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Embedding Cube-Connected Cycles 
Graphs into Faulty Hypercubes 

Jehoshua Bruck, Senior Member, IEEE, Robert Cypher, Member, IEEE, and Danny Soroker 

Abstruct- We consider the problem of embedding a cube- 
connected cycles graph (CCC) into a hypercube with edge faults. 
Our main result is an algorithm that, given a l i t  of faulty edges, 
computes an embedding of the CCC that spans all of the nodes 
and avoids all of the faulty edges. The algorithm has optimal 
running time and tolerates the maximum number of faults (in 
a worst-case setting). Because ascend-descend algorithms can be 
implemented efficiently on a CCC, this embedding enables the 
implementation of ascend-descend algorithms, such as bitonic 
sort, on hypercubes with edge faults. We also present a number 
of related results, including an algorithm for embedding a CCC 
into a hypercube with edge and node faults and an algorithm for 
embedding a spanning torus into a hypercube with edge faults. 

Index Terms- Cube-connected cycles, fault tolerance, graph 
embedding, gray code, hypercube, mesh, parallel computing, 
torus. 

I. INTRODUCTION 
HE n-dimensional hypercube (n-cube) is a popular inter- T connection topology for parallel computers. It has been 

studied extensively in the literature and it is used in several 
machines that are built and sold commercially, such as the 
Intel ZPSC-860, the nCUBE-2 and the Connection Machine 
CM-2. An important issue related to such parallel machines is 
how they can compute in the presence of faults. In this paper 
we study this issue for the class of ascend-descend algorithms. 

Ascend-descend algorithms are an important class of al- 
gorithms that have efficient parallel implementations on the 
hypercube and several related topologies. They were first 
described by Preparata and Vuillemin [14], who showed that 
many widely used parallel algorithms, including bitonic sort, 
FFT and several matrix operations, are either ascend-descend 
algorithms or are composed entirely of subroutines that are 
ascend-descend algorithms. In an ascend-descend algorithm 
communication is synchronous and occurs in phases. In any 
one phase all of the processors communicate across a single 
dimension of the hypercube, while successive phases use either 
successively higher numbered dimensions (i.e., the dimensions 
are used in ascending order) or successively lower numbered 
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dimensions (i.e., the dimensions are used in descending order). 
Because ascend-descend algorithms use all of the hypercube 
edges (communication links) and nodes (processors), even a 
single faulty edge or node can seriously affect their efficiency. 
The goal of this paper is to obtain efficient, simple imple- 
mentations of ascend-descend algorithms on hypercubes with 
faulty components. 

The issue of computing with faulty hypercubes and related 
computers has been addressed in a number of recent papers 
[ll-[5], [7]-[lo], [12], [15]. Some of the previous work has 
considered randomly located faults [2, 10, 151, while the 
current paper assumes a worst-case distribution of faults. 
Furthermore, much of the previous work has considered the 
effects of node faults [ll-[3], [7], [8], [lo], 1121. In particular, 
Aiello and Leighton have shown that any hypercube algorithm 
can be run on an n-cube with no(') node andor edge 
faults with only a constant factor slowdown [l]. However, 
the slowdown factor is rather large (although constant), thus 
making that approach unsuitable in practice. 

In contrast, the main result presented here addresses the 
effects of edge faults. By focusing on Ieqge faults, we are 
able to obtain implementations of ascend-$pcend algorithms 
which use all of the hypercube nodes. More specifically, we 
show that any ascend-descend algorithm can be implemented 
on an n-cube which has n - 3 or fewer faulty edges with only 
a small constant factor slowdown in communication and no 
slowdown in computation relative to its implementation on a 
fault-free n-cube. This is the first result known which obtains 
this performance given such a large number of edge faults. 
In addition, we show how a similar approach can be used to 
tolerate node faults. 

Our approach is to find a fault-free subgraph of the n- 
cube on which ascend-descend algorithms can be implemented 
efficiently (i.e., with only a constant factor slowdown in 
communication relative to their implementation on a fault- 
free hypercube). It is well-known that the shuffle-exchange 
and the cube-connected cycles (CCC), both of which are con- 
stant degree graphs, can implement ascend-descend algorithms 
efficiently. However, for any n 2 3 the shuffle-exchange with 
2n nodes contains a cycle of length 5. As a result, the shuffle- 
exchange is not a subgraph of the n-cube, which is bipartite. 
On the other hand, every n-cube does contain a CCC as a 
spanning subgraph. In fact, it will be shown that every n-cube 
with n-3 or fewer edge faults contains a fault-free CCC which 
is a spanning subgraph of the n-cube. Because each node in 
the CCC has degree 3, and because a worst-case distribution 
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of the faults is assumed, n - 3 is also an upper bound on 
the number of faults that can be tolerated'. Furthermore, an 
optimal O(n) time sequential algorithm will be presented 
which locates the fault-free CCC given the locations of the 
edge faults. In addition, we will give algorithms for embedding 
a CCC into a hypercube with node and edge faults and 
for embedding a spanning mesh into a hypercube with edge 
faults. 

The remainder of the paper is organized as follows. Section 
I1 presents some definitions and notation that will be used 
throughout the paper. In Section 111, we give an overview of 
our approach for embedding a CCC into a hypercube while 
avoiding faulty edges. Sections IV-VI1 contain the details of 
the embedding algorithm. Extensions are presented in Section 
VI11 and conclusions are given in Section IX. 

11. DEFINITIONS AND NOTATION 
Given an integer x, where 0 5 x < 2", the n-bit binary 

representation of x will be denoted (x("-~) . . . x(~)) and the 
ith least significant bit of 5, where 0 5 i 5 n - 1, will be 
denoted ~ ( ~ 1 .  Given an integer x(i) E (0, l}, the complement of 
x(~), denoted Z(i),.equals 1 -"(;I. Given n-bit binary numbers 
x and y, the bitwise exclusive-or of x and y will be denoted 
x €9 y. An n-bit Gray code is a sequence of 2" unique integers 
20, x1 . . . x2n-1 in the range 0 through 2" - 1 such that for any 
i and j in the range 0 through 2" - 1 where j = (i+ 1) mod 2", 
the binary representations of x; and xj differ in exactly one 
bit position. 

The n-dimensional hypercube (n-cube) consists of 2" 
nodes, each of which has a unique label in the range 
0 through 2" - 1. Any pair of hypercube nodes are 
adjacent if and only if their binary representations dif- 
fer in exactly one bit position. The edge e which con- 
nects hypercube nodes (e("-l) . . . e(;+l)e(;)e(;-l) . . . e(o)) 
and . . . e(;+l)e(e 2) (2-1) . . .  .e(o)) will be denoted 
(e(n-l) . . . e(i+l) * e(;-l) . . . e(o)) and the jth least significant 
bit of e, where j # i and 0 5 j 5 n - 1, will be denoted e(j). 
Such an edge e will be referred to as being in dimension i ,  and 
the terms "dimension" and "bit" will be used interchangeably 
throughout. The four-dimensional hypercube is shown in 
Fig. 1, in which edges in the same dimension appear parallel. 
It will be assumed that a faulty hypercube edge cannot be 
used for communication, while a faulty hypercube node can 
be used neither for computation nor for communication. It 
will also be assumed that the faults are static and that their 
locations are known. 

Let n = 2k + k for some integer k .  The n-dimensional cube- 
connected cycles (CCC) [14] consists of 2" nodes, each of 
which has a unique label of the form ( I ,  c) where 0 5 1 < 2" 
and 0 5 c < 2k. Each node (1,c) is connected to nodes 
(l,(c + l ) m 0 d 2 ~ )  and (1,(c .- l ) m 0 d 2 ~ )  via forward and 
backward cycle connections and to node (m,c), where the 
binary representations of m and 1 differ in only bit position 
c, via a lateral connection. n u s  a ccc consists of 22' 
cycles, each of which has length 2k.  For example, the six- 

'For some values of n,  the CCC contains nodes with degree 2, in which 
case n - 2 faults can be tolerated. This case is discussed in section 7. 
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Fig. 1. 
drawn parallel. 

The four-dimensional hypercube. Edges in the same dimension are 

dimensional CCC is obtained by replacing each node in Fig. 1 
by a cycle of length 4. The nodes within each cycle are 
numbered sequentially (modulo 2'), and lateral edges connect 
nodes in different cycles. Note that each node (1, c) can be 
assigned a unique n-bit number where the k least significant 
bits give the value of c, the node's position within its cycle, 
and the remaining bits give the value of 1, the number of the 
cycle to which it belongs. 

111. RIE EMBEDDING STRATEGY 

This section gives an overview of how a fault-free n- 
dimensional CCC can be embedded in an n-cube with n - 3 or 
fewer edge faults. We will assume throughout the discussion 
that n = 2k + k  for some integer k. An extension of our results 
to arbitrary values of n will be given in Section VII. 

In order to simplify the presentation, we will modify the 
previous definition of a CCC in three ways. First, rather than 
numbering the nodes within each cycle sequentially, we will 
number them with a Gray code. Second, the correspondence 
between a node's position within a cycle and the type of 
lateral connection which it has (that is, which bit position 
the lateral connection complements) will be loosened. Third, 
the bits which specify a node's position within a cycle can 
be interleaved with the bits which specify the number of the 
cycle to which it belongs. More formally, each node is labeled 
with a unique binary string of length n = 2k + k .  The bits in 
the string are of two kinds: 

Lateral bits: lo ,  . . , / 2 k  -1; 
Cycle bits: co , . . . , Ck- 1. 
Each node has three neighbors, each of which differs from 

it in a single bit. We will call the three dimensions (bits) which 
connect a node, x, to its neighbors the active dimensions (bits) 
of x. A node has two cycle neighbors and one lateral neighbor. 
The cycle neighbors of a node each differ from it in one cycle 
bit, and its lateral neighbor differs from it in a single lateral 
bit, subject to the following requirements. 

1) All of the nodes which have the same lateral bit values 

2) Along any one such cycle, each lateral bit is active 

3) Any two nodes with the same cycle bit values have the 

form a cycle (of length zk). 
exactly once. 

same active (cycle and lateral) bits. 



It is straightforward to verify that the above definition is 
equivalent to the original definition. 

Recall that in an n-cube each node is labeled with a unique 
binary string of length n and two nodes are adjacent if they 
differ in exactly one bit. It is well-known that a CCC with 2n 
nodes is a subgraph of the n-cube, as we will demonstrate with 
the following simple embedding. First, select k dimensions 
in the n-cube to correspond to the cycle bits and let the 
other 2k dimensions correspond to the lateral bits (recall that 
n = 2k + k). This partitions the n-cube into disjoint k-cubes, 
each of which contains 2k nodes that differ in only the cycle 
bits. Second, select a k-bit Gray code and use this Gray code 
to embed an identical cycle of length 2k in each of the k- 
cubes. The edges in these cycles will be the cycle edges of 
the CCC. Third, select a 1-1 correspondence between the set 
of 2k values of the cycle bits and the set of 2k lateral bits. 
For each value of the cycle bits, connect the n-cube nodes 
with the given value of the cycle bits along the corresponding 
lateral dimension. These edges will be the lateral edges of the 
ccc. 

We will use the same three-stage embedding in order to 
find a fault-free CCC in an n-cube with faulty edges. Thus 
our embedding will perform the following operations. 

1) Partition the n-cube dimensions between cycle dimen- 

2) Construct a spanning cycle within the cycle dimensions. 
3) Construct a 1-1 correspondence between the lateral bits 

In the following sections we will describe how to perform 
each of the above tasks. Our main result will be obtained 
by identifying a sufficient number of degrees of freedom 
in each of these stages in order to construct a fault-free 
embedding. We describe Step 1 last because we will need 
the conclusions from Steps 2 and 3 to guide us in partitioning 
the dimensions. 

sions and lateral dimensions. 

and the set of values of the cycle bits. 

Iv .  CONSTRUCTING A SPANNING CYCLE IN A FAULTY CUBE 

In this section, we describe how to construct a spanning 
cycle (i.e., Hamiltonian cycle) in a k-dimensional hypercube 
that contains some faulty edges. We assume that the k cycle 
bits have been selected in such a way that there are at 
most k - 2 faulty edges within the cycle dimensions. This 
assumption will be justified in Section VI. Chan and Lee have 
shown that any k-cube with k - 2 faulty edges is Hamiltonian 
[6], but their existence proof does not provide an efficient 
algorithm for finding such a cycle. Our result here is an O ( k )  
time sequential algorithm for the following problem. 

Input: An integer k and a set F of faulty edges in a k-cube 

Output: A description of a spanning cycle of the k-cube 

The reason we consider all of the faults to lie within a single 
k-cube is that for the CCC embedding we must construct a 
single cycle within the cycle bits. In other words, given a 
partition of the n-cube into k-cubes, we are interested only in 
the location of a fault within a k-cube, not in which k-cube 
it is located. 

such that IF( 5 k - 2. 

that avoids all of the edges in F. 

93 Q2 91 go 
0 0 0 0  
0 0 0 1  
0 0 1 1  
0 0 1 0  
0 1 1 0  
0 1 1 1  
0 1 0 1  
0 1 0 0  
1 1 0 0  
1 1 0 1  
1 1 1 1  
1 1 1 0  
1 0 1 0  
1 0 1 1  
1 0 0 1  
1 0 0 0  

Fig. 2. The Cbit binary reflected Gray code G4. 

The main idea of the algorithm is as follows. Consider some 
spanning cycle, C, of the k-cube. By applying an adjacency- 
preserving permutation, T ,  to the nodes of the k-cube, C 
maps to another spanning cycle, C,. Our goal will be to 
find a permutation for which the derived cycle avoids all of 
the faulty edges. The key is to start with a highly structured 
initial cycle and exploit its structure in order to construct x 
efficiently. 

In particular, the spanning cycle C which we use is given 
by the binary rejected Gray code. k t  Gk = gk,Olgk,ll”‘ 
gk,2k -l denote the binary reflected Gray code with k bits, and 
given an X E {011} let X&,j denote the (k + 1)-bit binary 
number obtained by concatenating X and gk,j. The binary 
reflected Gray code is defined recursively as follows: 

GI = 0 , l  
If 2 1, Gk+l = Ogk,o10gk,ll“’,0gk,2k-l1lgk,2~-l, 

The binary reflected Gray code for the case k = 4 is shown 
in Fig. 2, and graphically in Fig. 3(a). 

The permutations we consider are of two kinds. The first is 
the set of permutations of the bit positions. The second is the 
set of “translations” given by the bitwise exclusive-or with a 
constant. A translation is specified by a k-bit integer b, which 
we will call the bias. Given a bias b, the translation maps each 
node 2 to node 2 @ b. The cycle Gq and its translation by bias 
OOO1 are shown in Fig. 3. 

Our analysis proceeds as follows. First, we select a per- 
mutation of the bit positions in Gk in order to produce a 
modified Gray code which is less likely to contain faulty edges 
than the original Gray code, Gk. Then, for any given edge, e, 
we characterize the set of biases that map some edge of the 
modified Gray code cycle onto e. We call a bias in this set bad 
for e,  since if e is faulty, this bias cannot be used. Carrying 
this methodology further, we construct a good bias, i.e., one 
that is not bad for any of the faulty edges. By translating the 
modified Gray code cycle by this good bias, we thus obtain 
a fault-free cycle. 

lgk,P-2, ‘ .  * 7 Igk,O. 
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Fig. 3. 
obtained by translating G4 by bias OOO1. 

(a) The four-dimensional Gray code cycle, Gq. (b) The cycle 

Our permutation of the bit positions will be based on the 
following properties of binary reflected Gray codes. 

Lemma I :  The cycle G k ,  defined by the k-bit binary re- 
flected Gray code, contains all of the edges in dimension 
0 and edges ( * O . . - O )  and (*10-..0) in dimension k - 1. 
Furthermore, an edge e in dimension i, 0 < i < k - 1, is in 
Gk, if and only if e(i-1) = 1 and e ( j )  = 0 for d l  0 5 j < i-1. 

Pro08 The fact that the above conditions are sufficient 
for an edge to be in the cycle Gk follows immediately from 
the construction. The fact that the above conditions are also 
necessary can be shown by a simple counting argument. 
Specifically, there are 2k-1 edges in dimension 0, 2 edges in 
dimension k - 1 which meet the stated conditions and 2"'-' 
edges in dimension i ,  where 0 5 i 5 k - 2, which meet the 
stated conditions. Therefore, a total of 2+x:z t  2"Z-l = 2+ 

2i = 2k edges meet the stated conditions. Because GI, 
contains 2k edges and all of those edges meet the conditions, 

0 
Corollary 2: The cycle Gk, defined by the k-bit binary 

reflected Gray code, contains 2"l-Z edges in dimension i, for 
all i in the range 0 through k - 2, and two edges in dimension 
k - 1. 

Another way of stating the above corollary is that Gk 
contains all of the dimension-0 edges, half the dimension-1 
edges, a quarter of the dimension-2 edges and so on. Only 
dimension k - 1 behaves differently in that it is active twice, 
rather than once. Therefore, our first step is to permute the 
dimensions so as to achieve the following property. 

Properry A (Cycle Dimensions): The number of faults in 
dimension i is no more than the number of faults in dimension 
j for all i < j .  

all edges which meet the conditions must be in Gk. 

In the remaining description we will assume that the di- 
mensions have been permuted so that Property A holds. We 
will now characterize the cases in which a bias is bad for a 
given edge. 

Lemma 3: Let e be an edge in dimension i of the k-cube. 
A bias, b, is bad for e according to the following necessary 
and sufficient conditions. 

i = 0: unconditionally 
1 5 i 5 k - 2: when b(i-l) = 

i = k - 1: when b ( j )  = e(j) for all j < k - 2.  

and b ( j )  = e ( j )  

for all j < i - 1. 

Pro08 Recall that a bias is bad for e if it maps an edge 
of Gk to e. Since the mapping is through the exclusive-or 
function, which has the property that if z @ y = z then 
z @ y = z, it follows that b is bad for e if and only if e @ b is 
an edge of Gk. Thus the claim follows from Lemma 1 .  

Now we are ready to present an efficient and simple 
algorithm for constructing a good bias. The idea is to use 
a diagonalization technique on the set F .  For each element, 
e E F ,  we choose one bit of the bias in a way that ensures that 
the bias is good for e. In particular, for an edge e in dimension 
i ,  if, for some j < i - 1, we set bit j of the bias to be e(j), then 
the bias will be good for e, as implied by Lemma 3. It tums out 
that, due to Property A, this can be done simultaneously for 
all of the elements of F .  This is formalized in the following 
lemma. 

Lemma 4: Let F = {fo, . . . , f"'} be a set of faulty edges 
for which Property A holds, such that the. dimension of f is 
no more than that of fj if i < j .  Let bF be a bias defined by 

Then bF is good for F .  
Pro08 By Property A, edge f k-3 is in dimension k - 1. 

For each i where 0 5 i < k - 3, the dimension of edge f z  is 
either equal to the dimension of edge fi+l or it is one less. 
By induction, for all i where 0 5 i 5 k - 3, the dimension of 
f z  is at least i + 2. Let_fi be an arbitrary edge in F.  From the 
construction, b? = fti). From Lemma 3 and the fact that the 
dimension of f" is at least i + 2, it follows that bF is good for 
fi. It follows that bF is good for all of the edges in F .  

Thus. we obtain the following simple linear time algorithm 
for constructing a fault-free spanning cycle. 

Spanning Cycle Algorithm: 
1) Sort the dimensions according to the number of faults 

(using bucket sort) so that the number of faults increases 
with the dimension. 

2) Sort the faults by dimension (again using bucket sort) so 
that lower numbered faults belong to lower dimensions. 

3) Construct a good bias by complementing the appropriate 
bits of the faulty edges according to Lemma 4. 

1)  

0 

In Section VIIJ-B, we show how this method can be extended 
to handle a larger number of faults, provided that they are 
distributed in a certain manner. 
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v. MATCHING LATERAL BITS TO CYCLE POSITIONS 

In the CCC, any two nodes with the same cycle bit values 
have the same active lateral bit (see Section 3). Thus there is a 
1-1 correspondence between the set of lateral bits and the set of 
cycle positions. In this section we show how to construct such 
a correspondence that avoids all of the faulty lateral edges. 
We cast the problem at hand in terms of bipartite matching 
and discuss it in terms of an adjacency matrix, M ,  that has 
a row for each cycle position, a column for each lateral bit, 
and an “x”  in each entry that contains a faulty edge. The 
task is to select one location in each row and column so that 
none of the selected locations has an x. We will assume that 
the dimensions of the n-cube have been partitioned between 
cycle dimensions and lateral dimensions in such a way as to 
guarantee a certain property (Property B given below). In the 
next section we will describe how to efficiently construct a 
partition that has this property. 

Property B (Lateral Dimensions): No row or column of the 
matrix is completely filled with x’s. 

Recall that n = 2k + k and that the total number of faulty 
edges in the n-cube is at most n - 3. Let m = 2k. Thus the 
matrix M in the matching problem is of size m x m, and the 
number of x’s in M is at most m + k - 3, which is less than 
( l . l )m for all values of k.  It will therefore be sufficient to 
obtain a linear time algorithm for the following problem. 

Input: An integer m and a list of at most ( 1 . 1 ) ~ ~  faulty 
locations in an m x m matrix, M ,  such that no row 
or column is completely faulty. 

Output: A perfect matching of rows to columns that avoids 

It is important to note that the input is given by a sparse 
representation, so the running time of the algorithm should be 
proportional to m, and not to the size of M ,  which is m2. 

Intuitively, if we start by matching rows and columns that 
have many x ’s, then the chance of being unable to extend the 
matching at a later stage will be small. As a result, we will 
start by considering a simple greedy algorithm for solving the 
problem. This algorithm is given below. 

all of the faulty locations in M .  

Greedy Matching Algorithm: 
1) Sort the rows and columns by the number of x’s, and let 

To, .  . . , rm-l and CO, .. . , cm-l be the lists of rows and 
columns, respectively, in order of decreasing numbers 
of x’s. 

2 )  For i equals 0 through m - 1, find the least j such that 
cJ is unmatched and M [ i , j ]  is not marked, and match 
ri to c J .  

0 

Lemma 5: The greedy algorithm given above constructs a 
fault-free matching of all but at most one rowkolumn pair. 
Furthermore, if there is a row with no faults ( x  ’s), then the 
algorithm constructs a fault-free matching of all of the rows 
and columns. 

Proof: Assume that step 2 of the algorithm gets stuck 
when trying to match row i. This means that when reaching 
stage i, all of the remaining entries in row i are marked. 
(By remaining entries we mean those in columns that are still 
unmatched at stage i.) Thus row i of M has at least m - i 

x’s. Now, since the rows are sorted in decreasing order in 
terms of the number of x’s, it follows that r j  has at least 
m - i x’s, for all j < i. Therefore the number of x’s in 
M is at least (i + 1) . (m - i). But since the total number 
of x’s in M is at most ( l . l)m, i can be only 0 or m - 1. 
The case i = 0 is disallowed, since it implies that ro is totally 
marked. Therefore, the only place where the algorithm can 
get stuck is in matching the last row to the remaining column. 
Furthermore, if the last row has no x’s, then the algorithm 
will not get stuck. 0 

Modijied Matching Algorithm: 
1 )  If m = 1, match row TO to column co and return. 

2)  Run step 1 of the greedy matching algorithm. 
3) Run step 2 of the greedy matching algorithm for i equals 

4) Match the last two rows (rm-2 and rm-l)  to the 

Otherwise, perform the following operations. 

0 through m - 3. 

remaining two columns. 
0 

Lemma 6: The modified algorithm given above always 
constructs a fault-free matching of all of the rows and columns. 

Proof: Assume for the sake of contradiction that the 
modified algorithm fails to find a fault-free matching. First, 
note that the modified algorithms succeeds whenever m 5 2, 
so it follows that m 2 3. The proof of Lemma 5 implies 
that the greedy matching algorithm will successfully match 
the first m - 2 rows. Thus the modified algorithm must fail 
when attempting to match the last two rows. The fact that the 
rows are sorted implies that each of the last two rows, rm-2 

and rm-l, contains at most one marked entry. Therefore, one 
of the two columns that remains when attempting to match the 
last two rows must be marked in both of the last two rows. 
Let ci denote this column. Note that i # 0, because co is 
matched in the first row in which it is not marked, and no 
column is marked in every row. The fact that ci remains when 
attempting to match the last two rows implies that ci contains 
at least m - i marked entries. Because the columns are sorted 
in decreasing order in terms of the number of marked entries, 
column cj has at least m - i marked entries for all j 5 i. 
Thus there are at least (i + l)(m - i) marked entries. Because 
(i + l)(m - i) 5 (1.l)m and m 2 3, it follows that either 
i = 0 or i = m - 1. It was shown above that i # 0, so 
i = m - 1. However, column i = m - 1 contains at least two 
marked entries, so every column must contain at least two 
marked entries. As a result, there are at least 2m > (l . l)m 
marked entries, which is a contradiction. 0 

The modified algorithm can be implemented in linear time 
as follows. Step 1 takes constant time. Step 2 can be performed 
using bucket sort. For Step 3, have a linked list of “remaining 
columns” and for each row have a list of the columns in 
which it has x’s. Have all these column lists sorted (starting 
with lower index). Now, at stage i, scan the list of remaining 
columns and the list of x’s in row i. Find the first column 
that does not have an x at row i, and remove it from the 
list of remaining columns. The running time of this stage is 
proportional to m plus the total number of x ’s, which is O(m). 
Step 4 takes constant time. 
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The faults: 
I Faults 11 Projection I Projection 1 

b5b4b3b2b1b0 (1 on bl bo 1 on 62 61 
O * l O O O  11 0 0  I 0 0  
0 1 * 8 0 0  
0 0 * 0 0 1  

0 1 * 1 1 0  1 0  
I 1 1 * 0 1 1  J:lq;q 

The matching matrices: 

Fig. 4. Two partitions which result in different matching matrices. 

VI. PARTITIQNING THE DIMENSIONS 

So far, we have described how to efficiently construct a 
fault-free embedding of the cycles and the lateral edges of a 
CCC in a hypercube. The missing ingredient, which will be 
presented in this section, is how to partition the dimensions of 
the n-cube between cycle dimensions and lateral dimensions. 
By the discussion so far, the following two requirements are 
sufficient to guarantee that a partition, P, of the dimensions 
will yield a sohion to the embedding problem. 

1) Under P there are at most k - 2 faulty cycle edges. 
2) Under P,  Property B (of Section V) holds. 

Say we partition the dimensiqns so that the k dimensions with 
the least number of faults are cycle dimensions and the rest 
are lateral dimensions. Since the total number of faults is at 
most n - 3, it follows that there will be at most k - 3 faulty 
cycle edges. (The worst case is when the n-cube has 3 fault- 
free dimensions and n - 3 single-fault dimensions.) However, 
Property B (of Section V) is not guaranteed to hold. If the 
problem is that a whole row is marked with x 's ,  then the 
solution is simple: in this case, many dimensions (more than 
2"') have a single fault. Therefore we can assign 2 fault- 
free dimensions and k - 2 single-fault dimensions as cycle 
dimensions. Under this assignment there are 2k - 1 lateral 
faults, so no row (or column) can be completely marked. 

When a whole column is marked, the problem is more 
complicated. In this case, there is a single "bad" dimension 
with many faults (at least 2'). Note that, consequently, the total 
number of faults in all of the remaining 2' + k - 1 dimensions 
is at most k - 3. Thus we may choose any IC of the remaining 
dimensions as cycle dimensions. Furthermore, there must be at 
least 2' + 2 fault-free dimensions, from which we will choose 
the cycle dimensions. We observe that the choice of which k 
fault-free dimensions are picked influences the structure of the 
matching matrix, M .  In particular, it can determine whether 
M has a completely filled column. An example is shown in 
Fig. 4. 

Now we can state the prqblqpl to solve when there is a 
highly faulty column. 

Partition Problem: Select a set, G, of IC fault-free dimen- 
sions as cycle dimensions so that in the resulting matching ma- 

trix, M ,  the bad column (corresponding to the bad dimension) 
will contain at least one unmarked entry. 

We first prove that such a partition always exists. Our proof 
will provide an efficient algorithm for finding the set G. 

Lemma 7: Let IC > 1, and let Tk+2 be the table of all binary 
strings of length k + 2. (T'+2 has k + 2 columns and 2"' 
rows). Let S be a subset of the rows of Tk+2 with the following 
property-for any subset, Ck, of k columns of T k + p ,  the table 
whose columns are Ck and whose rows are s contains all the 
2k  binary words of length k .  Then the size of S is strictly 
greater than 2 k .  

Proof: Assume that IS1 = 2k .  Then we claim that any 
two words in S differ in at least 3 bits (the Hamming distance 
between them is at least 3). If not then two words A ,  B E S 
agree on some subset, C, of k bits. But then the table whose 
columns are C and whose rows are S has less than 2k different 
words, contradicting the assumption. Now, since the Hamming 
distance between any two words of S is at least 3, the distance- 
! neighborhoods of any two words in S are disjoint. Each such 
neighborhood is of size IC + 3, since it contains a word and its 
k + 2 neighbors. Consequently, in the set of words of length 
k + 2 there must be 2k disjoint sets, each of size IC + 3, so: 

( k  + 3 )  .2'" 5 2'"f2. 

But the above inequality holds only for k 5 1, which is a 
contradiction. 0 

Corollary 8: Let S be a set of binary words of length 4 
such that for every subset of 2 bit positions, each of the 4 
possible settings appears in some word of S. Then S contains 
at least 5 words. 

Theorem 9: Let T k + 2  and S be as in the statement of 
Lemma 7. Then the size of S is at least z 2 k .  

Proof: Let ck+1 . . . eo denote the k + 2 columns in T k + 2 .  

Partition the 2k+2 strings in T k + 2  into blocks of size 16, where 
in each block the values of ck+l . . . c4 are fixed and c3 . . . cg 

take on all the 16 possible values. Note that S must contain at 
least 5 words from each such block, because otherwise, from 
Corollary 8, there is some setting of bits in columns ck+l . . . c4 
and of two bits from columns e3 . . . eo that is not covered by 
S. Since these blocks are disjoint, and there are 2"' of them, 
it follows that S contains at least 5 . 2k-2  = :2k words. 0 

Corollary 10: There exists a set, G, of k fault-free dimen- 
sions such that when they are chosen as cycle dimensions, in 
the resulting matching matrix, M ,  the bad column will contain 
at least one unmarked entry. 

Proof: Restricting our attention to any set D of k + 2 
fault-free dimensions, we can map each fault to a binary word 
of length IC + 2 by considering the position of the fault in each 
of the dimensions in D (of course multiple faults may map 
to a single binary word of length k + 2). From Theorem 9, 
it follows that if there are less than 1.25 . 2'" faults, then D 
contains some set, G, of k dimensions such that the set of 
faults does not map to all of the possible strings on G. Thus if 
we pick G to be the cycle dimensions, the resulting matching 
matrix will contain an unmarked entry in the bad column. 
Because the total number of faults is less than 1.1 . 2 k ,  this is 
always possible. 0 
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Now we are ready to describe a linear time algorithm for the 
following problem. 

Input: An integer n, n = k + 2 k ,  and a set, F, of n - 3 
faulty edges in the n-cube of which at least 2k are 
in one dimension. 

Output: A set G of k fault-free dimensions whose choice 
as cycle dimensions yields a matching matrix in 
which no column is completely filled with x's. 

Dimension Partition Algorithm: 
Select an arbitrary set D of k + 2 fault-free dimensions. 
call the selected dimensions C k + l  . . . C O .  

In an array A of length 2'+', mark the locations in 
which faults occur when they are projected onto the 
dimensions in D. 
Partition the array A into 2"' blocks, each containing 
16 consecutive entries. Find a block, B, which contains 
fewer than 5 faults. 
Find a 2-dimensional subset of cg . . . co for which not 
all of the values are covered by the faults in B. Assign 
these two dimensions together with c4 . . . C k + l  to be the 
set G of cycle dimensions. 

VII. PU'ITING IT ALL TOGETHER 

this section we describe the complete algorithm for 
embedding a CCC in an n-cube with at most n - 3 edge 
faults. There is still one gap that needs to be filled-dealing 
with n-cubes for which n is not of the form 2' + k.  

Let k be the smallest integer for which k + 2k 2 n. The 
CCC graph is defined as in Section 111, with k cycle bits and 
n - k lateral bits. Thus, for general n, the cycle length is at 
least the number of lateral bits, but never more than twice 
that number. Therefore at least half of the cycle positions 
have lateral connections, but not necessarily all. We call the 
positions which have lateral connections active. Note that if a 
node is not active, its degree is 2, so if not all the nodes are 
active (i.e., n is not of the form 2' + k ) ,  n - 2 faults should 
be tolerated. Our algorithm achieves this bound. 

We would like, for simplicity, to have the active cycle 
positions be an arbitrary fixed set (say positions 0 . .  . n-k- 1). 
However, if n - 2 faults are to be tolerated, then some extra 
care is needed. Specifically, even if k - 2 faults occur in cycle 
edges, the resulting matching matrix, M, could still contain a 
completely marked row. The solution is simple-if some cycle 
position in 0 .  . . n - k - 1 is completely faulty, then replace it 
(in the set of active positions) by position n - k. 

We are now ready to present the embedding algorithm in 
its full generality. 

Fault-Free Embedding Algorithm: 
1) Dimension Partition: 

Sort the n dimensions according to the number of 
faults. 

If at least k - 2 dimensions have a single fault, 
then assign 2 fault-free dimensions and k - 2 
single-fault dimensions as cycle dimensions. 

If some dimension has at least n - k faults, 
then assign the cycle dimensions according to the 
dimension partition algorithm of Section VI. 
If neither of the above two cases holds, assign 
the dimensions with the least number of faults as 
cycle dimensions. 

2) Cycle Construction: Calculate the projections of the 
cycle faults onto the cycle dimensions. Construct a fault- 
free spanning cycle in the k-cube using these values as 
inputs to the spanning cycle algorithm of Section IV. 

3 )  Matching Lateral Bits to Cycle Positions: 

Let M be the matching matrix (described in 
Section V). 
Select the set, R, of active cycle positions (active 
rows of M) as follows. If some row, T ,  in the 
set {O,. . . ,n - k - l} is completely marked, 
then R = {O,...,n - k}\{r}. Otherwise R = 

Let M' be the square submatrix of M whose rows 
are the set R and whose columns are the columns 
of M. Match the lateral bits to the active cycle 
positions using the modified matching algorithm 
of Section V. 

{O,...,n - k - 1). 

VIII. EXTENSIONS 

The previous sections presented an algorithm for embedding 
a CCC into a hypercube with edge faults. In this section 
we will show how the techniques developed above can be 
extended to solve some related problems. 

A. Node Faults 

We will first consider the embedding of a CCC into a 
hypercube with faulty edges and nodes. We assume that a 
faulty node can neither perform computations nor route data. 
Since a faulty edge can be avoided by treating one of the nodes 
to which it is connected as being faulty, we will consider only 
node faults in the remaining discussion. We will concentrate 
on embedding a CCC using half of the n-cube nodes. 

Our basic approach is similar to that used with edge faults. 
Specifically, we use a three step process. 

1) Partition the hypercube dimensions between cycle and 

2) Construct a cycle within the cycle dimensions. 
3) Assign the lateral connections to the dimensions of the 

Since node faults do not show up in steps 1 and 3, they 
can both be performed arbitrarily in constant time. Thus the 
problem reduces to that of constructing a cycle within the cycle 
dimensions. In a manner similar to Section IV, the problem is 
characterized as follows. 

lateral dimensions. 

hypercube. 

Input: A set F of faulty nodes in a k-cube. 
Output: A cycle of length 2"' in the k-cube that avoids 

all the nodes of F. 
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The algorithm for embedding a cycle of length 2'-' in a 
k-cube is given next. 

Partition the k-cube into 2-cubes (arbitrarily). 
Embed a CCC in the resulting ( k  - 2)-cube, disregarding 
faults. 
Now consider a 2-cube to be faulty if any of its nodes 
is faulty, and find the largest connected component of 
the CCC embedded in Step 2. 
(The next two steps are illustrated in Fig. 5.) Find a 
spanning tree of the connected component created in 
the previous step, and remove nodes from this spanning 
tree until it contains exactly 2"' nodes (it is assumed 
that the connected component has at least this many 
nodes). 
Use the spanning tree as the basis for creating the 
cycle with 2"' nodes. First, replace each node of the 
spanning tree with the four nodes in the corresponding 
2-cube, which are connected in the form of a square. 
Next, color the top edge of each square with the color 
T ,  the right edge of each square with R, and the bottom 
edge of each square with B. Then color the edges of 
the spanning tree with T,  R and B so that no adjacent 
edges have the same color. Note that three colors suffice 
because the tree is a subgraph of a CCC and therefore 
has maximum degree at most 3. Now for each edge of 
the spanning tree, add two parallel edges between the 
squares that the spanning tree edge connected. These 
parallel edges should connect the endpoints of the square 
edges having the same color as the spanning tree edge 
to which they correspond. Finally, erase the square 
edges that have colors that match a spanning tree edge 
which is incident to the square. The resulting edges will 
form a cycle that corresponds to an "Euler tour" of the 
spanning tree (in the sense used by Tarjan and Vishkin 
t 161). 

The success of this algorithm depends on finding a con- 
nected component in Step 3 that contains at least 2"' nodes. 
Because a CCC with 2"' nodes can tolerate up to O(2"k) 
faults and still guarantee that there will be a connected 
component with 2'-' nodes [14], [17], this algorithm can 
tolerate up to O(2"k) = O(n/logn)  faults. This gives us 
the following theorem. 

Theorem 11: If n = k + 2k-1 for some integer I C ,  then a 
fault-free CCC with 2"-' nodes can be embedded in an n-cube 
with O(n/ logn) faulty nodes. 

B. Spanning Cycle Under Many Edge Faults 

The problem of determining the existence of a spanning 
cycle in a hypercube with faulty edges has been shown to 
be NP complete [6]. Here we describe how to extend the 
technique of translating the Gray code cycle Gk that was 
described in Section IV, to handle many edge faults when 
they are distributed in a certain manner. 

In particular, we are concerned with the distribution of 
faults across the dimensions. On the one hand, if there is 
at least one fault in every dimension then this technique 
must fail, since any translation of Gk contains all the edges 

in some dimension. On the other hand, it has the potential 
for tolerating exponentially many faults in a single dimen- 
sion. 

Let F be a set of faulty edges in a k-cube. As before, 
assume for the rest of this subsection that the dimensions of 
the k-cube have been renamed so that Property A holds, i.e., 
that the number of faults increases with the dimension. Let n, 
denote the number of faults in dimension i .  Then we have the 
following theorem. 

Theorem 12: If the faults in the set F obey the following 
constraint 

k-2 

C n , 2 - " + n k - ' 2 2 4  < 1 
2=0 

then there is some bias b for which the cycle Gk @ b is fault 
free. 

Proof: By Lemma 3,  the fraction of biases which are bad 
for an edge in dimension i is 2-i for 0 5 i 5 k - 2, and 22-k 
for i = k - 1. Therefore the fraction of bad biases for the set 
F is given by the left hand side of the constraint above. 0 

Note that Theorem 12 describes a condition that is sufficient, 
but not necessary. If the theorem holds for a set F ,  then a good 
bias b can be constructed by the following greedy algorithm. 

Greedy Spanning Cycle Algorithm: 
1) Sort the dimensions according to the number of faults, so 

that the number of faults increases with the dimension. 
2) Assign weights to the faults by giving weight 2-, to 

each fault in dimension i, 0 5 i 5 IC - 2, and weight 
22-k to each fault in dimension k - 1. 

3) Create the set A and initialize it to contain all of the 
faults in F .  The set A will contain those faults which 
have a possibility of lying on the cycle Gk @ b. 

4) For i = 0 to k - 2 do the following. 

Create the set A0 which consists of those faults 
in A that have a possibility of lying on the cycle 
G,+ €9 b if bit i of b equals 0. 
Create the set Al which consists of those faults 
in A that have a possibility of lying on the cycle 
Gk @ b if bit z of b equals 1. 
Calculate the total weight of the faults in A0 and 
of the faults in Al.  If the faults in A0 weigh less 
than the faults in Al,  set bit i of b to 0 and let 
A = Ao. Otherwise, set bit i of b to 1 and let 
A = Ai .  

5) Set bit k - 1 of b to 0 (actually, this assignment is 
arbitrary). 

Theorem 13: If the set F satisfies the condition of Theorem 
12 then the above algorithm constructs a bias b for which the 
cycle Gk @ b is fault free. 

Proof: We will use induction on i to show that for 
0 5 i 5 k - 2, immediately before setting bit i of b the total 
weight of the faults in A is less than 2-2. The basis is i = 0, in 
which case the claim follows from the fact that the total weight 
of the faults in F is less than 1. The induction hypothesis is 
that the claim holds for i 5 j for some j ,  0 5 j 5 k - 3. 

0 
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(c) 

Fig. 5.  
of the connected component after excessive nodes have been removed. (c) The spanning cycle corresponding to the tree in (b). 

An illustration of the algorithm for node faults, (a) A maximum fault free connected component of a CCC of 2-cubes. (b) A colored spanning tree 

From the induction hypothesis, immediately before setting bit 
j of b, the total weight of the faults in A is less than 2 - j .  
As a result, all of the faults in A appear in dimensions j + 1 
through k - 1 (because even a single fault in dimension j or 
lower has weight at least 2 - J ) .  Therefore, from Lemma 3 ,  each 
fault is in either A0 or A I ,  but not both. Thus after setting bit 
j the total weight of the faults in A is less than 2T- ' ,  which 
completes the inductive proof. 

From the above inductive proof, immediately before setting 
bit IC - 2 of b the total weight of the faults in A is less than 
2-'+', which implies that A is empty. Therefore, no fault lies 

0 on the cycle Gk 63 b. 
It is easily verified that the running time of the above 

algorithm is O ( k l F ( ) .  Note that it may produce a good bias 
even if the total weight of F is more than 1, but this is not 
guaranteed. 
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C. Mesh and Torus Embedding 

Theorem 13 can be used to obtain embeddings of meshes 
and tori into hypercubes with faulty edges. We will consider 
only the problem of embedding a 2” x 2” x . . .  x 2m d- 
dimensional torus into an n-cube, where n = dm, but it is 
possible to generalize the results to meshes and tori with sides 
of different lengths. Our approach consists of partitioning the 
n-cube dimensions into d sets of size m and embedding a 
fault-free spanning cycle within each of these d sets [ 111. The 
number of edge faults that can be tolerated is equal to the 
number of dimensions in the hypercube minus the degree of 
the torus, and is therefore optimal. 

Theorem 14: There is an O(n)  time sequential algorithm 
that embeds a 2m x 2m x . . .  x 2m d-dimensional torus into 
an n-cube, where n = dm, which has at most n - 2d edge 
faults, provided that nllog(8n) 2 d. 

Proof: First sort the dimensions so that the number of 
faults per dimension increases with the dimension, and let a, 
denote the number of faults in dimension i, 0 5 i 5 n - 1. 
Next, partition the dimensions into d sets, each of which 
consists of every dth dimension from the sorted list (that 
is, partition the dimensions according to equivalence classes 
modulo d). Within each of the d sets, assign weights to the m 
dimensions in the set by giving weight 2-3 to each fault in 
the jth smallest dimension, 0 5 j 5 m - 2, and weight 2’-” 
to each fault in the largest dimension. Let SO denote the set 
which consists of those dimensions i such that i O(mod d). 
Note that because the dimensions were sorted according to the 
number of faults, SO must have at least as large a weight as 
any other set. We will show that the weight of SO (and thus of 
any set) is less than 1, so by Theorem 13 a cycle of length 2m 
can be embedded into the m-cube given by the dimensions in 
So while avoiding the edge faults. 

Let w denote the weight of the faults in SO and let b, = U j d  

for 0 5 j 5 m - 1. Then 

m - 2  

w = bm-1/2m-2 + bj/2j 
j = O  

Note that for each fault which contributes to one of the bj’s, 
where 0 5 j 5 m - 2, there are at least d - 1 other faults 
which do not contribute to any of the bj’s. Therefore, 

m-2 2 b .  3 -  < L((n - 2d) - b,-l)/dJ 5 m - 3 
j = O  

which implies that 

m-2 

bj/2’ < 1/2. 
j = O  

Because nllog(8n) 2 d, it follows that n 5 2(”/d-3), so 
112 2 (n-2d)/2(”/d-2) > - b,-1/2”-~ and w < 1/2+1/2 = 
1. 0 

IX. CONCLUSION 

This paper has examined the problem of embedding a cube- 
connected cycles graph into a hypercube with faulty edges. We 
have shown an algorithm that, given a list of faulty edges, 
computes an embedding of the CCC that spans all of the 
nodes and avoids all of the faulty edges. The algorithm is 
optimal both in terms of its running time and in terms of 
the number of faults that it tolerates (assuming a worst-case 
fault distribution). Because ascend-descend algorithms can be 
implemented efficiently on a CCC, this embedding enables the 
implementation of ascend-descend algorithms, such as bitonic 
sort, on hypercubes with edge faults. 

We also presented a number of related results, including an 
algorithm for embedding a CCC into a hypercube with edge 
and node faults and an algorithm for embedding a spanning 
torus into a hypercube with edge faults. 
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