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Abstract

We introduce a challenging set of 256 object categories containing a
total of 30607 images. The original Caltech-101 [1] was collected by choos-
ing a set of object categories, downloading examples from Google Images
and then manually screening out all images that did not fit the category.
Caltech-256 is collected in a similar manner with several improvement:
a) the number of categories is more than doubled, b) the minimum num-
ber of images in any category is increased from 31 to 80, c) artifacts due
to image rotation are avoided and d) a new and larger clutter category
is introduced for testing background rejection. We suggest several test-
ing paradigms to measure classification performance, then benchmark the
dataset using two simple metrics as well as a state-of-the-art spatial pyra-
mid matching [2] algorithm. Finally we use the clutter category to train
an interest detector which rejects uninformative background regions.

1 Introduction

Recent years have seen an explosion of work in the area of object recogni-
tion [1, 2, 3, 4, 5, 6]. Several datasets have emerged as standards for the com-
munity, including the Coil [7], MIT-CSAIL [8] PASCAL VOC [9], Caltech-6
and Caltech-101 [1] and Graz [10] datasets. These datasets have become pro-
gressively more challenging as existing algorithms consistently saturated per-
formance. The Coil set contains objects placed on a black background with
no clutter. The Caltech-6' consists of 3738 images of cars, motorcycles, air-
planes, faces and leaves. The Caltech-1012 is similar in spirit to the Caltech-6
but has many more object categories, as well as hand-clicked silhouettes of each
object. The MIT-CSAIL database contains more than 77,000 objects labeled
within 23,000 images that are shown in a variety of environments. The number
of labeled objects, object categories and region categories increases over time
thanks to a publicly available LabelMe [11] annotation tool. The PASCAL VOC
2006 database contains 5,304 images where 10 categories are fully annotated.
Finally, the Graz set contains three object categories in difficult viewing condi-
tions. These and other standardized sets of categories allow users to compare
the performance of their algorithms in a consistent manner.

Here we introduce the Caltech-2563. Each category has a minimum of 80
images (compared to the Caltech-101 where some classes have as few as 31

!http://www.vision.caltech.edu/Image_Datasets/Calteché
2h1:1:p ://www.vision.caltech.edu/Image_Datasets/Caltech101
3http ://wuw.vision.caltech.edu/Image_Datasets/Caltech256
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Figure 1: Examples of a 1, 2 and 3 rating for images downloaded using the
keyword dice.

images). In addition we do not left-right align the object categories as was done
with the Caltech-101, resulting in a more formidable set of categories.

Because Caltech-256 images are harvested from two popular online image
databases, they represent a diverse set of lighting conditions, poses, back-
grounds, image sizes and camera systematics. The categories were hand-picked
by the authors to represent a wide variety of natural and artificial objects in
various settings. The organization is simple and the images are ready to use,
without the need for cropping or other processing. In most cases the object of
interest is prominent with a small or medium degree of background clutter.

Dataset Released | Categories | Images Images Per Category

Total | Min | Med | Mean | Mazx
Caltech-101 2003 102 9144 31 59 90 800
Caltech-256 2006 257 30607 80 100 119 827

Figure 2: Summary of Caltech image datasets. There are actually 102 and 257
categories if the clutter categories in each set are included.

In Section 2 we describe the collection procedures for the dataset. In Sec-
tion 3 we give paradigms for testing recognition algorithms, including the use of
the background clutter class. Example experiments are provided in Section 4.
Finally in Section 5 we conclude with a general discussion of advantages and
disadvantages of the set.

2 Collection Procedure

The object categories were assembled in a similar manner to the Caltech-101.
A small group of vision dataset users were asked to supply the names of roughly
300 object categories. Images from each category were downloaded from both
Google* and PicSearch® using scripts®. We required that the minimum size in
either aspect be 100 with no upper range. Typically this procedure resulted
in about 400 — 600 images from each category. Duplicates were removed by
detecting images which contained over 15 similar SIFT descriptors [12].

4http://images.google.com
Shttp://www.picsearch.com
6Based on software written by Rob Fergus
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Figure 3: Distribution of image sizes as measured by /width - height, and aspect
ratios as measured by width /height. Some common image sizes and aspect ratios
that are overrepresented are labeled above the histograms. Overall in Caltech-
256 the mean image size is 351 pixels while the mean aspect ratio is 1.17.

The images obtained were of varying quality. We asked 4 different subjects
to rate these images using the following criteria:

1. Good: A clear example of the visual category
2. Bad: A confusing, occluded, cluttered or artistic example
3. Not Applicable: Not an example of the object category

Sorters were instructed to label the image bad if either: (1) the image was
very cluttered, (2) the image was a line drawing, (3) the image was an abstract
artistic representation, or (4) the object within the image occupied only a small
fraction of the image. If the image contained no examples of the visual category
it was labeled not applicable. Examples of each of the 3 ratings are shown in
Figure 1.

The final set of images included in Caltech-256 are the ones that passed our
size and duplicate checks and were also rated good. Out of 304 original categories
48 had less than 80 good images and were dropped, leaving 256 categories.
Figure 3 shows the distribution of the sizes of these final images.

In Caltech-101, categories such as minaret had a large number of images that
were artificially rotated, resulting in large black borders around the image. This
rotation created artifacts which certain recognition systems exploited resulting
in deceptively high performance. This made such categories artificially easy to
identify. We have not introduced such artifacts into this set and collecting an
entirely new minaret category which was not artificially rotated.

In addition we did not consistently right-left align the object categories as
was done in Caltech-101. For example airplanes may be facing in either the
left or right direction now. This gives a better idea of what categorization
performance would be like under realistic conditions, unlike that Caltech-101
airplanes which are all facing right.
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Figure 4: Histogram showing number of images per category. Caltech-101’s
largest categories faces-easy (435), motorbikes (798), airplanes (800) are shared
with Caltech 256. An additional large category t-shirt (358) has been added.
The clutter categories for Caltech-101 (467) and 256 (827) are identified with
arrows. This figure should be viewed in color.

2.1 Image Relevance

We compiled statistics on the downloaded images to examine the typical yield
of good images. Figure 5 summarizes the results for images returned by Google.
As expected, the relevance of the images decreases as more images are returned.
Some categories return more pertinent results than others. In particular, certain

categories contain dual semantic meanings.

For example the category pawn

yields both the chess piece and also images of pawn shops. The category egg is
too ambiguous, because it yields images of whole eggs, egg yolks, Faberge Eggs,
etc. which are not in the same visual category. These ambiguities were often
removed with a more specific keyword search, such as fried-egg.

When using Google images alone, 25.6% of the images downloaded were
found to be good. To increase the precision of image downloading we augmented

the Google search with PicSearch.

Since both search engines return largely non-overlapping sets of images, the
overall precision for the initial set of downloaded images increased, as both
returned a high fraction of good images initially. Now 44.4% of the images
were usable. The true overall precision was slightly lower as there was some
overlap between the Google and PicSearch images. A total of 9104 good images
were gathered from PicSearch and 20677 from Google, out of a total of 92652
downloaded images. Thus the overall sorting efficiency was 32.1%.

2.2 Categories

The category numbering provides some insight into which categories are similar
to an existing category. Categories C;...Ca50 are relatively independent of one
another, whereas categories Co51...C25¢ are closely related to other categories.
These are airplane-101, car-side-101, faces-easy-101, greyhound, tennis-shoe and
toad, which are closely related to fighter-jet, car-tire, people, dog, sneaker and
frog respectively. We felt these 6 category pairs would be the most likely to be
confounded with one another, so it would be best to remove one of each pair
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Figure 5: Precision of images returned by Google. This is defined as the total
number of images rated good divided by the total number of images downloaded
(averaged over many categories). As more images are download, it becomes pro-
gressively more difficult to gather large numbers of images per object category.
For example, to gather 40 good images per category it is necessary to collect 120
images and discard 2/3 of them. To gather 160 good images, expect to collect
about 640 images and discard 3/4 of them.

from the confusion matrix, at least for the standard benchmarking procedure’.

2.3 Taxonomy

Figure 6 shows a taxonomy of the final categories, grouped by animate and inan-
imate and other finer distinctions. This taxonomy was compiled by the authors
and is somewhat arbitrary; other equally valid hierarchies can be constructed.
The largest 30 categories from Caltech-101 (shown in green) were included in
Caltech-256, with additional images added as needed to boost the number of
images in each category to at least 80. Animate objects - 69 categories in all -
tend to be more cluttered than the inanimate objects, and harder to identify. A
total of 12 categories are marked in red to denote a possible relation with some
other visual category.

2.4 Background

Category Cos7 is clutter®. For several reasons (see subsection 3.4) it is useful
to have such a background category, but the exact nature of this category will
vary from set to set. Different backgrounds may be appropriate for different

"While horseshoe-crab may seem to be a specific case of crab, the images themselves involve
two entirely different sub-phylum of Arthropoda, which have clear differences in morphology.
We find these easy to tell apart whereas frog and toad differences can be more subtle (none
of our sorters were herpetologists). Likewise we feel that knife and swiss-army-knife are not
confounding, even though they share some characteristics such as blades.

8 For purposes here we will use the terms background and clutter interchangeably to indicate
the absence or near-absence of any objects categories
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Figure 6: A taxonomy of Caltech-256 categories created by hand. At the top

level these are divided into animate and inanimate objects.

Green categories

contain images that were borrowed from Caltech-101. A category is colored red

if it overlaps with some other category (such as dog and greyhound).
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Figure 7: Examples of clutter generated by cropping the photographs of Stephen
Shore [13, 14].

applications, and the statistics of a given background category can effect the
performance of the classifier [15].

For instance Caltech-6 contains a background set which consists of random
pictures taken around Caltech. The image statistics are no doubt biased by
their specific choice of location. The Caltech-101 contains a set of background
images obtained by typing the keyword “things” into Google. This can turn up
a wide variety of objects not in Caltech-101. However these images may or may
not contain objects of interest that the user would wish to classify.

Here we choose a different approach. The clutter category in Caltech-256
is derived by cropping 947 images from the pictures of photographer Stephen
Shore [13, 14]. Images were cropped such that the final image sizes in the clutter
category are representative of the distribution of images sizes found in all the
other categories (figure 3). Those cropped images which contained Caltech-256
categories (such as people and cars) were manually removed, with a total of 827
clutter images remaining. Examples are shown in Figure 7.

We feel that this is an improvement over our previous clutter categories, since
the images contain clutter in a variety of indoor and outdoor scenes. However it
is still far from perfect. For example some visual categories such as grass, brick
and clouds appear to be over-represented.

3 Benchmarks

Previous datasets suffered from non-standard testing and training paradigms,
making direct comparisons of certain algorithms difficult. For instance, results
reported by Grauman [16] and Berg [17] were not directly comparable as Berg



Better Performance —

«— Worse Performance

Performance By Category

car—side-101: 252
airplanes-101: 25
leopards-101: 129

faces—easy—101:
motorbikes—107: 14!

tower-—pisa:

trilobite—10

watch-101:

30
desk-globe:

ketch-101:
sunllcwer—WbOW :

zebra: 2!
saturn:
bonsai-101:
sheet-music:
revolver-101:

hibiscus:

. teepee:
license—plate:

fireworks: 073
ire—truck: 0

homer-simpson:
ier: 1

rainbow:

grand—piano—101: 091

pt :
cartman:
buddha-101:
ewer—101: 0
gold

tennis—court: 217

Tightning: 133
hawksbill-101: 100

chandelier-101: 036

len—gate—bridge:
harp:

ver: 23
hourglass:

backpack:
touring-bike:
coffee-mug:
tombstone:

french—horn:

armulke:
- O

com

video-projector: 238
Pt

laptop—101: 12% washing-machin

waterfall:

hamburger:

br

0om-bo:
telephone-bo

diamond-ring:
binoculars: 0

cereal-bo:

stained—-glas:
computer—monitol
treadmill:

helicopter-101 :

palm-tree:

microwave:

school-bus:

human—skeleton:

umbrella—107:

t-shil
baseball-glov

elephant—101:

harpsichor

tripo
american—fla

starfish-10

tr
roulette-wheel
hot-air-balloo

sadd|
football-helmet

pez-dispenser:
teapot:
picnic—table:
steering-wheel:
swiss—army—knife:
wine-bottle: 2

house—fly:
kangaroo-101:

ipod:
fire—extinguisher:
segway:

aka7:

r :
triceratops:

refrigerator:
electric-guitar-101:

fern: Of

palm-pilot:
microscope: 1
tennis-racket

welding-mask:

gas—pump:

cormorant:
soccer-ball: 1
giraff

neckti

tambourine:
light-house: 13
wi

. D.
bowling—|
comput b

keyboar
sushi: 20!

tricycle:

floppy—disk:
lathe: 1

speed-boat:

xylophone:

radio-telescope:
cral 1:

eelbarrow:

r—mouse:

duck:

ng—glove:

superman:

baseball-bat:
watermelon:
ice-cream-cone:

ibis—101: 114
swan:

chim
birdbatl

cockroach:
pram:

cannon:
centipede: g

horseshoe—crab:
bear:

spide:

fned—egg.

basketball-hoop:
screwdariver:

fire—hydrant:
unicorn: 2!
mushroom:

greyhound:

sock:

camel:
flashlight:
coffin:

goat:

goose:
traffic-light:
noe: 0

iguana:

ayak:
people:
horse:
conch:

snake
0

praying—ma;ms'
oda-can:

rifle:

55— F | | |

0 10 20 30 40
Performance (%)

50 60 70 80

Figure 8: Performance of all 256 object categories using a typical pyramid
match kernel [2] in a multi-class setting with Niyaim = 30. This performance
corresponds to the diagonal entries of the confusion matrix, here sorted from
largest to smallest. The ten best performing categories are shown in blue at the
top left. The ten worst performing categories are shown in red at the bottom
left. Vertical dashed lines indicate the mean performance. 8
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used only 15 training while Grauman used 30 training examples °. Some authors
used the same number of test examples for each category, while other did not.
This can be confusing if the results are not normalized in a consistent way. For
consistent comparisons between different classification algorithms, it is useful to
adopt standardized training and testing procedures

3.1 Performance

First we select Niyain and Niest images from each class to train and test the
classifier. Specifically Niiain = 5, 10, 15, 20, 25, 30, 40 and Niest = 25.

Each test image is assigned to a particular class by the classifier. Perfor-
mance of each class C can be measured by determining the fraction of test
examples for class C which are correctly classified as belonging to class C. The
cumulative performance is calculated by counting the total number of correctly
classified test images NViest Within each of N.j,¢ classes. It is of course important
to weight each class equally in this metric. The easiest way to guarantee this is
to use the same number of test images for each class. Finally, better statistics
are obtained by averaging the above procedure multiple times (ideally at least
10 times) to reduce uncertainty.

The exactly value of Nies is not important. For Caltech-101 values higher
than Nian = 30 are impossible since some categories contain only 31 images.
However Caltech-256 has at least 80 images in all categories. Even a training
set size of Nipain = 75 leaves Nyesy > 5 available for testing in all categories.

The confusion matrix M,; illustrates classification performance. It is a table
where each element i, j stores the fraction of the test images from category C;
that were classified as belonging to C;. Note that perfect classification would
result in a table with ones along the main diagonal. Even if such a classification
method existed, this ideal performance would not be reached for several reasons.
Images in most categories contain instances of other categories, which is a built-
in source of confusion. Also our sorting procedure is never prefect; there are
bound to be some small fraction of incorrectly classified images in a dataset of
this size.

Since the last 6 categories are redundant with existing categories, and clut-
ter indicates the absence of any category, one might argue that only categories
C;...Ca50 are appropriate for generating performance benchmarks. Another justi-
fication for removing these last 6 categories when measuring overall performance
is that they are among the easiest to identify. Thus removing them makes the
detection task more challenging!.

However for better clarity and consistency, we suggest that authors remove
only the clutter category, generate a 256x256 confusion matriz with the remain-
ing categories, and report their performance results directly from the diagonal
of this matrix'!'. Is also useful for authors to post the confusion matrix itself -
not just the mean of the diagonal.

91t should be noted that Grauman achieved results surpassing those of Berg in experiments
conducted later.

10 As shown in figure 13, categories Cas1, Ca52 and Cas3 each yield performance above 90%

1 The difference in performance between the 250x250 and 256x256 matrix is typically less
than a percent



242.watermelon

162.picnic-table

093.grasshopper

257.clutter

Figure 9: The mean of all images in five randomly chosen categories, as com-
pared to the mean clutter image. Four categories show some degree of concen-
tration towards the center while refrigerator and clutter do not.

171.refrigerator

014.blimp

3.2 Localization and Segmentation

Both Caltech-101 and the Caltech-256 contain categories in which the object
may tend to be centered (Figure 9). Thus, neither set is appropriate for local-
ization experiments, in which the algorithm must not only identify what object
is present in the image but also where the object is.

Furthermore we have not manually annotated the images in Caltech-256 so
there is presently no ground truth for testing segmentation algorithms.

3.3 Generality

Why not remove the last 6 categories from the dataset altogether? Closely
related categories can provide useful information that is not captured by the
standard performance metric. Is a certain greyhound classifier also good at
identifying dog, or does it only detect specific breeds? Does a sneaker detector
also detect images from tennis-shoe, a word which means essentially the same
thing? If it does not, one might worry that the algorithm is over-training on
specific features of the dataset which do not generalize to visual categories in
the real world.

For this reason we plot rows 251..256 of the confusion matrix along with the
categories which are most similar to these, and discuss the results in section 3.3.

3.4 Background

Consider the example of a Mars rover that moves around in its environment
while taking pictures. Raw performance only tells us the accuracy with which
objects are identified. Just as important is the ability to identify where there
is an object of interest and where there is only uninteresting background. The
rover cannot begin to understand its environment if background is constantly
misidentified as an object.

The rover example also illustrates how the meaning of the word background
is strongly dependent on the environment and the application. Our choice of
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background images for Caltech-256, as described in 2.4, is meant to reflect a
variety of common (terrestrial) environments.

Here we generate an ROC curve that tests the ability of the classification
algorithm to identify regions of interest. An ROC curve shows the ratio of false
positives to true positives. In single-category detection the meaning of true
positive and false positive is unambiguous. Imagine that a search window of
varied size scans across an image employing some sort of bird classifier. Each
true positive marks a successful detection of a bird inside the scan window while
each false positive indicates an erroneous detection.

What do positive and negative mean in the context of multi-class classifi-
cation? Consider a two-step process in which each search window is evaluated
by a cascade [18] of two classifiers. The first classifier is an interest detector
that decides whether a given window contains a object category or background.
Background regions are discarded to save time, while all other images are passed
to the second classifier. This more expensive multi-class classifier now attempts
to identify which of the remaining 256 object categories best matches the region
as described in 3.1.

Our ROC curve measures the performance of several interest classifiers. A
false positive is any clutter image which is misclassified as containing an object
of interest. Likewise true positive refers to an object of interest that is correctly
identified. Here “object of interest” means any classification besides clutter.

4 Results

In this section we describe two simple classification algorithms as well as the
more sophisticated spatial pyramid matching algorithm of Lazebnik, Schmid
and Ponce [2]. Performance, generality and background rejection benchmarks
are presented as examples for discussion.

4.1 Size Classifier

Our first classifier used only the width and height of each image as features.
During the training phase, the width and height of all 256 - Ny,,;, images are
stored in a 2-dimensional space. Each test image is classified in a KNN fashion
by voting among the 10 nearest neighbors to each image. The 1-norm Man-
hattan distance yields slightly better performance than the 2-norm Euclidean
distance. As shown in Figure 12, this algorithm identifies the correct category
for an image 3.7 + 0.6% of the time when N,y = 30.

Although identifying the correct object category 3.7% of the time seems
like paltry performance, we note that baseline (random guessing) would result
in a performance of less than .25%. This illustrates a danger inherent in many
recognition datasets: the algorithm can learn on ancillary features of the dataset
instead of features intrinsic to the object categories. Such an algorithm will fail
to identify categories if the images come from another dataset with different
statistics.

As shown in

11
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Figure 10: The 256 x 256 matrix M for the correlation classifier described in
subsection 4.2. This is the mean of 10 separate confusion matrices generated for
Nirain = 30. A log scale is used to make it easier to see off-diagonal elements.
For clarity we isolate the diagonal and row 82 galaxy and describe their meaning
in Figure 11.

4.2 Correlation Classifier

The next classifier we employed was a correlation based classifier. All images
were resized t0 Nyim X Ngim, desaturated and normalized to have unit variance.
The nearest neighbor was computed in the Ny;,,-dimensional space of pixel
intensities. This is equivalent to finding the training image that correlates best
with the test image, since

<(X-Y)P>=<X?’>4+<YV?> 2< XY >=-2< XY >

for images X,Y with unit variance. Again we use the 1-norm instead of the 2-
norm because it is faster to compute and yields better classification performance.

Performance of 7.6 + 0.7% at Nipain = 30 is computed by taking the mean
of the diagonal of the confusion matrix in Figure 10.

4.3 Spatial Pyramid Matching

As a final test we re-implement the spatial pyramid matching algorithm of
Lazebnik, Schmid and Ponce [2] as faithfully as possible. In this procedure
an SVM kernel is generating from matching scores between a set of training im-
ages. Their published Caltech-101 performance at Nirain = 30 was 64.6 + 0.8%.
Our own performance is practically the same.

As shown in Figure 12, performance on Caltech-256 is roughly half the per-
formance achieved on Caltech-101. For example at N .in = 30 our Caltech-256
and Caltech-101 performance are 67.6 4= 1.4% and 34.1 & 0.2% respectively.
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Figure 11: A more detailed look at the confusion matrix M from figure 10.
Top: row 82 shows which categories were most likely to be confused with galazy.
These are: galazy, saturn, fireworks, comet and mars (in order of greatest to
least confusion). Bottom: the largest diagonal elements represent the categories
that are easiest to classify with the correlation algorithm. These are: self-
propelled-lawn-mower, motorbikes-101, trilobite-101, guitar-pick and saturn. All
of these categories tend to have objects that are located consistently between

images.
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Figure 12: Performance as a function of Ny, for Caltech-101 and Caltech-256
using the 3 algorithms discussed in the text. The spatial pyramid matching
algorithm is that of Lazebnik, Schmid and Ponce [2]. We compare our own
implementation with their published results, as well as the SVM-KNN approach
of Zhang, Berg, Maire and Malik [3].

4.4 Generality

Figure 13 shows the confusion between six categories and their six confounding
categories. We define the generality as the mean of the off-quadrant diagonals
divided by the mean of the main diagonal. In this case, for Nt = 30, the
generality is g = 0.145.

What does g signify? Consider two extreme cases. If g = 0.0 then their is
absolutely no confusion between any of the similar categories, including tennis-
shoe and sneaker. This would be suspicious since it means the categorization
algorithm is splitting hairs, ie. finding significant differences where none should
exist. Perhaps the classifier is training on some inconsequential artifact of the
dataset. At the other extreme g = 1.0 suggests that the two confounding sets of
six categories were completely indistinguishable. Such a classifier is not discrim-
inating enough to differentiate between airplanes and the more specific category
fighter-jet, or between people and their faces. In other words, the classifier gen-
eralizes so well about similar object classes that it may be considered too sloppy
for some applications.

In practice the desired value of ¢ depends on the needs of the customer.
Lower values of g denote fine discrimination between similar categories or sub-
categories. This would be particularly desirable in situations that require the
exact identification of a particular species of mammal. A more inclusive classifier
tends toward higher value of g. Such a classifier would presumably be better at
identifying a mammal it has never seen before, based on general features shared
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Figure 13: Selected rows and columns of the 256 x 256 confusion matrix M
for spatial pyramid matching [2] and Nipain = 30. Matrix elements containing
0.0 have been left blank. The first 6 categories are chosen because they are
likely to be confounded with the last 6 categories. The main diagonal shows
the performance for just these 12 categories. The diagonals of the other 2
quadrants show whether the algorithm can detect categories which are similar
but not exact.

by a large class of mammals.

As shown in Figure 13, a spatial pyramid matching classifier does indeed con-
fuse tennis-shoes and sneakers the most. This is a reassuring sanity check. To a
lesser extent the object categories frog/toad, dog/ greyhound, fighter-jet/ airplanes
and people/faces-easy are also confused.

Confusion between car-tire and car-side is entirely absent. This seems sur-
prising since tires are such a conspicuous feature of cars when viewed from the
side. However the tires pictured in car-tire tend to be much larger in scale than
those found in car-side. One reasonable hypothesis is that the classifier has
limited scale-invariance: objects or pieces of objects are no longer recognized if
their size changes by an order of magnitude. This characteristic of the classifier
may or may not be important, depending on the application. Another hypoth-
esis is that the classifier relies not just on the presence of individual parts, but
on their relationship to one another.

In short, generality defines a trade-off between classifier precision and ro-
bustness. Our metric for generating ¢ is admittedly crude because it uses only
six pairs of similar categories. Nonetheless generating a confusion matrix like
the one shown in Figure 13 can provide a useful sanity check, while exposing
features of a particular classifier that are not apparent from the raw performance
benchmark.
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4.5 Background

Returning to the example of a Mars rover, suppose that a small camera window
is used to scan across the surface of the planet. Because there may be only
one interesting object in 100 or 1000 images, the interest detector must have a
low rate of false detections in order to be effective. As illustrated in figure 14
this is a challenging problem, particularly when the detector must accommodate
hundreds of different object categories that are all considered interesting.

In the spirit of the attentional cascade [18] we train interest classifiers to
discover which region are worthy of detailed classification and which are not.
These detectors are summarized below. As before the classifier is an SVM with
a spatial pyramid matching kernel [2]. The margin threshold is adjusted in order
to trace out a full ROC curve!?.

Interest Nirain Speed Description

Detector | C1..Cas6 | Cas7 | (images/sec)
A 30 512 24 Modified 257-category classifier
B 2 512 4600 Fast two-category classifier
c 30 30 25 Ordinary 257-category classifier

First let us consider Interest Detector C. This is the same detector that was
employed for recognizing object categories in section 4.3. The only differences
is that 257 categories are used instead of 256. Performance is poor because only
30 clutter images are used during training. In other words, clutter is treated
exactly like any other category.

Interest Detector A corrects the above problem by using 512 training images
from the clutter category. Performance improves because their is now a balance
between the number of positive and negative examples. However the detector
is still slow because it is a attempts to recognize 257 different object categories
in every single image or camera region. This is wasteful if we expect the vast
majority of regions to contain irrelevant clutter which is not worth classifying.
In fact this detector only classifies about 25 images per second on a 3 GHz
Pentium-based PC.

Interest Detector B trains on 512 clutter images and 512 images taken from
the other 256 object categories. These two groups of images are assigned to
the categories uninteresting and interesting, respectively. This B classifier is
extremely fast because it combines all the interesting images into a single cat-
egory instead of treating them as 256 separate categories. On a typical 3GHz
Pentium processor this classifier can evaluate 4600 images (or scan regions) per
second.

It may seem counter-intuitive to group two images from each category C ...Cas6
into a huge meta-category, as is done with Interest Detector B. What exactly
is the classifier training on? What makes an image interesting? What if we
have merely created a classifier that detects the photographic style of Stephen
Shore? For these reasons any classifier which implements attention should be
verified on a variety of background images, not just those in C57. For example
the Caltech-6 provides 550 background images with very different statistics.

12\When measuring speed, training time is ignored because it is a one-time expense
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Figure 14: ROC curve for three different interest classifiers described in sec-
tion 4.5. These classifiers are designed to focus the attention of the multi-
category detectors benchmarked in Figure 12. Because Detector B is roughly
200 times faster than A or C, it represents the best tradeoff between perfor-
mance and speed. This detector can accurately detect 38.2% of the interesting
(non-clutter) images with a 0.1% rate of false detections. In other words, 1 in
1000 of the images classified as interesting will instead contain clutter (solid red
line). If a 1 in 100 rate of false detections is acceptable, the accuracy increases
to 58.6% (dashed red line).

5 Conclusion

Thanks to rapid advances in the vision community over the last few years,
performance over 60% on the Caltech-101 has become commonplace. Here we
present a new Caltech-256 image dataset, the largest set of object categories
available to our knowledge. Our intent is to provide a freely available set of
visual categories that does a better job of challenging today’s state-of-the-art
classification algorithms.

For example, spatial pyramid matching [2] with Ni;ain = 30 achieves perfor-
mance of 67.6% on the Caltech-101 as compared to 34.1% on Caltech-256. The
standard practice among authors in the vision community is to benchmark raw
classification performance as a function of training examples. As classification
performance continues to improve, however, new benchmarks will be needed to
reflect the performance of algorithms under realistic conditions. Beyond raw
performance, we argue that a successful algorithm should also be able to

e Generalize beyond a specific set of images or categories
e Identify which images or image regions are worth classifying
In order to evaluate these characteristics we test two new benchmarks in

the context of Caltech-256. No doubt there are other equally relevant bench-

17



Performance (%)

Performance as a Function of the Number of Categories
100 T T T T T T T T T T T T T T

90

80

I
|
o
o
o
[

I

70

60

50

40 -

30

20

10

|
|
E
|
|
i
o]
[ T N S N i i ||||||l |
4 6 8 10 20 40 60 80100 200

categories

Figure 15: In general the Caltech-256 images are more difficult to classify than
the Caltech-101 images. Here we plot performance of the two datasets over a
random mix of Neategories from each dataset. Even when the number of cate-
gories remains the same, the Caltech-256 performance is lower. For example at
Neategories = 100 the performance is ~ 60% lower.

marks that we have not considered. We invite researchers to devise suitable
benchmarks and share them with the community at large.

If you would like to share performance results as well as your confusion
matrix, please send them to caltech256@vision.caltech.edu. We will try to
keep our comparison of performance as up-to-date as possible. For more details
see

http://www.vision.caltech.edu/Image_Datasets/Caltech256

6 Acknowledgments

We are indebted to Marco Andreetto, Fei Fei Li and Marc’Aurelio Ranzato who
collected Caltech-101. We also made use of some parts of the Caltech-101 code
written by Rob Fergus. Pierre Moreels provided code and guidance. Finally
thanks to our sorters Elisabeth Fano, Nick Lo, Julie May and Weiyu Xu for
their diligent work. Marco Andreetto and Claudio Fanti also sorted images.

References

[1] F.F. Li, R. Fergus, and Pietro Perona. Learning generative visual models
from few training examples: An incremental bayesian approach tested on
101 object categories. In IEEE CVPR Workshop of Generative Model Based
Vision (WGMBYV), 2004.

18



2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural scene categories.
In IEEE Conference on Computer Vision & Pattern Recognition, 2006.

Hao Zhang, Alexander C. Berg, Michael Maire, and Jitendra Malik. Svm-
knn: Discriminative nearest neighbor classification for visual category
recognition. In IEEE Conference on Computer Vision € Pattern Recogni-
tion, 2006.

Jim Mutch and David G. Lowe. Multiclass object recognition with sparse,
localized features. In IEEE Conference on Computer Vision & Pattern
Recognition, 2006.

R. Fergus. Visual Object Category Recognition. PhD thesis, University of
Oxford, 2005.

Tamara L. Berg Alexander Berg and Jitendra Malik. Shape matching and
object recognition using low distortion correspondences. Technical Report
UCB/CSD-04-1366, EECS Department, University of California, Berkeley,
2004.

S. Nene, S. Nayar, and H. Murase. Columbia object image library: Coil,
1996.

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient
boosting procedures for multiclass object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
pages 762-769, Washington, DC, June 2004.

Everingham and Mark et al. The 2005 pascal visual object classes challenge.
In Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognising Tectual Entailment (PASCAL Work-
shop 05), number 3944 in Lecture Notes in Artificial Intelligence, pages
117-176, Southampton, UK, 2006.

A. Opelt and A. Pinz. Object localization with boosting and weak supervi-
sion for generic object recognition. In Proceedings of the 14th Scandinavian
Conference on Image Analysis (SCIA), 2005.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme:
a database and web-based tool for image annotation. MIT AI Lab Memo
AIM-2005-025, 2005.

David G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91-110, 2004.

Stephen Shore. Uncommon Places: The Complete Works. Aperture, 2004.
Stephen Shore. American Surfaces. Phaidon Press, 2005.

Alex Holub, Max Welling, and Pietro Perona. Combining generative models
and fisher kernels for object recognition. In ICCV, pages 136-143, 2005.

19



[16] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discrimi-
native classification with sets of image features. In ICCV, pages 1458-1465,
2005.

[17] Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching
and object recognition using low distortion correspondences. cupr, 1:26-33,
2005.

[18] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features, 2001.

20



