each coefficient, cor-
responding to a force (torque) in each of the three orthogo-
nal directions. Thus the statistical averaging over
realizations is augmented by a factor of 3. As a final note, in
the dilute limit where ¢—0, we have Stokes’ law giving
U, = F/(6mna) and @, = L/(87ya’).

The procedure for calculating the short-time self-diffu-
sion coefficients for a sphere in a suspension of force-free,
torque-free particles is very similar to that outlined above. In
this case, however, instead of all the spheres having the same
applied force, only the sphere whose mobility is being calcu-
lated has a nonzero force. The coéfficients relating the veloc-
ity and force lie along the diagonal of R%,~'. Averaging
these diagonal elements therefore corresponds to applying a
force separately to each sphere in turn, calculating its veloc-
ity to obtain its self-mobility, and then averaging these self-
mobilities. Note that this average is being performed over
instantaneous configurations of the particles—that is, the
time scale for the measurement is so short that the particles
do not move a distance comparable to their own size or to the
interparticle spacing. Thus the average corresponds to the
short-time diffusivity. The long-time self-diffusivity, where a
particle moves far from its starting point, can only be ob-
tained through dynamic simulation.'’

The short-time self-diffusivities are defined through the
Stokes—Einstein relation by

Dy = kT (tr(R¥y 1)), : ‘ 9

where we define a trace operator tr that picks out only the
diagonal elements of R%,, ~! (which are 3 X 3 matrices). As
before, the angle brackets imply a sum over all particles and
an average over all configurations. Also, & is Boltzmann’s
constant, and T is the absolute temperature. Just as Eq. (6)
contains both translational and rotational parts, so does (9)
contain translational and rotational diffusivities. We denote
the scalar translational and rotational diffusivities by D}
and D3, respectively. Again, each realization of the suspen-
sion gives three separate values for D§ and D . In the dilute
limit where ¢—-0 we have D§ =kT/(6m5a) and
D3 =kT/(8mna®).

The final property we will discuss concerning freely mo-
bile suspensions is the shear viscosity. The shear, or effective,
viscosity is defined through a calculation of the bulk devia-
toric stress from the following expression®®!3:

(2) — IL(Z) =29(E) — n(S), (10)

where (Z) is the average, macroscopic stress, 7 is the viscos-
ity of the fluid, and » is the number density of particles. Here
(S) is the particle average stresslet for force- and torque-free
particles and is linearly related to the average rate of strain
(E) by a fourth-order tensor A,

(S) = + A«(E), (11a)
where, from (2), A is given by
A= (RgU'R:‘U_hR;E - R§E>- (11b)

For the isotropic, hard-sphere distribution, the symmetric
and traceless A must be of the form
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Aijkl = (,8/2)(5,k 611 +6,[ 6_]’( —%6‘] 5’(1)’ (12)
where 8 is a function of the volume fraction ¢ alone. With
the normalization @ma® for the stresslets, the relative vis-

cosity 7,, defined as the suspension viscosity divided by the
fluid viscosity, is given by

7, =1+ 34B. (13)

In the dilute limit ¢ -0, S~ 1 + O(¢), and we recover Ein-
stein’s viscosity. There are five independent components of
A, and thus for each realization we obtain five values of 7,,
thereby improving the accuracy of our results.

All of the calculations described here were done on a
CYBER 205 supercomputer. It required 22 seconds of CPU
time to fill the complete, Ewald-summed, F-T-S mobility
matrix for a single 27 sphere sample, while six seconds were
required to invert that matrix. The CPU time required to
form 2, is negligible compared to that needed for the for-
mation and inversion of .#*. Although these requirements
might seem prohibitive to those interested in doing dynamic
simulations, we should point out that suitable, time-saving
approximations can be used to significantly decrease the
time requirements of this method. Two such possibilities are
(a) only recalculating far-field interactions on a time scale
that allows for the particles to move a significant fraction of
their own radii, such as every 10 or 100 time steps, or (b)
using the less accurate F or F-T methods to take advantage
of the corresponding reduction in the size of the mobility
matrix. The former approximation is made possible by the
fact that far-field interactions are insensitive to small rear-
rangements in the system configuration, while some infor-
mation on the implications of the latter approximation will
be obtained by examining the results of Sec. IV. Either or
both of these suggestions could be of potential value, depend-
ing upon the particular problem being investigated.

For this work, computer time limitations required us to
perform averages over only ten samples for each volume
fraction. Fortunately, however, 95% confidence intervals
calculated using the standard deviations associated with the
data were generally within 5% of the average values report-
ed. As discussed previously, the statistical errors were de-
creased by the fact that each sample produces five values for
the viscosity and three values for the sedimentation velocity,
self-diffusion coefficient, rotational velocity, and rotational
diffusion coefficient. Thus although only ten samples are
represented in each data point, that point is actually an aver-
age computed from either 30 or 50 values, depending on the
transport property in question.

IV. RESULTS AND DISCUSSION

The significance of our results for disordered systems
can be viewed from several perspectives. As was stated ear-
lier, the effects of the approximations made in our hydrody-
namic theory have already been tested by Brady et a/. in their
comparison of the results of the method used here with
known results for cubic arrays of spheres. Examining disor-
dered systems will allow us to further test this method by
comparing both with a different set of theoretical results and
with experimental data. It should be noted, however, that an
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exhaustive comparison with theory is not attempted, as the
large number of such theories makes such an undertaking
unfeasible. In addition to these comparisons, the effects of
imposing periodic boundary conditions, which pose no am-
biguities when modeling a periodic system, can be significant
in calculations involving disordered media. Thus the results
presented in the following paragraphs should both demon-
strate the application of the newly derived theory and give
the reader some indication of the effects of long-range order
on disordered systems.

The results are organized in the following manner. The
sedimentation velocity and the short-time diffusion coeffi-
cient data are presented in Secs. IV A and IV B, where we
also provide a discussion of the effects of using a finite num-
ber of particles (V) to represent an infinite system. In Sec.
IV C we discuss the rotational velocity and short-time rota-
tional diffusion coefficient. Finally, in Sec. IV D we discuss
the effective viscosity results.

A. Sedimentation velocity

The complications associated with inserting some de-
gree of periodicity into a model of a disordered medium are
relatively severe in the sedimentation problem. To under-
stand why this is the case, one must look more closely at
exactly what problem is being solved in our simulation. Al-
though we are attempting to model a random, sedimenting
suspension, what we actually have, as a result of the imposed
periodic boundary conditions, are N simple cubic lattices of
spheres sedimenting among one another. Each sphere “sees”
the N — 1 other sphere positions evenly distributed through-
out its periodic box as a result of the averaging that takes
place in the Monte Carlo simulations. Thus our sedimenting
suspension has both periodic and random characteristics.

To assess the relative importance of these two compo-

FIG. 1. The sedimentation velocity, nondimensionalized by the infinite di-
lution value U?, is plotted versus the volume fraction (¢) for several differ-
ent cases. The open symbols correspond to the Stokesian dynamics results
for 14 (O), 27 (3), and 64 (A) spheresin the unit cell. The solid curve is the
exact result for simple cubic lattices (Ref, 10), the dashed-dotted curveisa
correlation of experimental data (Ref. 28), and the dotted curve is the low ¢
asymptotic result of Batchelor (Ref. 3).
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nents, we can examine the dependence of the asymptotic,
low voluime fraction solutions for U, associated with both
periodic and random systems. For a random suspension, we
have from Batchelor,’ to leading order in ¢,

U™ =1—6.554, (14)

while for a suspension of particles in a simple cubic (SC)
lattice, Saffman?’ gives

USC=1—1.74¢"2. (15)

The ¢'/* dependence of the sedimentation coefficient for pe-
riodic lattices suggests that periodic characteristics of our
system are likely to be important, particularly at low volume
fractions. The sedimentation velocities in (14) and (15)
have been normalized by U°?, the sedimentation velocity of
an isolated sphere in an unbounded fluid.

A simple approach to determining how the effects of
periodicity scale with &V is to assume that we have a simple
cubic lattice of volume fraction ¢/N sedimenting superim-
posed on a random, sedimenting suspension of volume frac-
tion ¢(1 — 1/N). That these two effects are superithposable
can be sown by considering the calculations of the Ewald
sums used in constructing M¥ in the grand mobility matrix
of Eq. (1). Thus the sedimentation velocity at dilute ¢
should be approximately given by

U=1—174¢'N~12 —655¢(1—N~").  (16)
The finite-size effects and the effects of periodicity should
thus decay as N~ '3, which is quite slow. From a different
perspective, if the periodicity effects are to be small com-
pared to the random results, then we have the requirement

N>»¢472, 17

a condition which is extremely severe as ¢ —0.
In Fig. 1 the results of our simulations with N values of
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FIG. 2. Comparison of various levels of hydrodynamic approximation on
the sedimentation velocity. The open squares are for 27 particles using the
full F-T-S method with lubrication. The open triangles are results for the F
method (i.e., no stresslets, but including lubrication), and the open circles
are the F-T-S method results without lubrication. The curves are the same
asin Fig. 1. These results show that induced stresslet interactions and lubri-
cation play no significant role in sedimentation.
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14, 27, and 64 spheres are plotted along with the results of
Zick and Homsy' for an SC lattice and Batchelor’s low vol-
ume fraction result. The influence of periodicity is clearly
evident and, as one might expect, tends to be more severe for
the 14 sphere simulations than for the 27 and 64 sphere simu-
lations. Unfortunately, however, there was no discernible
trend with the 27 and 64 sphere samples and thus an extrapo-
lation to infinite NV was not possible. Also included in Fig. 1 is
a correlation of experimental data reported by Buscall et
al.,”® who measured sedimentation velocities for suspensions
of polystyrene lattices. Note that the O(¢) coefficient ob-
tained by taking the slope of the experimental data, roughly
5.4, differs from that predicted by Batchelor [cf. Eq. (14)].
The roots of this discrepancy are explained in Brady and
Durlofsky.?

In Fig. 2 the results for our 27 sphere simulations using
the F method, the F-T-S method, and the F-T-S method
without lubrication {i.e., without %, in (4)] are present-
ed. The F-T method results were essentially identical to
those for the F method, and so were left out for simplicity.
Perhaps the most interesting conclusion to be drawn from
this plot is that the near-field interactions have virtually no
effect on the sedimentation velocity. The explanation for this
effect has been given in detail in Brady ef al.’ and in Brady
and Durlofsky. Quite simply, the fluid displaced by the fall-
ing particles flows up through the interstices between parti-
cles. Little fluid flows between the narrow gaps separating
the particle surfaces at high 4, and therefore the lubrication
forces do not come into play. The only way to obtain better
agreement with experiment at high ¢ is to include higher
multipole moments in the development of the grand mobility
matrix in Eq. (1). Indeed, since the odd moments are zero
on average because of symmetry, one must include as far as
the hexadecapole to obtain 10% accuracy at ¢ = 0.5 (cf.
Brady et al®).

Thus the small number of particles used here makes the
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FIG. 3. The short-time self-diffusion coefficient normalized by its infinite
dilution value, D, = kT /(67na), is plotted as a function of volume fraction
(¢) for different numbers of particles in the unit cell (open symbols). The
solid symbols are the values obtained by extrapolation to infinite N based
on the N~ '/? scaling derived in Eq. (16).
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effects of periodicity dominate the sedimentation velocity at
small ¢, and the relatively low number of multipoles includ-
ed reduces the accuracy at high ¢. Improvements can be
made on both fronts by including more multipoles on the one
hand and more particles on the other. Either of these ap-
proaches, however, increases dramatically the number of
unknowns or degrees of freedom and results in prohibitive
computation times. Even if the F method is used without
lubrication, thereby avoiding the costly O(N ?) inversion,
calculating the mobility interactions requires O(N ?) opera-
tions, which is still excessive at small ¢ in light of the
criterion given in (17).

B. Short-time self-diffusion coefficient

The periodicity problems that plagued the sedimenta-
tion velocity results are also present in the calculation of the
short-time self-diffusion coefficient. In this case, however,
the data follow a perceptible trend with increasing V, so that
an extrapolation to obtain the limiting behavior as N— « is
possible. To derive the dependence of Dg on N, we recall
that in calculating the self-diffusion coefficient, or self-mo-
bility, one is essentially exerting a force on one sphere and
calculating its resulting velocity. Because of the periodic
boundary conditions, however, a force exerted on one sphere
is also exerted on all the images of that sphere. We thus have,
again, a simple cubic lattice of volume fraction ¢/N “sedi-
menting” in superposition with the motion of one particle in
N — 1 neutrally buoyant particles. Hence the analysis lead-
ing to (16) is applicable, with Batchelor’s* calculation of the
self-diffusion coefficient for a random suspension,

D{=1-— 1834, (18)

replacing (14). We expect therefore an N~ '/° scaling in our
data. Here, D{ has been nondimensionalized by the diffu-
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FIG. 4. Comparison of the short-time self-diffusion coefficients obtained by
simulation (solid circles) with the experimental results of Ottewill and Wil-
liams (open circles) and Pusey and van Megen (open triangles), Refs. 21
and 20, respectively. Also included is a theoretical calculation of Beenakker
and Mazur (Ref. 30). The solid squares are the simulation results without
lubrication, showing the importance of the near-field interactions.
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sion coefficient of an isolated sphere, D, = kT /(6mna).

In Fig. 3 we show our self-diffusion data for values of ¥
equal to 14, 27, 32, 49, and 64. Here, a trend is clearly dis-
cernible, and assuming an N~ ' dependence the data have
been extrapolated to N— oo to give the solid symbols. The
extrapolated results are compared in Fig. 4 with both experi-
ment’®?! and an alternative theory proposed by Beenakker
and Mazur.*® The agreement with theory and experiment
over the entire range of volume fractions is clearly excellent.
We recall here that the hard-sphere microstructure is the
proper microstructure for the short-time self-diffusion mea-
surements, and thus this provides a valid comparison of our
Stokesian dynamics method with experiment. The effects of
neglecting the near-field, lubrication interactions [i.e., leav-
ing out #,,;, in Eq. (4)] in the extrapolated values of the
short-time self-diffusion coefficient are also shown in Fig. 4.
In contrast to the sedimentation velocity, lubrication is
clearly important in self-diffusion, as the particle of interest
must push against its tightly packed neighbors in order to
move. The good agreement with experiment also shows that
our method of including the near-field interactions is quanti-
tatively capturing the proper physics.

As a final point, we note that our self-diffusion coeffi-
cients extrapolated for N— o at low ¢ agree with Batche-
lor’s prediction, Eq. (18), for the O(¢) coefficient. Specifi-
cally, at ¢ = 0.001, we find a value of D = 0.998, while at
¢ = 0.1, we have D = 0.814. These are to be compared
with (18); the good agreement seems to confirm Batchelor’s
prediction.

Because of the pronounced effects of periodicity, which
scale as N~ '/? in this case, some readers may wonder if it is
possible to use the minimum image convention without
Ewald sums as a better model of a disordered system. While
attractive, this approach has one serious difficulty: mobility
matrices constructed with periodic boundary conditions
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FIG. 5. The rotational velocity, normalized by its infinite dilution value, 022,
as a function of volume fraction ¢ and number of particles in the unit cell: 14
(0), 27 (00), and 64 (A). The rotational velocity is the rotational analog of
the sedimentation velocity. In contrast to the sedimentation velocity, how-
ever, the finite-size effects are weak, and not detectable here [cf. Eq. (19)].
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without Ewald sums lose positive definiteness at volume
fractions as low as 0.05. Nonpositive definite matrices lead
to completely aphysical behavior, such as negative diffusion
coeflicients! Only by properly accounting for the long-range
hydrodynamic interactions is the correct physics obtained.

C. Rotational velocity and rotational self-diffusion
coefficient

The coefficient relating the average rotational velocity
to the torque, (},, and the rotational self-diffusion coeffi-
cient, D3, are obtained through Egs. (7)—(9), and represent
the rotational counterpart of the sedimentation velocity and
translational self-diffusion coefficient discussed above.
There are at present no experimental results for these quanti-
ties, and the theoretical predictions are limited to periodic
systems,'? although any of the theoretical approaches used
for the translational properties could be trivially extended to
the rotational case. We note here that the rotational diffu-
sion coefficients have been measured for nonspherical parti-
cles in a variety of contexts,’’ and could be obtained for
spherical particles if the particles themselves, although
spherical, had an anisotropic light scattering ability. How
this is to be brought about by synthesis of the particle is not
readily apparent. The rotational velocities may be directly
relevant to ferrofluids,*> where small magnetic colloidal par-
ticles are caused to rotate by an applied magnetic field. (The
inverse problem of the average torque produced by an aver-
age rotational velocity, which is discussed in the second pa-
per dealing with transport properties of porous media, pro-
duces what is known as the spin viscosity and is relevant to
the antisymmetric stresses generated in ferrofluids®'>*2)

As in the translational problems, the periodic boundary
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FIG. 6. Comparison of the effects of various levels of hydrodynamic inter-
action on the calculation of the rotational velocity. The open squares are the
full F~-T-S method with lubrication for 27 spheres. The open triangles are
the F-T method (i.e., nostresslets, but including lubrication), and show the
stresslets to have no effect on the rotational velocity. The open circles are
the F-T-S method (or the F~T method) without lubrication and are given
by Eq. (19): ©,/02 = 1 — ¢. Note that, in contrast to the sedimentation
velocity, lubrication does play a role here as there is relative motion between
particle surfaces.
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conditions and Ewald sums imply that one rotating sphere in
arotational velocity calculation must necessarily be replicat-
ed by other rotating spheres arranged in an infinite SC lat-
tice. In Fig. 5 our results for rotational velocities calculated
with N equal to 14, 27, and 64 spheres are shown. The fact
that the three sets of results are essentially identical indicates
that periodicity is not an important factor in this calculation.
To explain this observation, we follow the approach used to
assess the periodicity effects in the sedimentation velocity,
and look for a low volume fraction solution for £2,. The solu-
tion provided by Zuzovsky et al.' for an SC lattice of rotat-
ing spheres is independent of structure for very dilute sys-
tems:

Q,=1-¢ (19)

The fact that Eq. (19) is valid for both periodic and disor-
dered systems suggests that the effect of a rotating sphere’s
periodic self-reflections, all of which are at least one periodic
box length away from the central sphere, is no different than
if they were located at random positions. Clearly this argu-
ment is supported by the data shown in Fig. 5. The finite-size
effects should thus scale at most as N~ !, and may, in fact,
not be present. Normally, when the same dependence to
leading order in ¢ is found for random and periodic suspen-
sions, the periodically replicated disordered systems give the
proper result independent of N, i.c., there are no finite-size
effects. However, it is known from the work of Durlofsky
and Brady?® that the resistance matrix formed from the mo-
bility invert has O(N~') errors owing to the effects of the
periodic boundary conditions on the satisfaction of overall
mass and/or momentum balances. Thus these O(N~!) er-
rors may also be present in the rotational mobility problems,
and we give the conservative estimate that the finite-size ef-
fects scale as N~ '. We have not extrapolated the data in Fig.
5 with this scaling as the resulting values would lie within the
error bars for the N = 64 results.
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FIG. 7. The short-time rotational diffusion coefficient normalized by the
rotational diffusion coefficient of an isolated sphere, D¢ = kT(879/a%), is
plotted versus ¢ for three different numbers of particles in the unit cell: 14
(0), 27 (), and 64 (A). As in the rotational velocity case, the finite-size
effects are weak and are almost imperceptible in the figure.
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In Fig. 6, rotational velocities calculated using the F-T
method and using the F-T-S method without including lu-
brication are shown. As one would expect, the stresslets,
which result from a symmetric distribution of force density
about the particle surfaces, have only a slight effect on the
rotational velocities. Note also that the results with no lubri-
cation fall precisely along the line given by Eq. (19), show-
ing that the far-field interaction terms alone give rise to the
dilute limit result. One can also see from Fig. 6 that, in con-
trast to the sedimentation velocity, lubrication does play an
important role in the rotational velocity calculations. This is
due to the fact that, in this case, there is relative motion
between particle surfaces, and thus as spheres approach one
another lubrication has a considerable effect.

In Fig. 7 and 8 we present the results for D :, the short-
time rotational self-diffusion coefficient normalized by the
rotational diffusion coefficient for an isolated sphere,
D? = kT /(8mna®). Again, Fig. 7 shows that periodicity ef-
fects are negligible for this calculation. To explain why this is
the case, we can do an analysis similar to that just discussed.
From Eq. (19) we know that the rotating sphere’s reflec-
tions hinder its motion by ¢/N, while we assume that the
effect of the neutrally buoyant spheres can be accounted for
by an effective viscosity that grows like 3(1 — 1/N)¢ (Ein-
stein’s low ¢ viscosity result). Thus our criterion for neglect-
ing periodicity effects is

(6/N)/36(1 — 1/N) ~0.4/N <1, (20)

an inequality that is satisfied in all of our simulations. Again,
the finite-size effects scale as N~ .

Unlike the rotational velocity calculations, however,
from Fig. 8 one can see that the stresslets are important here.
The reason for this should be clear: in a suspension of spheres
that have no applied forces or torques, the only far-field
quantities left to interact with a single rotating sphere are the
stresslets, in the absence of which it can only interact with its
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FIG. 8. Comparison of various levels of hydrodynamic approximation on
the rotational diffusion coefficient. The open squares are the full F~-T-S
method results for 27 spheres, the open triangles are the F-T method results
(no induced stresslets), and the open circles are the F-T-S method results
without lubrication. -

Phillips, Brady, and Bossis 3469

Downloaded 13 Jan 2006 to 131.215.225.172. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



own periodic images. Indeed, although these data were left
out for simplicity, if the F-T results that do not include lubri-
cation effects were plotted, they would be identically repro-
duced by (1 — ¢/N), which is just the result given by(19)
for an SC lattice of spheres in an otherwise pure fluid. This
behavior underscores the importance of stresslets in deter-
mining the average properties of suspensions.

D. Effective viscosity

The effective viscosity of a suspension of force- and
torque-free particles is determined by the suspension aver-
age stresslet of Eq. (10). For a random dispersion at low
volume fraction we have

7, =1+ 3¢+ 5.07¢% (21)

where the ¢ is from Einstein’s result, and the O(¢?%) coeffi-
cient is from Batchelor and Green.®? Since the O(¢) coeffi-
cient is independent of structure, just as was the case for the
rotational velocity [cf. Eq. (19) ], the finite-size effects are at
most O(N~'). The same scaling in the two cases is to be
expected since both the torque and stresslet are first mo-
ments of the force distribution on the surface of a particle.
This scaling (or its weak dependence on N) is borne out
in Fig. 9 where the relative viscosity determined by the F-T—-
S method is plotted versus ¢ for N equal to 14, 27, and 64.
Also shown in the figure are the low ¢ asymptotic result and
two correlations given by Krieger.** The upper curve of
Krieger corresponds to the limit of low (steady) shear rate
(low Peclet number), while the lower curve corresponds to
the limit of high shear rate (high Peclet number). One
should view these curves as simply giving an idea of where
the experimental data lie in relation to our simulation re-
sults. ’

FIG. 9. The relative viscosity, 7,, defined as the suspension viscosity deter-
mined from Egs. (10)—-(13) nondimensionalized by the fluid viscosity, is
plotted as a function of the volume fraction () for several cases. The open
symbols are the Stokesian dynamics results for 14 (O), 27 (0), and 64 (A)
spheres, showing the insensitivity of the results to system size. The dashed
curve is the low ¢ theoretical result of Batchelor and Green (Ref. 6), and
the solid curves are correlations of experimental data from Krieger (Ref.
34). The upper, solid curve corresponds to the low Peclet number limit,
while the lower curve corresponds to the high Peclet number limit of the
steady shear viscosity.
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In general, agreement between experiment, our simula-
tion results, and the low ¢ asymptotic result is quite good up
to ¢ = 0.15, which may be taken as a confirmation of the
calculation of Batchelor and Green. At higher ¢, both simu-
lation and experiment lie significantly above the low ¢ as-
ymptote and increase rapidly with increasing ¢.

Although our simulation results compare favorably
with Krieger’s high Peclet number asymptote, caution must
be exercised in making a direct comparison between theory
and experiment in this case. At low shear rates, Brownian
motion has a strong randomizing effect, and our microstruc-
ture (equilibrium hard sphere) is close to that of the slightly
deformed low Peclet number limit suspension, correspond-
ing to the upper curve of Krieger. Hence one may think that
our results should be compared with these data. However,
there is an additional direct Brownian contribution to the
bulk stress that can only be obtained by calculation of the
deformed microstructure. Recent simulations'® indicate
that this contribution is about equal in magnitude to the
purely hydrodynamic part calculated here. Thus our simula-
tion results should fall well below the upper curve of
Krieger. This Brownian contribution decreases with in-
creasing shear rate (shear thinning), explaining the lower-
ing of the curve for high shear rates. At high shear rates,
however, the suspension microstructure is far from being a
hard-sphere distribution. Considerations of clustering ob-
served under these conditions™!” indicate that the viscosity
corresponding to the equilibrium, hard-sphere distribution
is lower than that corresponding to the actual microstruc-
ture that-develops at high shear rates. Hence the reasonable
agreement in magnitude and general trends suggests that our
Stokesian dynamics method is capturing the proper physics.

20

15

W —t—

FIG. 10. Comparison of the simulation viscosities (for 27 and 32 particles,
solid circles) with the experimentally measured high-frequency dynamic
viscosities (777 ) reported by van der Werff et al. (Ref. 22); the experiments
were for monodisperse hard spheres of radii 28 nm ( + ), 46 nm (O), and
76 nm (A), respectively. The solid line is a theoretical prediction by Been-
akker (Ref. 36). The dashed line is the low ¢ asymptotic prediction of Bat-
chelor and Green (Ref. 6), which agrees remarkably well with the simula-
tion method without lubrication (solid squares) over the entire range of 4.
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There is an experimental situation which does corre-
spond to the viscosity calculated in our simulations. In high-
frequency, low amplitude shearing of Brownian suspen-
sions, the microstructure is only slightly deformed from the
hard-sphere structure used here, and the direct Brownian
contribution is out of phase with the applied oscillating shear
field, resulting in a shear modulus of elasticity.** Thus in the
limit of small (i.e., linear) deformation, the dynamic viscos-
ity corresponds to our Monte Carlo, hard-sphere viscosities.
In Fig. 10, we show a comparison of our results with the
high-frequency experiments of van der Werff et al.?> The
agreement is quite satisfactory considering the sensitivity of
the results to slight changes in ¢. This should serve to con-
firm the quantitative accuracy of the Stokesian dynamics
method. Because van der Werff et al. provide experimental
data for systems with ¢ > 0.49, we have included in Fig. 10
simulation results for ¢ = 0.55 and ¢ = 0.60. The error
bars on these points are given by the standard error, i.c., the
standard deviation of our set of 50 results (five values from
each of the ten samples used) divided by the square root of
50. The relatively large standard deviations associated with
these points can be attributed to the presence of clusters of
particles which vary in size from one sample to another, and
hence cause large fluctuations in 7,. A macroscopic system
at these high values of ¢ would undoubtedly have clusters in
some regions and freely mobile particles in others, a situation
that is difficult to model with the number of particles consid-
ered here. More accurate results could be obtained by per-
forming simulations with enough particles to model the
complete structure. At present, however, computer time
limitations would make such an endeavor unfeasible. Final-
ly, we note in passing that the experimental results of van der
Werff et al. show the proper hydrodynamic scaling with par-
ticle size and shear rate for all volume fractions up to ¢ in
excess of 0.7 even for particles as small as 28 nm, indicating
that the continuum mechanical description for smooth, hard
spheres applies down to remarkably small particle surface~
surface separations.

The effects of neglecting lubrication on our simulation
calculations and the theoretical results of Beenakker*® are
also shown in Fig. 10. Remarkably, the low ¢ result (21)
agrees with our far-field result all the way up to ¢ = 0.60. All
the deviation from (21) and the rapid rise with increasing ¢
is accounted for by the pairwise additive, near-field lubrica-
tion interactions. Beenakker has developed the most rigor-
ous theory available for the viscosity of a suspension with the
hard-sphere microstructure (high-frequency viscosity ), and
his results agree well both with ours and with the experimen-
tal results up to a volume fraction of ¢ ~0.4. At higher vol-
ume fractions, both experimental results and our simulation
results continue to rise rapidly as the lubrication singulari-
ties gain importance. Beenakker’s theory, while quite accu-
rate, evidently does not incorporate enough of the near-field
structure and interactions to obtain a high viscosity.

The form of the viscosity, both experimentally and in
our simulations, suggests a singular behavior at a critical
volume fraction in excess of ¢ = 0.6. This has been noted,
and theoretical descriptions of this behavior have been at-
tempted by many authors. Unfortunately, we must leave this
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question unanswered at the present time and hope we will be
able to address it in the future.

V. CONCLUSIONS

The primary purpose of this paper was to present our
Stokesian dynamics results on the hydrodynamic transport
properties of hard-sphere dispersions. The hard-sphere dis-
tribution represents a convenient reference microstructure,
and one should view these results almost as “experimental”
data. We hope they can play a role in developing theories and
understanding of suspension properties much the same way
conventional molecular dynamics has aided the develop-
ment of liquid state theory. Indeed, one may use these results
to start a “perturbation theory” of suspensions similar to
liquid state perturbation theory. This approach has actually
been started at the low Peclet number limit,** and we have
recently used simulations to help test these perturbation the-
ories.’

The comparisons we have made with experiment have
been as complete as possible. We have seen that our sedimen-
tation velocities do not agree particularly well with experi-
ment, owing to the severe effects of periodicity at low volume
fractions and the need for higher-order many-body multi-
pole moments at higher volume fractions (cf. Fig. 1). These
problems could be eliminated at increased computational
cost, but hardly seem worth the effort. An understanding of
the behavior is the important aspect and, in conjunction with
our other work on sedimentation,** we feel that this under-
standing has been obtained.

Our comparisons with the effective viscosity and self-
diffusion coefficient have been much more favorable. The
effective viscosity results lie near, but below, the experimen-
tal data corresponding to steady shear as expected and as
explained in Sec. III (cf. Fig. 9); experimentally measured
high-frequency dynamic viscosities are, however in very
good agreement with our simulation results (cf. Fig. 10).
Our self-diffusion coefficients are also in excellent agree-
ment with experiment (cf. Fig. 4). We recall here that for the
latter two cases the hard-sphere distribution is the correct
microstructure, and thus they provide a rigorous test of our
hydrodynamics. Comparison with the rotational properties
(velocity and self-diffusion) must await experimental mea-
surement.

We have not made an exhaustive comparison with all
the available theories, as this was not our purpose. Such a
study is best done in the course of a review paper. We have
compared our results with the dilute solution theories of Bat-
chelor and have generally found excellent agreement, the
notable exception being the low ¢, limiting behavior of the
sedimentation velocity. The only other theories which we
have used for purposes of comparison are those of Been-
akker. His theories for the self-diffusion coefficient and dy-
namic viscosity are the most complete and rigorous available
and are in excellent agreement with our simulations up to
volume fractions of about 0.4. At higher ¢, evidently more
interactions need to be included in Beenakker’s analyses.
Nevertheless, his theories represent a remarkable accom-
plishment.
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As a by-product of our study, we have determined the
scaling with number of particies for the finite-size effects
resulting from the use of periodic boundary conditions.
These effects are most severe for the sedimentation velocity
and self-diffusion coefficient, where the scaling is an ex-
tremely slow N~ 17, This behavior makes it somewhat diffi-
cult, although not impossible, to extract the N— « limiting
results. On the other hand, for the rotational properties and
the effective viscosity, the finite-size effects scale at most as
N~ (see also Durlofsky and Brady**). It is thus only the
translational properties of free suspensions that are adverse-
ly affected by the periodicity. There are, of course, other
constraining effects of the periodicity, such as fitting all im-
portant microstructure length scales within the periodic
box, that are not related to the long-range nature of the hy-
drodynamic interactions discussed here.

We have limited the majority of our study to volume
fractions below 0.49, because above this value the hard-
sphere suspension undergoes a fluid—solid phase transition.
It is of interest, particularly for the shear viscosity, to contin-
ue to higher volume fractions into a disordered, glassy state.
This we shall do in a future communication.

We hope we have provided a set of results for the hydro-
dynamic transport properties of the hard-sphere microstruc-
ture that will be of use in testing both theory and experiment
on dense suspension behavior. We also hope that our com-
parisons of various levels of hydrodynamic approximation
have given some new insights into suspension mechanics and
may help to stimulate new developments in the future.
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