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Effects of Transport
Limitations on Rates
of Solid-Catalyzed
Reactions

6.1 I Introduction

To most effectively utilize a catalyst in a commercial operation, the reaction rate
is often adjusted to be approximately the same order of magnitude as the rates
of transport phenomena. If a catalyst particle in an industrial reactor were oper­
ating with an extremely low turnover frequency, diffusive transport of chemicals
to and from the catalyst surface would have no effect on the measured rates.
While this "reaction-limited" situation is ideal for the determination of intrinsic
reaction kinetics, it is clearly an inefficient way to run a process. Likewise, if a
catalyst particle were operating under conditions that normally give an extremely
high turnover frequency, the overall observed reaction rate is lowered by the
inadequate transport of reactants to the catalyst surface. A balance between
reaction rate and transport phenomena is frequently considered the most effec­
tive means of operating a catalytic reaction. For typical process variables in in­
dustrial reactors, this balance is achieved by adjusting reaction conditions to give
a rate on the order of 1 p,mol!(cm3-s) [Po B. Weisz, CHEMTECH, (July 1982)
424]. This reaction rate translates into a turnover frequency of about 1 s-I for
many catalysts (R. L. Burwell, Jr. and M. Boudart, in "Investigations of Rates
and Mechanisms of Reactions," Part 1, Ch. 12, E. S. Lewis, Ed., John Wiley,
New York, 1974).

Figure 6.1.1 depicts the concentration profile of a reactant in the vicinity of
a catalyst particle. In region 1, the reactant diffuses through the stagnant bound­
ary layer surrounding the particle. Since the transport phenomena in this region
occur outside the catalyst particle, they are commonly referred to as external, or
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Figure 6.1.1 I
Concentration profile of a reacting species in the vicinity
of a porous catalyst particle. Distances are not to scale.

interphase, transport effects. In region 2, the reactant diffuses into the pores of the
particle, and transport phenomena in this region are called internal, or intraphase,
transport effects. Both external and internal transport effects may be important in a
catalytic reaction and are discussed separately in the following sections. In addition
to mass transfer effects, heat transfer throughout the catalyst particle and the stag­
nant boundary layer can dramatically affect observed reaction rates.

6.2 I External Transport Effects
For a solid-catalyzed reaction to take place, a reactant in the fluid phase must first
diffuse through the stagnant boundary layer surrounding the catalyst particle. This
mode of transport is described (in one spatial dimension) by the Stefan-Maxwell
equations (see Appendix C for details):

Uy =
, ,("-1 (6.2.1)

where Xi is the mole fraction of component i, C is the total concentration, Ni is the
flux of component i, and Dij is the diffusivity of component i in j. The following
relationship for diffusion of A in a two component mixture at constant pressure
(constant total concentration) can be obtained from simplifying the Stefan-Maxwell
equations:

(6.2.2)
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Since there are only two components in the mixture, Xs = 1 - XA and the above
expression reduces to:

(6.2.3)

Equimolar counterdiffusion (NA = -Ns ) can often be assumed and further simpli­
fication is thus possible to give:

(6.2.4)

(6.2.5)

The same equation can also be derived by assuming that concentrations are so di­
lute that XA(NA + Ns ) can be neglected. Equation (6.2.3) is known as Fick's First
Law and can be written as:

(equimolar counterdiffusion and/or
dilute concentration of A)

The diffusivities of gases and liquids typically have magnitudes that are 10- 1

and 10- 5 cm2 s-1, respectively. The diffusivity of gases is proportional to TI.5 and
inversely proportional to P, whereas, the diffusivity of liquids is proportional to T
and inversely proportional to viscosity Ii (may strongly depend on T).

To obtain the flux of reactant A through the stagnant boundary layer surround­
ing a catalyst particle, one solves Equation (6.2.~ with the appropriate boundary
conditions. If the thickness of the boundary layer 8 is small compared to the radius
of curvature of the catalyst particle, then the problem can be solved in one dimen­
sion as depicted in Figure 6.2.1. In this case, Fick's Law reduces to:

(6.2.6)

Catalyst
surface

Boundary
layer

x=O x=b

Bulk fluid

Figure 6.2.1 I
Concentration profile of reactant A in the
vicinity of a catalyst particle.
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(6.2.7)

Since the flux of A must be constant through the stagnant film (conservation of
mass), the derivative of the flux with respect to distance in the film must vanish:

dNA,
=0

dx

Differentiating Equation (6.2.6) (assuming constant diffusivity) and combining with
Equation (6.2.7), yields the following differential equation that describes diffusion
through a stagnant film:

with boundary conditions:

(6.2.8)

atx = 0

atx = 8

(6.2.9)

(6.2.10)

The solution of Equation (6.2.8) results in a linear concentration profile through the
boundary layer:

(6.2.11)

and the molar flux of A through the film is simply:

(6.2.12)

Although diffusion of reacting species can be wr:!tten in terms of the diffusiv­
ity and boundary layer thickness, the magnitude of 8 is unknown. Therefore, the
mass-transfer coefficient is normally used. That is, the average molar flux from the
bulk fluid to the solid surface is (-x direction in Figure 6.2.1)

(6.2.13)

where kc is the mass transfer coefficient over the surface area of the particle. The
mass transfer coefficient is obtained from correlations and is a function of the fluid
velocity past the particle. If the fluid is assumed to be well mixed, the concentra­
tion of A at the edge of the stagnant boundary layer is equivalent to that in the bulk
fluid, CAB, and Equation (6.2.13) can therefore be written as:

(6.2.14)

At steady-state, the flux of A equals the rate of reaction thus preventing accumula­
tion or depletion. For a simple first-order reaction, the kinetics depend on the sur­
face rate constant, ks, and the concentration of A at the surface:

(6.2.15)
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Solving for CAS yields:

(6.2.16)

Substitution of the above expression for CAS into Equation (6.2.15) gives a rate ex­
pression in terms of the measurable quantity, CAB, the reactant concentration in the
bulk fluid:

kskcr = --- C = --'='--

k+f AB 11s c _ + =-
ks kc

An overall, observed rate constant can be defined in terms of ks and kc as:

(6.2.17)

(6.2.18)

so that the rate expressed in terms of observable quantities can be written as:

robs = kobsCAB (6.2.19)

For rate laws that are noninteger or complex functions of the concentration, CAS is
found by trial and error solution of the flux expression equated to the reaction rate.
The influence of diffusional resistance on the observed reaction rate is especially
apparent for a very fast surface reaction. For that case, the surface concentration of
reactant is very small compared to its concentration in the bulk fluid. The observed
rate is then written according to Equation (6.2.15), but ignoring CAS:

(6.2.20)

(6.2.21)

The observed rate will appear to be first-order with respect to the bulk reactant con­
centration, regardless of the intrinsic rate expression applicable to the surface reac­
tion. This is a clear example of how external diffusion can mask the intrinsic ki­
netics of a catalytic reaction. In a catalytic reactor operating under mass transfer
limitations, the conversion at the reactor outlet can be calculated by incorporating
Equation (6.2.20) into the appropriate reactor model.

Solution of a reactor problem in the mass transfer limit requires an estimation
of the appropriate mass transfer coefficient. Fortunately, mass transfer correlations
have been developed to aid the determination of mass transfer coefficients. For ex­
ample, the Sherwood number, Sh, relates the mass transfer coefficient of a species
A to its diffusivity and the radius of a catalyst particle, Rp :

kc
Sh = ----'­

DAB

For flow around spherical particles, the Sherwood number is correlated to the
Schmidt number, Sc, and the Reynolds number, Re:

Sh = 2 + 0.6Re1
/

2 SC1/ 3 (6.2.22)
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Sc =
pDAS

up(2Rp )
Re = ----'------'---

t-t
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(6.2.23)

(6.2.24)

where t-t is the viscosity (kg m-] s-]), p is the fluid density (kg m-3), and u is the
linear fluid velocity (m s-]). However, most mass-transfer results are correlated in
terms of Colburn J factors:

Sh
J=---

SC I/ 3 Re
(6.2.25)

that are plotted as a function of the Reynolds number. These J factor plots are avail­
able in most textbooks on mass transfer. If one can estimate the fluid density, ve­
locity, viscosity, diffusivity, and catalyst particle size, then a reasonable approxi­
mation of the mass-transfer coefficient can be found.

It is instructive to examine the effects of easily adjustable process variables on
the mass-transfer coefficient. Combining Equations (6.2.21-6.2.24) gives the func­
tional dependence of the mass-transfer coefficient:

( )
2/3 ]/2 ]/6

kG. ex DAsSh ex DAS Re]/2 SCI/3ex DAS (Rp UP)I/2 (---,!:-)1/3 ex DAS U . p'

Rp Rp Rp Ii pDAS (Rpt 2(1it 6

or

(6.2.26)

Equation (6.2.26) shows that decreasing the catalyst particle size and increasing the
fluid velocity can significantly increase the mass-transfer coefficient. These simple
variables may be used as process "handles" to decrease the influence of external
mass-transfer limitations on the observed reaction rate.

To quickly estimate the importance of external mass-transfer limitations, the
magnitude of the change in concentration across the boundary layer can be calcu­
lated from the observed rate and the mass-transfer coefficient:

(6.2.27)

If ~CA « CAS' then external mass-transfer limitations are not significantly affect­
ing the observed rate.

The effects of heat transfer are completely analogous to those of mass trans­
fer. The heat flux, q, across the stagnant boundary layer shown in Figure 6.2.1
is related to the difference in temperature and the heat-transfer coefficient, h"
according to:

(6.2.28)
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Steady state requires that the heat flux is equivalent to the heat generated (or con­
sumed) by reaction:

(6.2.29)

(6.2.30)

where ~Hr is the heat of reaction per mole of A converted. To estimate the influ­
ence of heat-transfer limitations on the observed rate, the change in temperature
across the film is found by evaluating the observed rate of heat generated (or con­
sumed) and the heat-transfer coefficient (obtained from J factor correlations, simi­
lar to the case of mass-transfer coefficients):

robs(~Hr) = ~T

hi

If I~TI « TB , then the effect of external heat-transfer limitations on the observed
rate can be ignored. Equation (6.2.30) can also be used to find the maximum tem­
perature change across the film. Using Equation (6.2.15) to eliminate the observed
rate, the resulting equation relates the concentration change across the film to the
temperature change:

(6.2.31)

(6.2.32)

The maximum temperature change across the film will occur when CAS ap­
proaches zero, which corresponds to the maximum observable rate. Solving Equa­
tion (6.2.31) for ~Tmax with CAS = 0 gives the following expression:

kc~Hr
~Tmax = --- CAS

hi

that can always be calculated for a reaction, independent of an experiment. If both
external heat and mass transfer are expected to affect the observed reaction rate, the
balances must be solved simultaneously.

6.3 I Internal Transport Effects
Many solid catalysts contain pores in order to increase the specific surface area
available for adsorption and reaction, sometimes up to 103 m2 g~ 1. Since nearly all
of the catalytically active sites in highly porous solids are located in the pore net­
work, diffusion of molecules in confined spaces obviously plays a critical role in
the observed rate of reaction.

The preceding section assumed that the mass-transport mechanism in a fluid
medium is dominated by molecule-molecule collisions. However, the mean free path
of gases often exceeds the dimensions of small pores typical of solid catalysts. In
this situation, called Knudsen diffusion, molecules collide more often with the pore
walls than with other molecules. According to Equation (6.3.1), the Knudsen diffu­
sivity of component A, DKA , is proportional to T 1/2, but is independent of both
pressure and the presence of other species:
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(6.3.1)

where Rpore is the pore radius in em, T is the absolute temperature in Kelvins, and
MA is the molecular weight of A. Recall that the diffusivity DAB for molecular dif­
fusion depends on the pressure and the other species present but is independent of
the pore radius. In cases where both molecule-molecule and molecule-wall colli­
sions are important, neither molecular diffusivity nor Knudsen diffusivity alone can
adequately describe the transport phenomena. Under the conditions of equimolar
counterdiffusion of a binary mixture, a transition diffusivity of component A, DTA ,

can be approximated by the Bosanquet equation (see Appendix C for derivation):

III-=-+­
D TA DAB D KA

(6.3.2)

VIGNETTE 6.3.1
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Consider the idealized cylindrical pore in a solid catalyst slab, as depicted in
Figure 6.3.3. For an isothermal, isobaric, first-order reaction of A to form B that oc­
curs on the pore walls, the mole balance on a slice of the pore with thickness Ax
can be written as:

(Rate of input A) - (Rate of output A) + (Rate of generation A) = 0

1TR~oreNAlx 1TR~oreNAlxHx - ksCA(21TRpore)(Ax) = 0

(6.3.3)

(6.3.4)

where NA is the flux of A evaluated at both sides of the slice, ks is the first-order
rate constant expressed per surface area of the catalyst (volume/ {surface area} /time),
and 21TRpore( AX) is the area of the pore wall in the catalyst slice. Rearranging
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Figure 6.3.3 I
Schematic representation of component A diffusing and
reacting in an idealized cylindrical pore.

Equation (6.3.4) and taking the limit as Ilx approaches zero gives the following
differential equation for the mole balance:

(6.3.5)

Recall that the Stefan-Maxwell equation relates the molar flux of A to its concen­
tration gradient according to:

For diffusion in one dimension in the absence of bulk flow:

(
1 1 )-1

DAB + D KA

which is Pick's First Law that can be written as:

dCAN --D -
A - TA dx

(6.3.6)

(6.3.7)

(6.3.8)

where D TA is defined by Equation (6.3.2). Substitution of Fick's Law into the
mole balance, Equation (6.3.5), yields the following second-order differential
equation:

(6.3.9)
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Assuming D TA is constant:

(6.3.10)

The surface rate constant can be rewritten on a volume basis by using the surface
to volume ratio of a cylindrical pore:

Area

Volume

and

To simplify the mole balance, let:

27TRpore L 2

7TR~oreL R pore

2ksk=­
R pore

(6.3.11)

(6.3.12)

x
x==

L

-j;f1J =L -
DTA

and their substitution into Equation (6.3.10) gives:

d 2C
__A _ A,2C = 0
dX 2 'f' A

(6.3.13)

(6.3.14)

(6.3.15)

Boundary conditions at each end of the pore are needed to solve the mole balance.
At x = 0 (the pore mouth), the concentration of A is equal to CAS' At the other end
of the pore, the gradient in concentration is equal to zero. That is, there is no flux
at the end of the pore. These conditions can be written as:

CA = CAS

dCA-=0
dX

atx = 0

at X = 1

(6.3.16)

(6.3.17)

The solution of Equation (6.3.15) using boundary conditions given in Equations
(6.3.16) and (6.3.17) is:

(6.3.18)

The term 1J, also known as the Thiele modulus, is a dimensionless number com­
posed of the square root of the characteristic reaction rate (kCAS) divided by the

characteristic diffusion rate (DI~AS)' The Thiele modulus indicates which process
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Figure 6.3.4 I
Effect of Thiele modulus on the normalized concentration
profiles in a catalyst pore with first-order surface reaction.
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is rate-limiting. Figure 6.3.4 illustrates the concentration profile of reactant A along
the pore for various values of the Thiele modulus. When cP is small, the diffusional
resistance is insufficient to limit the rate of reaction and the concentration can be
maintained near CAS within the catalyst particle. However, when cP is large, a sig­
nificant diffusional resistance prevents a constant concentration profile of A within
the catalyst particle and thus lowers the observed rate.

Now consider a catalyst pellet with a random network of "zig-zag" pores.
The surface of the pellet is composed of both solid material and pores. The flux
equation derived earlier must be modified to account for the fact that the flux,
NA , is based only on the area of a pore. A parameter called the porosity of the
pellet, or Bp , is defined as the ratio of void volume within the pellet to the to­
tal pellet volume (void + solid). The flux can be expressed in moles of A diffusing
per unit pellet surface area (containing both solids and pores) by using 8p as
fo11o\vs:

Since the porosity of many solid catalysts falls between 0.3 and 0.7, a reasonable es­
timate of Bp in the absence of experimental data is 0.5. The second parameter needed
to modify the flux is the tortuosity, T, which accounts for the deviations in the path
length of the pores. Since the concentration gradient is based on the pellet geometry,
the flux equation must be corrected to reflect the actual distance molecules travel in
the pores. The tortuosity is the ratio of the "zig-zag length" to the "straight length" of
the pore system. Obviously, T must be greater than or equal to one. For example, an
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ideal, cylindrical pore has T equal to 1, and a network of randomly oriented cylindri­
cal pores has T equal to approximately 3. The flux equation can be written to take into
account the "true" diffusion path length as:

Since the tortuosity of many solid catalysts falls between 2 and 7, a reasonable es­
timate of T in the absence of experimental data is 4. The diffusivity in a unimodal
pore system can now be defined by the flux of reactant into the pellet according to:

(6.3.19)

where the superscript e refers to the efiective diffusivity. Likewise, the following
effective diffusivities can be written:

DAB = - DAB
T

(6.3.20)

(6.3.21)

Now consider several ideal geometries of porous catalyst pellets shown in
Figure 6.3.5. The first pellet is an infinite slab with thickness 2xp- However, since

I Xp I
(a) (b) (c)

Figure 6.3.5 I
Schematic representations of ideal catalyst pellet geometries. (a) Infinite slab. (b) Infinite
right cylinder. (c) Sphere.
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Figure 6.3.6 I
Schematic of the shell balance on a spherical catalyst
pellet.
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pores can have openings on both faces of the slab because of symmetry, the char­
acteristic length associated with the slab is half of the thickness, or xp- The sec­
ond pellet is an infinite right cylinder with radius Rp , and the third pellet is a
sphere with radius Rp • End effects (or edge effects) are ignored in the cases of the
slab and the cylinder.

As an example, simultaneous diffusion and reaction in a spherical catalyst pel­
let is described in detail below. The results are then generalized to other pellet shapes.
The reaction is assumed to be isothermal, since the high thermal conductivity of
most solid catalysts ensures a fairly constant temperature within a single pellet. In
addition, the reaction is assumed to be isobaric, which implies negligible mole
change upon reaction. For reactions with a significant mole change with conversion,
the presence of a large excess of inert material can reduce the impact of reacting
species on the total pressure. Isobaric conditions can therefore be achieved in a va­
riety of catalytic reactions, regardless of reaction stoichiometry.

A diagram of the shell balance (material balance) for simultaneous diffusion
and first order reaction of component A in a sphere is shown in Figure 6.3.6. The
material balance in the spherical shell is given by:

(Rate of input A) (Rate of output A) + (Rate of generation A) = 0

41Tr 2NA lr 41Tr 2NA lrHr - kCA 41Tr 2Ar = 0 (6.3.22)

The third term in Equation (6.3.22) is the rate of consumption of A in the differen­
tial volume defined between rand r + Ar. Simplifying Equation (6.3.22) and tak­
ing the limit as Ar approaches zero yields the following differential equation:

(6.3.23)

The flux of A can be expressed in terms of concentration for binary systems ac­
cording to Fick's Law (in spherical coordinates):

(equimolar counterdiffusion) (6.3.24)
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Substitution of Equation (6.3.24) into (6.3.23) gives:

dr

De [_zdZCA + T dCA ]
TA r dr Z r dr

DTA[dZ~: + ~ dd~A] kCA = 0
dr r r

(6.3.25)

The above equation can be made dimensionless by the following substitutions:

(6.3.26)

(6.3.27)
r

w=-
Rp

where CAS is the concentration of A on the external surface and Rp is the radius of
the spherical particle. Rewriting Equation (6.3.25) in terms of dimensionless con­
centration and radius gives:

The Thiele modulus, ¢, for a sphere is defined as:

¢ = Rp ) D~A
so that Equation (6.3.28) becomes:

dZljJ 2 dljJ Z

dwz + -; dw - ¢ ljJ = 0

with boundary conditions:

(6.3.28)

(6.3.29)

(6.3.30)

ljJ=

dljJ = 0
dw

at w = 1 (surface of sphere)

at w = 0 (center of sphere)

(6.3.31)

(6.3.32)

The zero-flux condition at the center results from the symmetry associated with the
spherical geometry. The solution of the above differential equation with the stated
boundary conditions is:

sinh (¢w)

wsinh(¢)
(6.3.33)
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Figure 6.3.7 I
Effect of Thiele modulus on the nonnalized concentration
profiles in a spherical catalyst particle with first-order
reaction. The external surface of the particle is located at
r/Rp = 1.
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Figure 6.3.7 illustrates the effect of the Thiele modulus on the concentration profile
within a spherical catalyst pellet.

An effectiveness factor, 1], can be defined as the ratio of the observed rate (robs)
to the rate that would be observed in the absence of internal diffusional limitations
(rmax);

fPr (CA)41Tr2dr
o

SpfPr(cA)(ItYdr

Vpr(CAS)

(6.3.34)

where Vp is the volume of the catalyst pellet, Sp is the external surface area of the
pellet, and r(CA) is the reaction rate determined '"'lith concentration CA' The de­
nominator in Equation (6.3.34) is simply the rate of reaction in the catalyst pellet
assuming the reactant concentration is equal to that on the external surface, CAS'

For a first-order reaction in a spherical particle, the rate observed in the absence of
diffusional limitations is;

(6.3.35)

At the steady state, the flux of A entering the pellet must be equivalent to the net
rate of consumption of A in the pellet. Thus, the flux entering the sphere can be
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used to determine the observed rate of reaction in the presence of diffusional
limitations.

(6.3.36)

(6.3.37)
3robs

TJ=-=
f max

Substituting Equations (6.3.35) and (6.3.36) into (6.3.34) gives:

o dCA I
47T(Rp)-D'TA~ r=R

p

4 3"37T (Rp ) kCAS

The above equation is made nondimensional by the substitutions defined in Equa­
tions (6.3.26) and (6.3.27) and is:

TJ = ;2 ~~ Iw=I (6.3.38)

The derivative is evaluated from the concentration profile, (6.3.33), to give:

(6.3.39)

3 dl{! I 3 d [Sinh (4>w)] I
TJ = 4>2 dw w = I = 4>2 dw w sinh (4>) w = I

TJ = 32[ . \ ) (~COSh(4>W) ~ sinh (4)w))] I
4> smh 4> w w w= I

3[ 4> ] 3 1 1]
TJ = 4>2 tanh (4» - 1 = 4> tanh (4» - -;;;

Figure 6.3.8 illustrates the relationship between the effectiveness factor and the
Thiele modulus for a spherical catalyst pellet.

0.1
0.1 10 100

Figure 6.3.8 I
Effectiveness factor for a first-order reaction in a sphere
as a function of the Thiele modulus.
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Table 6.3.1 I Influence of catalyst particle geometry on concentration profile and
effectiveness factor for a first-order, isothermal, isobaric reaction.
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r-;;- Ik Ik
c/J x 1- Rp'V Dh Rp-V DhP'V Dh

l/J = CA/CAS

cosh (c/Jw) Io(c/Jw) sinh (c/Jw)

cosh(c/J) Io(c/J ) wsinh(c/J)

tanh(c/J) 2I1(c/J) 3 1 1 ]
1]

c/J c/JIo(c/J) c/J tanh(c/J) c/J

(aJIi is a modified Bessel function of order i.

Table 6.3.2 I Characteristic length
parameters of common
pellet shapes.

Slab
Cylinder
Sphere

A low value of the Thiele modulus results from a small diffusional resistance.
For this case, the effectiveness factor is approximately 1 (values of 4> typically less
than 1). Large values of the Thiele modulus are characteristic of a diffusion-limited
reaction with an effectiveness factor less than 1. For 4> » 1, the value of the ef­
fectiveness factor in a sphere approaches 3/4>, as illustrated in Figure 6.3.8.

The concentration profile and the effectiveness factor are clearly dependent on
the geometry of a catalyst particle. Table 6.3.1 summarizes the results for catalyst
particles with three common geometries.

Aris was the first to point out that the results for the effectiveness factor in dif­
ferent pellet geometries can be approximated by a single function of the Thiele mod­
ulus if the length parameter in 4> is the ratio of the pellet volume, Vp , to the pellet
external surface area, Sp [R. Aris, Chern. Eng. Sci., 6 (1957) 262]. Thus, the length
parameter, Lp , is defined by:

(6.3.40)

and the Thiele modulus is defined by:
.~-

1 kL j-­
1'\; De

V TA
(6.3.41)

where Table 6.3.2 summarizes the characteristic length parameter for common
geometries.
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Figure 6.3.9 I
Effectiveness factor [T/ = tanh(4>0)/4>0] for a first-order
reaction in a catalyst as a function of the Thiele modulus
with generalized length parameter.

According to the above definitions, the effectiveness factor for any of the above
shapes can adequately describe simultaneous reaction and diffusion in a catalyst par­
ticle. The equation for the effectiveness factor in a slab is the simplest in Table 6.3.1
and will be used for all pellet shapes with the appropriate Thiele modulus:

77= (6.3.42)

EXAMPLE 6.3.1 I

This relationship is plotted in Figure 6.3.9. The effectiveness factor for a severely
diffusion-limited reaction in a catalyst particle is approximated by the inverse of the
Thiele modulus.

The double bond isomerization of I-hexene to form 2-hexene was studied in a laboratory
reactor containing rhodium particles supported on alumina at 150°C and atmospheric
pressure:

The reaction was found to be first order in I-hexene with a rate constant of 0.14 S-I. Find
the largest pellet size that can be used in an industrial reactor to achieve 70 percent of the
maximum rate. The pore radius of the alumina is 10 nm, and DAB is 0.050 cm2 s-1 .

• Answer
It is desired to find the particle size that gives an internal effectiveness factor equal to 0.70.
For any geometry, the Thiele modulus is determined from:
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tanh (<Po)
YJ = 0.70

<Po

<Po = 1.18

Assuming a spherical catalyst pellet with radius Rp , the Thiele modulus is:

203

Since the rate constant is known, estimation of the effective diffusivity allows the calcula­
tion of particle radius. In the absence of experimental data, the porosity and tortuosity are as­
sumed to be 0.5 and 4, respectively. Thus,

Sp 0.5
D~B = -=- DAB = - . 0.050 = 0.0062 cm2

S-1
T 4

The Knudsen diffusivity is calculated from the temperature, pore radius, and molecular weight
ofhexene (84 g mol-I) according to Equation (6.3.1):

0.5 2 1Dh = - . 0.022 = 0.0027 cm s­
4

The effective transition diffusivity is calculated from the Bosanquet equation assuming
equimolar counter diffusion, which is what happens with isomerization reactions:

I 1 1
-=-+-
Dh D~B D KA

Dh = 0.0019 cm2 S-1

Substituting the necessary terms into the expression for the Thiele modulus yields the radius
of the spherical catalyst pellet:

110.0019
R = 3 ·1.18· -- = 0.41 cm

p -V 0.14

Thus, spherical particles of about 1/3 in. diameter will have an effectiveness factor of 0.70.

It is worthwhile to examine how reasonably well a single characteristic length pa­
rameter describes reaction/diffusion in a finite cylinder, a very common catalyst pellet
configuration. The pellet shown has a cylinder length (2.xp ) and radius Rp :



(6.3.43)
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The material balance for a first-order reaction of A in the pellet is given by:

e [a2CA I aCA a2CA ]_
D TA ----=-2 + -=- --- + --2 - kCAar r ar ax

with the flux equations being written for both the axial and radial directions:

dCA
NA = -Dh -- (axial)

dx

(6.3.44)

(6.3.45)

The solution of these equations, with appropriate boundary conditions, provides the
concentration profile and the effectiveness factor for a finite cylinder. As discussed
earlier, an approximation of the effectiveness factor:

tanh (<Po)
71=

<Po
(6.3.42)

can be used with any geometry as long as the Thiele modulus is based on the char­
acteristic length defined by the volume-to-surface ratio. The volume and surface
area of the finite cylindrical pellet are simply:

v = 1T(R )2 .2xp p p

Sp = 21T (Rp )2 + (21TRp ' 2xp )

Thus, the characteristic length for the finite cylinder is:

(6.3.46)

(6.3.47)

(6.3.48)

and the Thiele modulus for use in Equation (6.3.42) is:

(6.3.49)
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For comparison, the "radius" of an "equivalent" spherical particle, Rp(sphere), can be
calculated by equating the volume-to-surface ratios:

(~; )finite cylinder = (~; there

Rp(sphere)

3

Therefore, the radius of an "equivalent" sphere is:

Rp(sphere) = 3(R R

p

)

--..!'. + 2
Xp

(6.3.50)

which can be used to evaluate the Thiele modulus and effectiveness factor. Fig­
ure 6.3.10 compares the effectiveness factor derived from the full solution of the
material balance for a finite cylinder (individual points) to the approximate solu­
tion using the "equivalent" radius of a sphere based on the volume to surface ratio.
Also shown is the solution for an infinite cylinder with equal (Vp/Sp). Clearly, the
agreement among the sets of results confirms that substituting the characteristic
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~
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Olj
I I0.0
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4>0
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Figure 6.3.10 I
Effectiveness factors for sphere, infinite cylinder, and finite cylinder pellet geometries
where the Thiele modulus is based on equal Vp/Sp. Individual points correspond to the
numerical solutions of the material balance on a finite cylinder.
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EXAMPLE 6.3.2 I

CHAPTER 6 Effects of Transport I imitations on Rates of Solid-Catalyzed Reactions

length in the Thiele modulus by (VI' / Sp) is an excellent approximation to the true
solution.

The rate constant for the first-order cracking of cumene on a silica-alumina catalyst was mea­
sured to be 0.80 cm3j(s'gcat) in a laboratory reactor:

o=a=tm=> 0 + CH3CHCH2

(Benzene) (Propylene)

Is the observed rate constant the true rate constant or is there influence of pore diffusion?

Additional data:

Rp = 0.25 cm

p 1.2gcatcm-3

D TA = 1.0 X 10-3 cm2 S-1

• Answer
Recall that the effectiveness factor can be approximated by:

tanh(cPo)
71=

cPo

when the Thiele modulus is defined in terms of the characteristic length of a pellet:

cPo =Lp&
For the spherical particles in this problem:

/ ( -) ( )'cm" gcat
((0.25)(cm)\ Ik ~ . 1.2 ~ _. r:\ )V'~ e -'/ '~•• / = L,9Vk

\ 3 (cm")1.0 X 10-3 -s-

Since the observed rate is first-order:

and, by definition, the effectiveness factor is:

observed rate

71 = rate in absence of diffusion
kobsC,s

kCAS
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Substitute the Thiele modulus into the expression for the effectiveness factor to solve for k,

the true rate constant, by trial and error:

tanh (1>0) tanh (2.9vk) k obs 0.80
TJ

1>0 2.9vk k k

cm 3

k 5.4 TJ = 0.15
s' gcat

Since TJ is small, there is a great influence of pore diffusion on the observed rate.

The material balance for simultaneous reaction and diffusion in a catalyst pel­
let can be extended to include more complex reactions. For example, the general­
ized Thiele modulus for an irreversible reaction of order n is:

n + 1 kC~Sl

2 Dh
n> (6.3.51)

The generalized modulus defined in Equation (6.3.51) has been normalized so that
the effectiveness factor is approximately 1/4>0 at large values of 1Jo, as illustrated in
Figure 6.3.9.

The implications of severe diffusional resistance on observed reaction kinetics
can be determined by simple analysis of this more general Thiele modulus. The ob­
served rate of reaction can be written in terms of the intrinsic rate expression and
the effectiveness factor as:

robs = YJkC~s (6.3.52)

As discussed earlier, the effectiveness factor is simply the inverse of the Thiele mod­
ulus for the case of severe diffusional limitations (Figure 6.3.9.) Thus, the observed
rate under strong diffusional limitations can be written as:

1
robs = 1Jo kC~s (6.3.53)

(6.3.54)

Substitution of the generalized Thiele modulus, Equation (6.3.51), into (6.3.53) gives
the following expression for the observed rate:

s (2 )~- P De k c!n+
robs - V

p
n + 1 TA AS

The order of reaction observed under conditions of severe diffusional limitations,
nabs' becomes (n + 1)/2 instead of the true reaction order n. The temperature de­
pendence of the rate is also affected by diffusional limitations. Since the ob­
served rate constant, kobs, is proportional to (D~Ak)2, the observed activation energy is

(ED E)/2, where ED is the activation energy for diffusion and E is the activation en­
ergy for reaction. Diffusional processes are weakly activated compared to chemical
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J
.s

EXAMPLE 6.3.3 I

If[

Figure 6.3.11 I
Temperature dependence of the observed rate constant of
a reaction occurring in a porous catalyst pellet.

reactions, and the value of ED can often be neglected compared to E. Thus, the ob­
served activation energy for a severely diffusion-limited reaction is approximately one
half the true value. An Arrhenius plot of the observed rate constant, shown in Figure
6.3.11, illustrates the effect of diffusional resistances on the observed activation en­
ergy. At low temperatures, the reaction rate is not limited by diffusional resistances,
and the observed activation energy is the true value. At high temperatures, the reac­
tion rate is inhibited by diffusional resistances, and the activation energy is half the
true value.

Develop expressions for the Thiele modulus and the concentration profile of A for the fol­
lowing reversible first-order reaction that takes place in a flat plate catalyst pellet:

A = B, K =
L j

Catalyst slab

.""'-­
x=o
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• Answer
The material balance for diffusion/reaction in one dimension is given by:

209

(6.3.55)

With C representing the total concentration, CA + CB, the rate expression can be rewritten in
terms of C and CA , thus eliminating the explicit dependence on Cs :

( 1) kl (K+l)( C)C)=k 1+- C --C=k -- C ---
A I K A K I K A K+l

Assuming D~A is constant, the following equation can be solved for the concentration
profile:

with boundary conditions:

K~ J (6.3.56)

dCA-=0
d.x

at x = xp (external surface of the slab)

at x = 0 (center line, point of symmetry)

(6.3.57)

(6.3.58)

The following change ofvariables facilitates solution of the problem. Let~ = CA - C/ (K + 1)
and X = x/xp so that the material balance can be written as:

(6.3.59)

By expressing the material balance in this form, the Thiele modulus appears as the dimen­
sionless constant c/J:

(6.3.60)

The general solution of Equation (6.3.59), \vith arbitra..ry constants al a..Tld a2' is:

(6.3.61)

The boundary conditions expressed in terms of the variables that are used to evaluate the con­
stants (Xl and 0'2 are:

C
(6.3.62)l/J = CAS

K + 1
at X = 1

dl/J
at X = 0 (6.3.63)-=0

dX
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The constant al vanishes due to the second boundary condition [Equation (6.3.63)]:

dl/J = alcPcosh (O) + azcPsinh(O) = 0
dX

and

cosh(O) = 1

so

The first boundary condition is used to evaluate az and thus completes the solution of the
problem as shown below:

EXAMPLE 6.3.4 I

(6.3.64)

(6.3.65)

(6.3.60)

Set up the equations necessary to calculate the effectiveness factor for a flat-plate catalyst
pellet in which the following isothermal reaction takes place:

Benzene Cyclohexane
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• Answer
To solve this problem, the Stefan-Maxwell relations for molecular diffusion in a multicom­
ponent gas mixture (see Appendix C for details) should be used:

For the case of diffusion in one dimension within a porous medium, these equations yield
the following expression, which is derived in Appendix C:

(6.3.66)

The above equation reduces to a familiar form for two components if equimolar counterdif-
fusion of A and B (NA -NB) at constant temperature is assumed:

1 dPA-----
R~T dx

(6.3.67)

Recall this equation is similar to Equation (6.3.7) for the flux of A in one dimension. To solve
the multicomponent diffusion/reaction problem of benzene hydrogenation in one dimension,
Equation (6.3.66) must instead be used. First, let:

Benzene = component 1

Dihydrogen component 2

Cyclohexane = component 3

The following diffusivities (Knudsen and binary) need to be determined from tabulated data,
handbooks, correlations, theoretical equations, etc.:

Benzene: DKb D12 , DB

The porosity (ep) and tortuosity (1') of the flat plate catalyst pellet are then used to calculate
the effective diffusivities associated with each component according to:

8 p
Dk, = =DKi

T

De
IJ

(6.3.68)

(6.3.69)
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From the stoichiometry of the hydrogenation reaction, the ratios of the fluxes of the compo­
nents are:

3 and

Substitution of these relations into Equation (6.3.66) gives the appropriate flux equations:

(6.3.70)

(6.3.71)

Finally, the material balance on a slice of the catalyst pellet that is needed to completely spec­
ify the reaction/diffusion problem is:

(6.3.72)

Rate (Xl> X2) is the rate expression for benzene hydrogenation that depends on XI and X2.

For example, the following rate equation could be used if the constants Cl'A and Cl'B were known
at the reaction temperature:

(6.3.73)

(6.3.74)

The three equations representing the material balance and the flux relations can be solved si­
multaneously to determine the dependent variables (Xl> X2• and N I ) as a function of the inde­

pendent variable x. (Recall that X3 can be expressed in terms ofXl and X2 : I = Xl + X2 + X3.)

The boundary conditions for these equations are:

at x X s (external surface of pellet)

at x = 0 (center line of the slab)

To calculate the effectiveness factor, the actual reaction rate throughout the catalyst is divided

by the rate determined at the conditions of the external surface. that is, Rate(X IS. X2S)' The
overall reaction rate throughout the particle is equivalent to the flux N I evaluated at the ex­
ternal surface of the catalyst. Thus, the final solution is:

N) Cp)
71 = Rate (XIS. X2S)' VI'

The temperature profile in the catalyst pellet can be easily incorporated into this solution by
including the energy balance in the system of equations.

The previous discussion focused on simultaneous diffusion and reaction in
isothermal catalyst pellets. Since !1H, is significant for many industrially relevant
reactions, it is necessary to address how heat transfer might affect solid-catalyzed
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reactions. For isothennal catalyst pellets, the effectiveness factor is less than or equal
to unity, as illustrated in Figure 6.3.9. This is rationalized by examining the tenns that
comprise the effectiveness factor for the reaction of A in a flat plate catalyst pellet:

(6.3.75)

For an isothennal pellet:

(6.3.76)

If, as stated in Chapter 1, the rate is separable into two parts, one dependent on the
temperature and the other dependent on the concentrations of reacting species, that is,

(6.3.77)

then the concentration of A inside the pellet is less than that on the external surface,

(6.3.78)

for reactions with nonnegative reaction orders. Thus,

(6.3.79)

and explains the upper limit of unity for the isothennal effectiveness factor in a cat­
alyst pellet. The situation can be very different for a nonisothennal pellet. For ex­
ample, the temperature dependence of the reaction rate constant, k(T), is generally
expressed in an Arrhenius fonn

k(T) = Aexp( - E)
RgT

(6.3.80)

For an endothennic reaction in the presence of significant heat-transfer resistance,
the temperature at the surface of the pellet can exceed the temperature of the inte­
rior, which according to Equation (6.3.80), gives:

(6.3.81)

Since F(CA) :5 F(CAS) as discussed above, the effectiveness factor is always less
than or equal to unity for an endothermic reaction. For an exothennic reaction, the
opposite situation can occur. The temperature of the interior of the particle can ex­
ceed the surface temperature, T > Ts, which leads to:

k(T) 2: k(Ts) (6.3.82)
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Recall that k(T) is a strong function of temperature. The effectiveness factor for an
exothermic reaction can be less than, equal to, or greater than unity, depending on
how k(T) increases relative to P(CA ) within the particle. Thus, there are cases where
the increase in k(T) can be much larger than the decrease in P(CA)' for example,

k(T) . P(CA ) > k(Ts)' P(CAS)

To evaluate the effectiveness factor for a first-order, isobaric, nonisothermal,
flat plate catalyst pellet, the material and energy balances must be solved simulta­
neously. As shown previously, the mole balance in a slab is given by:

dNA- = -k(T) 'CAdx

where the rate constant is of the Arrhenius form:

k(T) = Aexp( - E)
RgT

The flux of A can be written in terms of Fick's Law:

and substituted into the mole balance to give:

(6.3.83)

(6.3.84)

(6.3.85)

(6.3.86)

The energy balance is written in the same manner as the mole balance to give:

(6.3.87)

where the flux is expressed in terms of the effective thermal conductivity of the
fluid-solid system, Ae

, and the gradient in temperature:

dT
a = -Ae ­, .. dx (6.3.88)

(6.3.89)

The heat of reaction, Li H,., is defined to be negative for exothermic reactions and pos­
itive for endothermic reactions. Substitution of Equation (6.3.88) into (6.3.87) results in:

d 2T
A

e
dx 2 = (-LiHr) 'k(T) 'CA

To render the material and energy balances dimensionless, let:

(6.3.90)
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(6.3.91)

(6.3.92)

(6.3.94)

r=~
Ts

The rate constant k(T) is expressed in terms of Ts by first forming the ratio:

:&!J ~ exp [ - : G-;J] ~ exp[-'(f - I)] (6.3.93)

where:

E
y=­

RgTs

The dimensionless group y is known as the Arrhenius number. Substitution of the
dimensionless variables into the material and energy balances gives:

~~ = [(Xp)~~(Ts)] . exp[ -Y(f - 1)] . if/ (6.3.95)

~~ = _ [(X
p
)2. k(Ts)~e~~ LlHJ CAS] . exp[ -Y(f - 1)] . if/ (6.3.96)

Both equations can be expressed in terms of the Thiele modulus, 4>, according to:

(6.3.97)

(6.3.98)

A new dimensionless grouping called the Prater number, f3, appears in the energy
balance:

(- LlHr ) • D TA . CAS
f3 = AeTs

Thus, the energy balance is rewritten:

(6.3.99)

(6.3.100)

The material and energy balances are then solved simultaneously with the follow­
ing boundary conditions:

dif/ dr-=-=0
dX dX

if/=r=l

atx = 0

at X = I

(6.3.101)

(6.3.102)
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Figure 6.3.12 I
Effectiveness factors for a first-order reaction in a
spherical, nonisothermal catalysts pellet. (Reprinted
from P. B. Weisz and J. S. Hicks, "The Behavior of
Porous Catalyst Particles in View of Internal Mass and
Heat Diffusion Effects," Chern. Eng. Sci., 17 (1962)
265, copyright 1962, with permission from Elsevier
Science.)

Since the equations are nonlinear, a numerical solution method is required. Weisz
and Hicks calculated the effectiveness factor for a first-order reaction in a spheri­
cal catalyst pellet as a function of the Thiele modulus for various values of the Prater
number [Po B. Weisz and J. S. Hicks, Chern. Eng. Sci., 17 (1962) 265]. Figure 6.3.12
summarizes the results for an Arrhenius number equal to 30. Since the Arrhenius
number is directly proportional to the activation energy, a higher value of "y corre­
sponds to a greater sensitivity to temperature. The most important conclusion to
draw from Figure 6.3.12 is that effectiveness factors for exothermic reactions (pos­
itive values of {3) can exceed unity, depending on the characteristics of the pellet
and the reaction. In the narrow range of the Thiele modulus between about 0.1 and
1, three different values of the effectiveness factor can be found (but only two rep­
resent stable steady states). The ultimate reaction rate that is achieved in the pellet
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depends on how the reaction is initiated. Effectiveness factors associated with the
negative values of (3 on Figure 6.3.12 are all less than one, which is expected for
endothermic reactions.

It is often useful to quickly estimate the maximum possible temperature rise,
also known as the adiabatic temperature rise, in a catalyst pellet. Since no heat is
transferred to the surroundings in this case, all energy generated (or consumed) by
the reaction goes to heat (or cool) the pellet. The temperature difference between
the surface and the pellet interior is directly related to the concentration difference.
Dividing the material balance by the energy balance eliminates the reaction rate:

Integrating once gives:

(6.3.103)

(6.3.104)

df (6.3.105)

The constant al is evaluated by using the condition at the center of the pellet:

df = dl{! = 0

Integrating a second time gives:

atx = 0

(6.3.106)

(6.3.107)

The constant a2 is found by using the condition at the surface of the pellet:

and

f=l{!=l atx = I

Therefore, the relationship between temperature and concentration is:

T = Ts +

(6.3.108)

(6.3.109)

Equation (6.3.109) is called the Prater relation. From this relationship, the adi­
abatic temperature rise in a catalyst pellet can be calculated. The maximum
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temperature is reached when the reactant is completely converted in the pellet, that
is, CA = 0:

ti.Hr)DTACAS

Ae

ti.Hr)DTACAS
AeTs

(6.3.110)

(6.3.111)

Notice that the dimensionless maximum temperature rise in the catalyst pellet is
simply the Prater number {3:

6.4 I Combined Internal and
External Transport Effects

The previous two sections describe separately the significant role that diffusion
through a stagnant film surrounding a catalyst pellet and transport through the cat­
alyst pores can play in a solid-catalyzed chemical reaction. However, these two dif­
fusional resistances must be evaluated simultaneously in order to properly interpret
the observed rate of a catalytic reaction.
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Consider a first-order reaction occurring on a nonporous flat plate catalyst pel­
let. In Section 6.2, it was shown that the concentration of reactant A on the exter­
nal surface of the catalyst is related to both the mass transfer coefficient, kC' and the
surface rate constant, ks:

(6.4.1)

A dimensionles.!' parameter Da, called the Damkohler number, is defined to be the
ratio of ks and kc:

Da

so that the surface concentration can be written as:

(6.4.2)

(6.4.3)
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The Damkohler number indicates which characteristic flTst-ord~r process is faster, ex­
ternal diffusion or reaction. For very large values of Da (ks » kJ, the surface c.9ncen­
tration of reactant approaches zero, whereas for very small values of Da (ks « kc), the
surface concentration approaches the bulk fluid concentration. An interphase effec­
tiveness factor, 7/, is defined as the reaction rate based on surface conditions divided
by the rate that would be observed in the absence of diffusional limitations:

(6.4.4)

Now consider the first-order reaction in a porous flat plate catalyst pellet so
that both external (interphase) and internal (intraphase) transport limitations are en­
countered. At steady state, the flux of A to the surface of the pellet is equal to the
flux entering the pellet:

The energy balance is completely analogous:

(6.4.5)

h,(Ts T
B

) = _).e dTI
dx s

(6.4.6)

Rewriting these two equations in dimensionless form, using the usual substitution
for distance:

yields:

where:

xx=­xp

= Bi
m

[ I _ CAS]
dx X=! CAB

(6.4.7)

(6.4.8)

{F, L1 0\
\'V'o 1./ J

Biot number for mass

Biot number for heat

(6.4.10)

(6.4.11)

Since the concentration and temperature variables in Equations (6.4.8) and (6.4.9)
are grouped with their respective bulk fluid values, new dimensionless parameters
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need to be defined. Let:

- T
f=­

TS

221

(6.4.12)

(6.4.13)

The dimensionless material and energy balances, with associated boundary condi­
tions, must be solved simultaneously to get the concentration and temperature pro­
files through the stagnant film and into the catalyst particle. Those relationships are
given below:

where:

~:~ = 4>2'J! exp [ -Y(¥ - 1)]
~:~ = _~4>2'J! exp[ -Y(¥ - 1)]

(6.4.14)

(6.4.15)

4>2 = (xp?· k(Ts)
D'fA

Notice that aU of the parameters are based on bulk fluid values of the concentration
and temperature. The boundary conditions are:

d'J! df
-=-=0 atX = 0 (6.4.16)
dX dX

d'J!
dX = Bim(l - 'J!) atx = 1 (6.4.17)

dr
- = Bih(l f) at X = 1 (6.4.18)
dx

In general, solution of these equations requires a numerical approach.

EXAMPLE 6.4.1 I
Find an expression for the overall effectiveness factor of a first-order isothermal reaction in
a flat plate catalyst pellet.

• Answer
Since the reaction is isothennal, the energy balance can be ignored and the mass balance re­
duces to:

(6.4.19)
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with boundary conditions:

d'IJI
-=0
dX

d'IJI
dX = Bim (1 - 'IJI)

at X = 0

at X = 1

(6.4.20)

(6.4.21)

As discussed previously, the general solution of the differential equation is:

(6.4.22)

The constants are evaluated by using the appropriate boundary conditions. At the center of
the pellet:

(6.4.23)

(6.4.24)

Substitution of Equation (6.4.24) into (6.4.22) eliminates one of the integration constants:

'IJI = ajexp(c/>x) + ajexp( -c/>X)

_ exp(c/>x) + exp( -c/>X)
'IJI = 2aj 2

(6.4.25)

(6.4.26)

(6.4.27)

(6.4.28)

The boundary condition at the external surface provides another relation for d'IJI/dX:

(6.4.29)

Equating Equations (6.4.28) and (6.4.29), at X = 1, enables the determination of aj:

and therefore,

Bimaj = -------------
2[c/>sinh(c/» + Bimcosh(c/»J

(6.4.30)

(6.4.31)

(6.4.32)

Since the concentration profile is determined by Equation (6.4.32), evaluation of the over­

all effectiveness factor, TJO' is straightforward. By definition, TJo is the observed rate di­
vided by the rate that would be observed at conditions found in the bulk fluid. Recall
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that the observed rate must equal the flux of A at the surface of the pellet at the steady

state:

'10 (6.4.33)

tanh (4:»

'10 = 4:> [1 + _4:>_tan_h-,--(4:>-,--) ]
Bim

(6.4.34)

The overall effectiveness factor is actually comprised of the individual effec­
tiveness factors for intraphase and interphase transport:

1]0 = 1]intraphase • 1]interphase = 1] . 1] (6.4.35)

For example, an isothermal, first-order reaction in a flat plate catalyst pellet has in­
dividual effectiveness factors that are:

tanh(1))
1]=

1>

17 = [I + 1> tanh(1>) ] -1

Bim

(6.4.36)

(6.4.37)

VIGNETTE 6.4.2

Common ranges of diffusivities, thermal conductivities, mass transfer coeffi­
cients, heat transfer coefficients, and catalyst pore sizes can be used to estimate the
relative magnitude of artifacts in kinetic data obtained in industrial reactors. For gas­
solid heterogeneous systems, the high thermal conductivity of solids compared to
gases suggests that the temperature gradient in the film surrounding the catalyst par­
ticle is likely to be greater than the temperature gradient in the particle. Since the
Knudsen diffusivity of gaseous molecules in a small pore of a catalyst particle is
much lower than the molecular diffusivity in the stagnant film, intraphase gradients
in mass are likely to be much greater than interphase gradients. For liquid-solid
heterogeneous systems, internal temperature gradients are often encountered. A typ­
ical range of Bim/Bih is from 10 to 104 for gas-solid systems and from 10-4 to 10- 1

for liquid solid systems.
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at 0
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(6.4.38)

with the following

atx Lc is the half of the macrocavity)
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(6.5.1)

(6.5.2)

6.5 I Analysis of Rate Data
To arrive at a rate expression that describes intrinsic reaction kinetics and is suit­
able for engineering design calculations, one must be assured that the kinetic data
are free from artifacts that mask intrinsic rates. A variety of criteria have been pro­
posed to guide kinetic analysis and these are thoroughly discussed by Mears [D. E.
Mears, Ind. Eng. Chern. Process Des. Develop., 10 (1971) 541].

A lack of significant intraphase diffusion effects (i.e., YJ 2': 0.95) on an irreversible,
isothermal, first-order reaction in a spherical catalyst pellet can be assessed by the
Weisz-Prater criterion [P. B. Weisz and C. D. Prater, Adv. Catal., 6 (1954) 143]:

robs (Rp )2
----'-- < 1
DhCAs

where robs is the observed reaction rate per unit volume and Rp is the radius of a
catalyst particle. An important aspect of this criterion is that it uses the observed
rate and the reactant concentration at the external surface. The intrinsic rate and the
concentration profile inside the pellet are not needed. For power law kinetics where
n is the reaction order (other than 0), the following expression can be used:

robs (Rp )2 1----'-- < ­
DTACAS n

The influence of mass transfer through the film surrounding a spherical cata­
lyst particle can also be examined with a similar expression. Satisfaction of the
following inequality demonstrates that interphase mass transfer is not significantly
affecting the measured rate:

(6.5.3)

where k c is the mass transfer coefficient and the reactant concentration is determined
in bulk fluid. The above relationship is analogous to the modified Weisz-Prater cri­
terion with ke replacing Dh/Rp.

Criteria have also been developed for evaluating the importance of intraphase
and interphase heat transfer on a catalytic reaction. The Anderson criterion for es­
timating the significance of intraphase temperature gradients is [J. B. Anderson,
Chern. Eng. Sci., 18 (1963) 147]:

(6.5.4)
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where ,\e is the effective thermal conductivity of the particle and E is the true acti­
vation energy. Satisfying the above criterion guarantees that robs does not differ from
the rate at constant temperature by more than 5 percent. Equation (6.5.4) is valid
whether or not diffusional limitations exist in the catalyst particle. An analogous cri­
terion for the lack of interphase temperature gradients has been proposed by Mears
[D. E. Mears, 1. Catal., 20 (1971) 127]:

(6.5.5)

where ht is the heat transfer coefficient and TB refers to the bulk fluid temperature.
The Mears criterion is similar to the Anderson criterion with ht replacing ,\e/Rp- In
addition, the Mears criterion is also valid in the presence of transport limitations in
the catalyst particle.

While the above criteria are useful for diagnosing the effects of transport
limitations on reaction rates of heterogeneous catalytic reactions, they require
knowledge of many physical characteristics of the reacting system. Experimen­
tal properties like effective diffusivity in catalyst pores, heat and mass transfer
coefficients at the fluid-particle interface, and the thermal conductivity of the cat­
alyst are needed to utilize Equations (6.5.1) through (6.5.5). However, it is dif­
ficult to obtain accurate values of those critical parameters. For example, the
diffusional characteristics of a catalyst may vary throughout a pellet because of
the compression procedures used to form the final catalyst pellets. The accuracy
of the heat transfer coefficient obtained from known correlations is also ques­
tionable because of the low flow rates and small particle sizes typically used in
laboratory packed bed reactors.

Madon and Boudart propose a simple experimental criterion for the absence of
artifacts in the measurement of rates of heterogeneous catalytic reactions [R. J.
Madon and M. Boudart, Ind. Eng. Chern. Fundarn., 21 (1982) 438]. The experiment
involves making rate measurements on catalysts in which the concentration of ac­
tive material has been purposely changed. In the absence of artifacts from transport
limitations, the reaction rate is directly proportional to the concentration of active
material. In other words, the intrinsic turnover frequency should be independent of
the concentration of active material in a catalyst. One way of varying the concen­
tration of active material in a catalyst pellet is to mix inert particles together with
active catalyst particles and then pelletize the mixture. Of course, the diffusional
characteristics of the inert particles must be the same as the catalyst particles, and
the initial particles in the mixture must be much smaller than the final pellet size.
If the diluted catalyst pellets contain 50 percent inert powder, then the observed
reaction rate should be 50 percent of the rate observed over the undiluted pellets.
An intriguing aspect of this experiment is that measurement of the number of ac­
tive catalytic sites is not involved with this test. However, care should be exercised
when the dilution method is used with catalysts having a bimodal pore size distri­
bution. Internal diffusion in the micropores may be important for both the diluted
and undiluted catalysts.
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Another way to change concentration of active material is to modify the cata­
lyst loading on an inert support. For example, the number of supported transition
metal particles on a microporous support like alumina or silica can easily be varied
during catalyst preparation. As discussed in the previous chapter, selective
chemisorption of small molecules like dihydrogen, dioxygen, or carbon monoxide
can be used to measure the fraction of exposed metal atoms, or dispersion. If the
turnover frequency is independent of metal loading on catalysts with identical metal
dispersion, then the observed rate is free of artifacts from transport limitations. The
metal particles on the support need to be the same size on the different catalysts to
ensure that any observed differences in rate are attributable to transport phenomena
instead of structure sensitivity of the reaction.

A minor complication arises when dealing with exothermic reactions, since the
effectiveness factor for a catalyst pellet experiencing transport limitations can still
equal one. To eliminate any ambiguity associated with this rare condition, the
Madon-Boudart criterion for an exothermic reaction should be repeated at a differ­
ent temperature.

The simplicity and general utility of the Madon-Boudart criterion make it one
of the most important experimental tests to confirm that kinetic data are free from
artifacts. It can be used for heterogeneous catalytic reactions carried out in batch,
continuous stirred tank, and tubular plug flow reactors.

Development of rate expressions and evaluation of kinetic parameters require
rate measurements free from artifacts attributable to transport phenomena. Assum­
ing that experimental conditions are adjusted to meet the above-mentioned criteria
for the lack of transport influences on reaction rates, rate data can be used to pos­
tulate a kinetic mechanism for a particular catalytic reaction.
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Figure 6.5.1 I
Effect of agitation on the rate of 2-propanol
dehydrogenation to acetone at 355 Kover Ni catalysts.
[Rates are calculated at constant conversion level from
the data in D. E. Mears and M. Boudart, AIChE 1., 12
(1966) 313.] In this case, increasing the stirring speed
increased the rate of acetone diffusion away from the
catalyst pellet and decreased product inhibition.
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If mass and heat transfer problems are encountered in a catalytic reaction,
various strategies are employed to minimize their effects on observed rates. For
example, the mass transfer coefficient for diffusion through the stagnant film sur­
rounding a catalyst pellet is directly related to the fluid velocity and the diameter
of the pellet according to Equation (6.2.26). When reactions are not mass trans­
fer limited, the observed rate will be independent of process variables that affect
the fluid velocity around the catalyst pellets. Conversely, interphase transport lim­
itations are indicated if the observed rate is a function of fluid flow. Consider the
results illustrated in Figure 6.5.1 for the dehydrogenation of 2-propanol to ace­
tone over powdered nickel catalyst in a stirred reactor. The dependence of the rate
on stirring speed indicates that mass transfer limitations are important for stirring
speeds less than 3600 rpm. Additional experiments with different surface area cat­
alysts confirmed that rates measured at the highest stirring speed were essentially
free of mass transfer limitations [D. E. Mears and M. Boudart, AIChE J., 12 (1966)
313].

Both interphase and intraphase mass transfer limitations are minimized by
decreasing the pellet size of the catalyst. Since a packed bed of very small catalyst
particles can cause an unacceptably large pressure drop in a reactor, a compro­
mise between pressure drop and transport limitations is often required in
commercial reactors. Fortunately, laboratory reactors that are used to obtain
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Figure 6.5.2 I
Schematic illustration of the influence of catalyst pellet
size on the observed reaction rate.

intrinsic reaction kinetics require relatively small amounts of catalyst and can be
loaded with very small particles. For the case presented in Figure 6.5.2, observed
rates measured on catalyst pellets larger than I mm are affected by transport
limitations.

Exercises for Chapter 6
1. The isothermal, first-order reaction of gaseous A occurs within the pores of a

spherical catalyst pellet. The reactant concentration halfway between the
external surface and the center of the pellet is equal to one-fourth the
concentration at the external surface.

(a) What is the relative concentration of A near the center of the pellet?

(b) By what fraction should the pellet diameter be reduced to give an
effectiveness factor of 0.77

2. The isothermal, reversible, first-order reaction A = B occurs in a flat plate
catalyst pellet. Plot the dimensionless concentration of A (CA/ CAS) as a
function of distance into the pellet for various values of the Thiele modulus
and the equilibrium constant. To simplify the solution, let CAS = 0.9(CA + CB)

for all cases.

3. A second-order. irreversible reaction with rate constant k = 1.8 L mol- 1 s- J

takes place in a catalyst particle that can be considered to be a one-dimensional
slab of half width I em.



CHAPTER 6 Effects of Transport I imitations on Rates of Solid-Catalyzed Reactions 233

lern

The concentration ofreactant in the gas phase is 0.1 mol L- 1 and at the surface
is 0.098 mol L- I. The gas-phase mass-transfer coefficient is 2 cm s-1. Determine
the intraphase effectiveness factor. (Contributed by Prof. J. L. Hudson, Univ.
of Virginia.)

4. Consider the combustion of a coal particle occurring in a controlled burner.
Assume the rate expression of the combustion reaction at the surface of the
particle is given by:

E in kJ mol- 1

where the rate is in units of moles O2 reacted min- 1 (m2 external surface)-l,
Ts is the surface temperature of the coal particle in Kelvins, and Cs is the
surface concentration of O2 . The estimated heat and mass-transfer coefficients
from the gas phase to the particle are ht = 0.5 kJ min - I K- I m -2 and kc =

0.5 m min- I, and the heat of reaction is -ISO kJ (mol O2) -1. Consider the
bulk temperature of the gas to be TB = 500°C and the bulk concentration of
O2 to be 2 mol m-3

.

(a) What is the maximum temperature difference between the bulk gas and
the particle? What is the observed reaction rate under that condition?

(b) Determine the actual surface temperature and concentration, and therefore
the actual reaction rate.

5. The irreversible, first-order reaction of gaseous A to B occurs in spherical
catalyst pellets with a radius of 2 mm. For this problem, the molecular
diffusivity of A is 1.2 X 10- 1 cm2 s- 1 and the Knudsen diffusivity is 9 X 10- 3

cm2 s-1. The intrinsic first-order rate constant determined from detailed
laboratory measurements was found to be 5.0 s-1. The concentration of A in
the surrounding gas is 0.0 I mol L-1. Assume the porosity and the tortuosity
of the pellets are 0.5 and 4, respectively.

(a) Determine the Thiele modulus for the catalyst pellets.

(b) Find a value for the internal effectiveness factor.
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(c) For an external mass-transfer coefficient of 32 s-I (based on the external
area of the pellets), determine the concentration of A at the surface of the
catalyst pellets.

(d) Find a value for the overall effectiveness factor.

6. J. M. Smith (J. M. Smith, Chemical Engineering Kinetics, 2nd ed., McGraw­
Hill, New York, 1970, p. 395) presents the following observed data for Pt­
catalyzed oxidation of SOz at 480°C obtained in a differential fixed-bed reactor
at atmospheric pressure and bulk density of 0.8 g/cm3

.

251
171
119
72

0.06
0.06
0.06
0.06

0.0067
0.0067
0.0067
0.0067

0.2
0.2
0.2
0.2

0.1346
0.1278
0.1215
0.0956

The catalyst pellets were 3.2 by 3.2 mm cylinders, and the Pt was superficially
deposited upon the external surface. Compute both external mass and
temperature gradients and plot LlCsoz and LlT versus the mass velocity. Can
you draw any qualitative conclusions from this plot? If the reaction activation
energy is 30 kcal/mol, what error in rate measurement attends neglect of an
external LlT? What error prevails if, assuming linear kinetics in SOz, external
concentration gradients are ignored?

Hints:

J = kc Sc Z/3 = 0.817 Re- 1/2

u

catalyst pellet is nonporous

reaction carried out with excess air

/iair = 1.339 g/h/cm @ 480°C

DSO,-air = 2.44 ft2/h @ 480°C

BB = void fraction of bed = 0.4

Sc = 1.28

/L Cp
Prandtl number = -A- = 0.686

Cp 7.514 cal/mol/K

18.75 mm- Isurface area

volume

LlHr -30 kcal/mol

a
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7. The importance of diffusion in catalyst pellets can often be determined by
measuring the effect of pellet size on the observed reaction rate. In this exercise,
consider an irreversible first-order reaction occurring in catalyst pellets where
the surface concentration of reactant A is CAS = 0.15 M.

Data:

Diameter of sphere (em) 0.2 0.06 0.02 0.006

rob, (mol/h /em3
) 0.25 0.80 1.8 2.5

(a) Calculate the intrinsic rate constant and the effective diffusivity.

(b) Estimate the effectiveness factor and the anticipated rate of reaction (robs)
for a finite cylindrical catalyst pellet of dimensions 0.6 cm X 0.6 cm
(diameter = length).

8. Isobutylene (A) reacts with water on an acidic catalyst to form t-butanol (B).

(CH3)2C=CH2 + H20 = (CH3)3COH

When the water concentration greatly exceeds that of isobutylene and t-butanol,
the reversible hydration reaction is effectively first order in both the forward
and reverse directions.

V. P. Gupta and W. J. M. Douglas [AIChE J., 13 (1967) 883] carried out the
isobutylene hydration reaction with excess water in a stirred tank reactor utilizing
a cationic exchange resin as the catalyst. Use the following data to determine the
effectiveness factor for the ion exchange resin at 85°C and 3.9 percent conversion.

Data:

Equilibrium constant @ 85°C = 16.6 = [B]/[A]

D~A = 2.0 X 10-5 cm2 S-l

Radius of spherical catalyst particle = 0.213 mm

Density of catalyst = 1.0 g cm-3

Rate of reaction at 3.9 percent conversion = 1.11 X 10-5 mol s-1 gcaC I

CAS = 1.65 X 10-2 M (evaluated at 3.9 percent conversion)

C~ = 1.72 X 10-2 M (reactor inlet concentration)

(Problem adapted from C. G. Hill, Jr., An Introduction to Chemical Engineering
Kinetics and Reactor Design, Wiley, NY, 1977.)

9. Ercan et al. studied the alkylation of ethylbenzene, EB, with light olefins
(ethylene and propylene) over a commercial zeolite Y catalyst in a fixed-bed
reactor with recycle [Co Ercan, F. M. Dautzenberg, C. Y. Yeh, and H. E. Barner,
Ind. Eng. Chem. Res., 37 (1998) 1724]. The solid-catalyzed liquid-phase
reaction was carried out in excess ethylbenzene at 25 bar and 190°C. Assume
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the reaction is pseudo-first-order with respect to olefin. The porosity of the
catalyst was 0.5, the tortuosity was 5.0, and the density was 1000 kg m-3. The
observed rate (robsJ and rate constant (kobs ) were measured for two different
catalyst pellet sizes. Relevant results are given below:

0.63
0.17

5.69 X 10-4

1.07 X 10-3
4.62

17.13
8.64 X 10-6

11.7 X 10-6
0.33 X 10-3

1.06 X 10-3

(a) Determine whether or not external and internal mass transfer limitations
are significant for each case. Assume the diffusivity of olefins in
ethylbenzene is DAB = 1.9 X 10-4 cm2

S-l.

(b) Calculate the Thiele modulus, cP, and the internal effectiveness factor, y),

for each case.

(c) Determine the overall effectiveness factor for each case.

10. Reaction rate expressions of the form:

reveal zero-order kinetics when KCA » 1. Solve the material balance
(isothermal) equation for a slab catalyst particle using zero-order kinetics. Plot
CA(X)/CAS for a Thiele modulus of 0.1, 1.0, and 10.0. If the zero-order kinetics
were to be used as an approximation for the rate form shown above when
KCAS » I, would this approximation hold with the slab catalyst particle for
the Thiele moduli investigated?

11. Kehoe and Butt [1. P. Kehoe and J. B. Butt, AIChE 1., 18 (1972) 347] have
reported the kinetics of benzene hydrogenation of a supported, partially
reduced Ni/kieselguhr catalyst. In the presence of a large excess of hydrogen
(90 percent) the reaction is pseudo-fIrst-order at temperatures below 200°C
with the rate given by:

where

PB = benzene partial pressure, torr

P~ dihydrogen partial pressure, torr
KO 4.22 X 10- 11 torr- I

k? 4.22 mol!gcat/s/torr

E -2.7 kcal/mol
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For the case of P~ = 685 torr, Pe 75 torr, and T l50aC, estimate the
effectiveness factor for this reaction carried out in a spherical catalyst particle
of density 1.88 gcat/cm3

, DYB 0.052 cm2/s, and Rp = 0.3 cm.

12. A first-order irreversible reaction is carried out on a catalyst of characteristic
dimension 0.2 cm and effective diffusivity of 0.015 cm2/s. At 100aC the
intrinsic rate constant has been measured to be 0.93 s-I with an activation
energy of 20 kcallmoI.

(a) For a surface concentration of 3.25 X 10-2 mollL, what is the observed
rate of reaction at looac?

(b) For the same reactant concentration, what is the observed rate of reaction
at l50aC? Assume that DTA is independent of temperature.

(c) What value of the activation energy would be observed?

(d) Compare values of the Thiele modulus at 100aC and l50aC.

13. The catalytic dehydrogenation of cyclohexane to benzene was accomplished
in an isothermal, differential, continuous flow reactor containing a supported
platinum catalyst [L. G. Barnett et aI., AIChE J., 7 (1961) 211].

O===>O+3HZ

C6H12 =0.002 mol s-1

Hz =0.008 mol 8-1

1=15.5 %

Dihydrogen was fed to the process to minimize deposition of carbonaceous residues
on the catalyst. Assuming the reaction is first-order in cyclohexane and the diffusivity
is primarily of the Knudsen type, estimate the tortuosity 7 of the catalyst pellets.

Additional Data:

Diameter of catalyst pellet = 3.2 mm

Pore volume of the catalyst = 0.48 cm3 g-I

Surface area = 240 m2 g-I

Pellet density Pp = 1.332 g em- 3

Pellet Porosity op = 0.59

Effectiveness factor TJ = 0.42

14. For a slab with first-order kinetics:

TJo
tanhcP

cP[ 1 + cP tanh(cP)/Bi",J
(1)

How important is the mass Biot number in Equation (1) with respect to its
influence upon TJo for (a) cP 0.1, (b) cP 1.0. (c) cP 5.0, (d) cP 10.07
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Consider the effect of the Biot number significant if it changes 1]0 by more
than I percent. Can you draw any qualitative conclusions from the behavior
observed in parts (a)-(d)?

15. The liquid-phase hydrogenation of cyclohexene to cyclohexane (in an inert
solvent) is conducted over solid catalyst in a semibatch reactor (dihydrogen
addition to keep the total pressure constant).

P=constant

Draw a schematic representation of what is occurring at the microscopic
level. Provide an interpretation for each of the following figures.

Time

Figure 1 I
Linear relationship between cyclohexene concentration in
the reactor and reaction time. Results apply for all
conditions given in the figures provided below.

Weight of catalyst

Figure 2 I
Effect of catalyst weight on reaction rate.
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(lIT)

Figure 3 I
Evaluation of temperature effects on the reaction rate
constant.
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