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Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using
paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the
vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates
suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is
unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been
variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs
deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus
orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find
that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in
mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which
functioned primitively in mesoderm.
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INTRODUCTION
The transition from sessile filter feeding to active predation in the

vertebrate lineage was made possible by the evolution of a robust

head skeleton. Embryologically, most vertebrate craniofacial

cartilages and all pharyngeal cartilages are derived from the

neural crest[1], a migratory and multipotent cell population

formed at the edges of the nascent central nervous system. Data

from invertebrate chordates suggest that the neural crest evolved

from a population of migratory neural tube cells with limited

developmental potential [2,3]. Key to understanding the origins of

the vertebrate head is understanding how these neural cells

acquired the ability to form cellular cartilage.

Based on comparative morphology [4,5] and the fossil

Haikouella[6] it has been proposed that the first cartilages in the

vertebrate head were pharyngeal cartilages of neural crest origin.

In modern vertebrates, several genes mark post-migratory cranial

neural crest cells as they populate the pharynx and form cartilage.

These genes can be classified into three groups based on their

expression patterns and demonstrated regulatory interactions

(Figure 1A). The first set of genes is expressed broadly in neural

crest cells during migration, and persists at high levels in post-

migratory cranial neural crest. This group includes, but is not

limited to, Sox9[7] (SoxE), Sox5/6[8] (SoxD), Twist1/2[9], Id2/

3[10], and Ets1/2[11] . All of these genes except Ets1/2 have also

been shown to be necessary for the formation of neural crest-

derived cartilages. Expression of these factors precedes upregula-

tion of several genes expressed in nascent chondrocytes and shown

to be necessary for cartilage and bone differentiation. These genes

include the transcription factors Barx1/2[12], Cart1[13], Alx3/

4[14], Bapx1[15], and Runx1/2/3[16] and the TGF-beta signaling

molecule GDF5[17]. A third group of genes is expressed in

differentiated cartilage and include classical markers of vertebrate

cartilage like Col2a1[18] and the chondroitin sulfate-binding

lecticans[19] (i.e. aggrecan). Also essential for the differentiation of

neural crest-derived cartilage are two classes of signaling

molecules, FGFs[20] and endothelins[21]. These factors are secreted

from adjacent pharyngeal endoderm and overlying ectoderm and

are necessary for both cartilage differentiation and patterning via

Dlx, Msx, Hand2, Bapx1, and Gsc transcription factors[21].

Gene expression studies suggest that the evolution of neural

crest migratory ability and multipotency involved the cooption of

transcription factors from other cell types [2,10,22,23]. Genomic

comparisons suggest this cooption also coincided with the

evolution of new effector genes and signaling molecules[24] .

While it is likely that the evolution neural crest-derived cartilage

was driven by gene cooption it is unclear if this involved

recruitment of individual genes into a novel gene regulatory

network, or wholesale cooption of a pre-existing genetic program.

Various chordate tissues have been proposed to represent

evolutionary precursors of neural crest-derived cartilage, implying

the utilization of pre-existing proto-chondrogenic gene networks.

Cephalochordates possess skeletal elements reminiscent of verte-

brate neural crest-derived pharyngeal cartilages. Though acellular,

amphioxus pharyngeal gill bars are composed of fibrillar

collagen[25,26] and chondroitin sulfate[27]. They are also

positioned between the endoderm and ectoderm and function to

support the pharynx and express the cranial neural crest marker

Id[10]. Based on these similarities, it has been suggested that the

genetic network operating in cranial neural crest was recruited

from collagen-secreting pharyngeal mesoderm[10] and/or endo-

derm[26,28]. Like amphioxus gill bars, the notochords of

urochordates, cephalochordates, and vertebrates also express

fibrillar collagen[29,30]. This has lead to speculation that a gene

network mediating filbrillar collagen expression in vertebrate head
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cartilage was coopted from the notochord[30]. It has also been

proposed that vertebrate neural crest-derived chondrocytes

evolved from central nervous system (CNS) cells with the ability

to express fibrillar collagen[31].

We tested whether vertebrate-like proto-chondrogenic gene

programs could be operating in amphioxus tissues with proposed

evolutionary relationships to the neural crest, including pharyngeal

mesoderm, pharyngeal endoderm, neural tube and notochord. To

this end we isolated amphioxus orthologs of 11 vertebrate genes

involved in neural crest chondrogenesis and analyzed their

expression patterns in embryos and larvae (summarized in

Figure 1B). We find that no amphioxus cell type co-expresses

orthologs of all or most vertebrate chondrogenic network

components, arguing against wholesale cooption of a proto-

chondrogenic gene program from any single cell type. Instead, our

data suggests piecemeal assembly of the vertebrate cartilage gene

network via repeated cooption of genes which functioned

primitively in the mesoderm of the pre-vertebrate chordate.

RESULTS

Identification of amphioxus neural crest and

cartilage gene homologs
Using vertebrate protein sequences we BLAST searched an

amphioxus EST database (Jr Kai Yu, unpublished results) for

putative amphioxus orthologs of vertebrate cranial neural crest

and cartilage genes. We identified amphioxus clones correspond-

ing to vertebrate Twist1/2, Ets1/2, Alx3/Alx4/Cart1, Runx1/2/3,

Bapx1, FGF8/17/18 genes and a single amphioxus class A fibrillar

collagen (ColA) (Table 1). Amphioxus genome release v1.0 (Joint

Figure 1. A provisional gene network operating in nascent neural crest-derived cartilage and expression of network component homologs in
amphioxus. (A) We have classified genes in the network as cranial neural crest (CNC) markers, cartilage markers, or effector genes based on their
expression, regulatory relationships, and biochemical functions. Among the CNC markers are Sox9 (SoxE), Sox5/6 (SoxD), Twist1/2 and Ets1/2 genes. All
of these factors are expressed in post-migratory chondrogenic cranial neural crest [8,9,11,45,46]. SoxE, SoxD, and Twist1/2 have been shown to cross-
regulate, and to activate cartilage specifiers and effector genes. SoxE is required for expression of both SoxD and Twist1/2 in migrating CNC [8,34],
while Twist1/2 is necessary for the continued expression of SoxE in postmigratory CNC[9]. Both SoxE and SoxD cooperate to directly activate the
definitive cartilage differentiation marker Col2a1 in chondroblasts[47], while Twist1/2 is required for expression of the aristalless-related transcription
factors Alx3/4 and Cart1[9]. Ets1/2 expression overlaps temporally and spatially with SoxE, SoxD and Twist1/2, though functional relationships between
it and the other network components have yet to be demonstrated [11]. In sea urchins, Ets1/2 and Alx3/4 orthologs are necessary for the formation of
skeletogenic mesenchyme and are regulated by the same upstream factors, suggesting they cooperate in an evolutionarily ancient skeletogenic
program [48,49]. As chondrogenesis begins, presumptive pharyngeal chondrocytes express genes grouped here as cartilage markers (Barx1/2, Alx3/4,
Cart1, Runx1/2/3, Bapx1, and GDF5). These genes are expressed in differentiating CNC-derived chondrocytes [12–14,16,21,50–52], are downstream of
CNC specfiers and upstream of effector genes like Col2a1 and Aggrecan, Barx1 physically interacts with Sox9 to directly activate Collagen2a1
expression [37]. As indicated above, Alx3/4 and Cart1 are regulated by Twist1/2[9]. Runx1/2/3 expression in chondrocytes is dependent on SoxE
function[16]. In the pharynx, Bapx1 functions mainly to position the jaw joint by regulating expression of GDF5[21,53]. In the mesoderm-derived axial
skeleton, however, Bapx1 is expressed broadly and operates upstream of Sox9, Col2a1, and Runx1/2/3[54,55]. Essential for maintenance and
establishment of the chondrogenic subnetwork are signaling molecules of the FGF and Endothelin families which are secreted by surround
pharyngeal endoderm and ectoderm[20,21] (not shown). These genes also mediate pharyngeal arch patterning by activating nested expression of
various transcription factors in the nascent cartilages including Dlx and Msx genes, Gsc, and Hand2 [21,43](not shown). (B) The major expression
domains of chondrogenic neural crest gene homologs in amphioxus neurulae and larvae. No single cell type expresses the complete set of vertebrate
chondrogenic network genes, indicating the cranial neural crest cartilage program is a vertebrate novelty. Notably, most factors are expressed in
mesodermal derivatives, suggesting neural crest-derived cartilage evolved via repeated cooption of primitively mesodermal genes.
doi:10.1371/journal.pone.0000787.g001
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Genome Institute) was searched for homologs of vertebrate Sox5/6

(SoxD), Barx1/2, and GDF5/6/7. Fragments of these genes were

isolated by PCR. A single amphioxus SoxE cDNA was isolated by

degenerate PCR and phage library screening. The amphioxus

genome and EST database were searched exhaustively for

potential amphioxus-specific duplicates of these genes, but none

were found, indicating they are all present as single copies in the

amphioxus genome. Putative orthology of each gene was suggested

by BLAST searches of GenBank with amphioxus sequences and

gene models. In each case, the highest identity hits were vertebrate

or sea urchin homologs of the genes used to do the original

searches. Orthology was further confirmed by phylogenetic

analyses (Text S1, Figure S1, S2, S3, S4 and S5). Searches of

the amphioxus genome with several vertebrate endothelin sequences

yielded no similar sequences. Searches with vertebrate aggrecan

sequences yielded two ESTs with high similarity to the c-terminal

EGF-lectin modules of vertebrate lecticans.

Expression of the cranial neural crest marker

orthologs, SoxE, SoxD, Twist, and Ets
At neurula stages, amphioxus SoxE was observed in cells of the

ventral notochord and medial neural plate (Figure 2A,B). In early

larvae (24 h), SoxE expanded throughout the neural tube, but was

lost from the ventral notochord (Figure 2D,C). SoxE expression

was not detectable in late larvae. SoxD expression was seen in the

nascent notochord and medial somite of neurulae (Figure 2E,F),

then in the notochord, anterior gut, and cerebral vesicle of early

larvae (Figure 2G, H). Twist expression was seen in the lateral

somites and notochord of neurulae (Figure 2I,J), similar to Twist

expression in the Chinese lancelet[32]. In early larvae, Twist

transcripts were detected in the ventrolateral somites as they

expanded to line the coelomic wall (Figure 2K,L). In late larvae,

Twist expression was observed in the mesoderm of the first forming

pharyngeal arch and right gut diverticulum (Figure 2Q,R). Ets

expression was observed in the posterior gut and in the ventral

part of the anterior somites at neurula stages (Figure 2M,N). At

early larval stages expression was seen in the posterior gut,

ventrolateral mesoderm, and the anterior gut diverticulae

(Figure 2O,P). In late larvae, Ets was observed in the pharyngeal

mesoderm of the first pharyngeal arch and the anterior gut

diverticulae (Figure 2S,T).

Expression of amphioxus orthologs of the

chondrocyte markers Alx3/Alx4/Cart1, Runx, Barx,

Bapx, and GDF5
Amphioxus Alx, the ortholog of vertebrate Alx3,Alx4, and Cart1,

was expressed in the lateral somites and strongly in the right gut

diverticulum at neural stages (Figure 3A,B). In early larvae, Alx

expression persisted in ventral somitic mesoderm and the right gut

diverticulum (Figure 3C,D). In late larvae, expression of Alx was

seen in pharyngeal arch mesoderm and the right gut diverticulum

(Figure 3E,F). Barx expression was limited to a few ectodermal cells

immediately caudal to the preoral pit at larval stages (Figure 3G,

H). Amphioxus Bapx was expressed in the medial somite at

embryonic stages (Figure 3I,J). In early larvae amphioxus Bapx

marked a stripe of endoderm on the right side of the pharynx

approximating the future location of the first gill slit (Figure 3K,L).

Amphioxus Runx expression was seen in the posterior gut of

neurulae (Figure 3M,N) and early larvae (Figure 3O,P) and

diffusely in the late larval ectoderm (not shown). No detectable

expression of amphioxus GDF5/6/7 was observed in embryos or

larvae up to day 4.5.

Expression of amphioxus fibrillar collagen and

aggrecan-like genes
Expression of the amphioxus ortholog of the definitive vertebrate

cartilage marker Col2a1 (Amphioxus ColA) in the embryonic

(Figure 4A,B) and larval (Figure 4C,D) notochord and neural tube

was similar to previous reports. However, we noted additional

expression domains not previously described. Importantly, we saw

strong expression of amphioxus ColA in the pharyngeal arch

mesoderm of late larvae (Figure 4E–G), consistent with fibrillar

collagen expression in the adult pharyngeal skeleton. We also

observed weak embryonic expression of amphioxus ColA in the

paraxial mesoderm of early larvae (Figure 4D). We did not observe

expression of the aggrecan-like c-lectin domain clones Agc-like1 or Agc-

like2 in amphioxus embryos or larvae.

Expression of amphioxus FGF8/17/18
We also identified an ortholog of vertebrate FGF8, a signaling

molecule secreted from pharyngeal endoderm required for

pharyngeal chondrogenesis in vertebrates. At late neurula stages,

Table 1. The genes analyzed in this study and their corresponding cDNA clones.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vertebrate Proteins used for tBLASTn Amphioxus Gene Models EST clone names/clone origins

Zebrafish Aggrecan Rat Aggrecan No clear ortholog bfad033a24 CAXG15329

Chick Alx4 Mouse Cart1 Alx bfne089p08

Chick Bapx1 Bapx bflv046h23

Mouse Barx1 Barx Exons amplified by PCR

Xenopus Col2a1 Col2a1 (ColA) bflv014e16

Zebrafish Endothelin Chick Endothelin None None

Chick Ets2 Ets bfad008i08

Chick FGF8 FGF8/17/18 CAXF12855

Chick GDF5 GDF5/6/7 Exons amplified by PCR

Chick Runx2 Runx1/2 bfne142d14

Chick Sox5 SoxD cDNA amplified by PCR

N/A SoxE cDNA isolated by library screen

Xenopus Twist Twist bfne115j15

doi:10.1371/journal.pone.0000787.t001..
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amphioxus FGF8/17/18 is expressed only in the cerebral vesicle

(data not shown). In early larvae, expression was observed in two

patches of pharyngeal endoderm (Figure 4H,I). Similar expression

was seen in late larvae, corresponding to points of contact between

the pharyngeal endoderm and ectoderm around the first and

second gill slits and club-shaped gland (Figure 4J,K).

DISCUSSION
While gene expression data in itself is not evidence of gene

regulatory relationships, the co-expression of non-secreted factors

is a prerequisite for direct regulatory interactions. Thus, expression

data can be used to falsify hypothetical gene regulatory

interactions, such as those implicit in homology arguments. In

this study we examined whether any tissue in the basal chordate

amphioxus could be considered an evolutionary precursor, or

latent homolog[33], of neural crest-derived cartilage. We reasoned

that such a tissue should broadly co-express most factors required

for neural crest chondrogenesis, including upstream transcription-

al regulators and downstream markers of overt cartilage

differentiation. As a starting point we focused on four tissues with

proposed evolutionary relationships to neural crest-derived

cartilage; the neural tube, pharyngeal mesoderm, pharyngeal

endoderm, and notochord.

Expression of amphioxus cartilage marker orthologs

in the neural tube
Based on the expression of fibrillar collagens in parts of the

vertebrate CNS, it has been proposed that vertebrate cartilage

evolved from CNS cells with the latent ability to express fibrillar

collagen [31]. Implicit in this scenario is that CNS cells in the

prevertebrate chordate co-expressed orthologs of fibrillar collagen

and the transcription factors which regulate it in cartilage. To test

this we looked for neural expression of fibrillar collagen and its

Figure 2. Expression of amphioxus SoxE, SoxD, Twist, and Ets at late neurula (15 h) and larval stages. In all panels showing wholemount
specimens, anterior is to the left. (A) SoxE expression in ventral notochord and medial neural plate in late neurula. (B) Section through b in A.
Superficial ectoderm staining is caused by adhesion of precipitate forming during the in situ hybiridzation procedure to the outside of the embryo.
This artefact is distinguishable from actual signal because it is acellular, not visible in wholemount, and only readily apparent in overstained sections
viewed using phase contrast optics. (C) SoxE expression throughout the neural tube and in ventral notochord cells at the anterior and posterior tips in
early larva (24 h). (D) Section through d in C showing neural tube staining. (E) SoxD expression in the medial somites and notochord in late neurula.
(F) Section through f in E. (G) SoxD expression in the posterior notochord, anterior gut, and cerebral vesicle of early larva. (H) Section through h in G
showing notochord expression. (I)Twist expression in lateral somites and notochord in late neurula (J) Section through j in I. (K) Twist expression in
ventrolateral mesoderm of early larva. (L) Section through the pharynx at l in K showing expression in pharyngeal mesoderm (arrow). (M) Ets
expression in the posterior gut, anterior notochord, and ventral aspect of the anterior somites of late neurula. (N) Section through n in M. (O) Ets
expression in the gut and anterior mesendoderm of early larva. (P) Section through the pharynx at p in O showing expression in pharyngeal
mesoderm (arrow) and gut. (Q) Twist expression in the mesoderm of the first pharyngeal arch (arrow) and right gut diverticulum (arrowhead) of 1.5d
larva. (R) Section through the first pharyngeal arch at r in Q showing mesodermal expression (arrow). (S) Ets expression in the mesoderm of the first
pharyngeal arch (arrow), gut diverticulae (arrowhead), and cerebral vesicle of 1.5d larva. (T) Section through the first pharyngeal arch at t in S showing
mesodermal expression (arrow). (U) Diagram of cross section midway through late neurula. (V) Diagram of cross section midway through early larva.
(W) Diagram of cross section through first pharyngeal arch in 1.5d larva. In cephalochordate larvae, gill slits on opposite sides of the pharynx form
asynchronously, with the right gill slits forming first. Thus, cross sections through the pharynx of amphioxus larvae reveal single gill bars rather than
the symmetrical pharyngeal arches typical of analogous sections through vertebrate embryos. In U,V, and W, light blue is epidermal ectoderm, dark
blue is the neural tube, brown is the notochord, yellow is endoderm, pink is somitic mesoderm, and red is pharyngeal arch mesoderm.
doi:10.1371/journal.pone.0000787.g002
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putative upstream regulators in amphioxus. We observed co-

expression of amphioxus ColA and SoxE throughout the neural

tube of early larvae with the exception of the cerebral vesicle,

which lacks ColA expression. SoxE is then down-regulated before

the mouth forms in late larvae, while ColA persists at least until the

2 gill slit stage. No other cartilage marker orthologs are broadly co-

expressed with these two factors, though SoxD and Ets both label

the larval cerebral vesicle. In vertebrate embryos SoxE genes (Sox8,

Sox9 and Sox10) are required for initial specification of the neural

crest[34]. Later in post-migratory cranial neural crest cells, SoxE

genes regulate the chondrogenic program and cooperate with

SoxD and Barx factors to directly activate Col2a1[35–37]. Both

these early and late functions of SoxE genes appear conserved to

the base of the vertebrate lineage [38,39]. The lack of broad co-

expression of amphioxus SoxE with SoxD and Barx, argues against

the presence of a vertebrate-like proto-chondrogenic program in

the CNS of the prevertebrate chordate ancestor. However, the

tight temporal and spatial co-expression of SoxE and ColA is

consistent with an ancient gene-regulatory relationship between

these genes in neural tissue.

Expression of amphioxus cartilage marker orthologs

in the pharyngeal mesoderm and endoderm
Electron microscopy and immunohistochemical analyses have

revealed that, like vertebrate pharyngeal cartilages, the amphioxus

gill bar skeleton is composed of fibrillar collagen and chondroitin

sulfate [25–27]. This has lead to speculation that a vertebrate-like

skeletogenic gene program operated in the pharyngeal endo-

derm[26,28] or mesoderm[10] of the pre-vertebrate chordate. To

evaluate these hypotheses we tested for broad co-expression of

cartilage marker orthologs in the pharynx of amphioxus.

Figure 3. Expression of amphioxus Alx, Barx, Bapx, and Runx in late neurulae (15 h) and larvae. In all panels showing wholemount specimens,
anterior is to the left unless otherwise indicated. (A) Alx expression in the lateral somites and gut diverticulae of late neurula. Strongest expression is
seen in the gut diverticulae and first somites. (B) Section through the first somites at b in A. (C) Alx expression in ventral mesoderm and the anterior
gut diverticulae of early larva (24 h). (D) Section through the pharynx at d in C showing expression in the pharyngeal mesoderm (arrow). (E) Alx
expression in the mesoderm of the first pharyngeal arch (arrow) and the right gut diverticulum (arrowhead) of 1.5d larva. (F) Section through the first
pharyngeal arch at f in E showing expression in mesoderm. (G) Anterior is to the left. Left side of an early larva focused in the plane of the ectoderm
showing Barx expression in a patch of ectoderm (arrow) just caudal to the forming preoral pit. (H) Anterior is to the left. Left side of a 1.5d larva
focused in the plane of the ectoderm showing Barx expression in a few ectodermal cells (arrow) caudal to the preoral pit (arrowhead). (I) Bapx
expression in the medial somites of late neurula. (J) Section through j in I. (K) Bapx expression in a stripe of pharyngeal endoderm on the right side of
an early larva approximating the region of the nascent first gill slit. (L) Section through l in K showing endodermal staining (arrowhead). (M) Runx
expression in the posterior gut of late neurula. (N) Section through n in M. (O) Runx expression in the gut of early larva. (P) Section through p in O.
doi:10.1371/journal.pone.0000787.g003

Amphioxus Cartilage Genes

PLoS ONE | www.plosone.org 5 August 2007 | Issue 8 | e787



In the pharyngeal mesoderm of larvae we observed co-

expression of Twist, Ets, Alx, and a homolog of the differentiated

cartilage marker Col2a1. In vertebrates, Twist1/2 and Ets1/2 genes

are expressed at high levels in post-migratory pharyngeal neural

crest during pharyngeal arch formation. Twist 1/2 has been shown

to be necessary for these cells to form cartilage [9,11] and Ets1

regulates expression of integrins in chondrocytes [40]. The aristalless-

related cartilage markers Alx3, Alx4, and Cart-1 are similarly

expressed in post-migratory pharyngeal neural crest and are

required for chondrogenesis[13,41]. Previous studies have not

reported pharyngeal ColA mRNA expression at larval stages which

would account for the presence of collagen protein in the gill bars

[29,30], though ColA transcripts are expressed broadly in

pharyngeal ectoderm, endoderm, and mesoderm of adults [28].

We detect strong expression of ColA in larval pharyngeal

mesoderm (Figure 4), suggesting amphioxus gill bars are initially

mesodermal in origin. Thus, amphioxus pharyngeal mesoderm

coexpresses orthologs of three transcription factors which regulate

chondrogenesis in vertebrates, in addition to ColA and the cranial

neural crest marker Id. While broad coexpression of these factors is

suggestive of a rudimentary vertebrate-like chondrogenic program,

amphioxus pharyngeal mesoderm does not express SoxE or SoxD,

two factors essential for the formation of all vertebrate cartilages.

This tissue also does not deploy orthologs of the vertebrate

cartilage markers Runx1/2/3, GDF5, Barx1/2, or Bapx1. Further-

more, Twist1/2 and Alx3/4 mark lateral plate mesoderm in

vertebrates, indicating their function in amphioxus pharyngeal

mesoderm is not necessarily skeletogenic. Thus, while our data

suggests some genes involved in vertebrate chondrogenic genes are

expressed together with fibrillar collagen in amphioxus pharyngeal

mesoderm, it is unclear if they function in a vertebrate-like

chondrogenic gene network.

In the pharyngeal endoderm, we observed partially overlapping

expression of SoxD, Bapx, and the signaling molecule FGF8/17/18.

SoxD was expressed throughout the pharyngeal endoderm while

Bapx mRNA was detected in a restricted domain approximating

the region of the forming mouth. FGF8/17/18 was observed in

patches of ventral endoderm near the forming gill slits. In

vertebrates, FGF3 and FGF8 are expressed in pharyngeal

endoderm where they function to induce cartilage. Conserved

expression of amphioxus FGF8/17/18 in pharyngeal endoderm

may indicate a conserved function in inducing pharyngeal

skeletogenesis or patterning. However, the lack of broad

coexpression of cartilage marker orthologs, including ColA, in

amphioxus pharyngeal endoderm indicates this tissue does not

deploy a vertebrate-type skeletogenic gene program at larval

stages.

A proto-chondrogenic differentiation program does

not operate in the amphioxus notochord
Based on gross structural and biochemical similarities, and the

expression of fibrillar collagen, it has been proposed that

vertebrate cellular cartilage evolved by redeployment of a gene

Figure 4. Expression of amphioxus ColA, and FGF8/17/18 in late neurulae (15 h) and larvae. In all panels showing wholemount specimens,
anterior is to the left. (A) ColA expression in the nascent notochord in late neurula. (B) Section at the level of b in A. (C) ColA expression in the neural
tube and notochord in early larva (24 h). (D) Section through d in C showing weak expression in somitic mesoderm. (E) ColA expression in the
mesoderm of the first pharyngeal arch (arrow) of 1.5d larva. (F) Section through the first pharyngeal arch at f in E showing mesodermal expression
(arrow). (G) ColA expression in 2 gill slit larva. Strong expression is seen in the mesoderm of the first and second pharyngeal arches (arrows) and in
individual cells of the right gut diverticulum (arrowhead). (H) FGF8/17/18 expression in dorsal anterior ectoderm and two patches of pharyngeal
endoderm. (I) Section through the pharynx at i in H showing FGF8/17/18 expression in ventral endoderm (arrow). (J) FGF8/17/18 expression in the
pharyngeal endoderm of 1.5d larva (arrows). (K) Section through k in J showing expression in ventral endoderm (arrow).
doi:10.1371/journal.pone.0000787.g004
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program which operated primitively in the notochord [38]. To

address this possibility we assayed for coexpression of amphioxus

orthologs of vertebrate cartilage markers in the notochord.

We observed expression of four transcription factors and ColA in

the axial mesoderm of amphioxus. As previously reported,

amphioxus ColA marks axial mesoderm until larval stages,

mimicking Col2a1 expression in vertebrates[38]. This expression

overlapped to a limited extent with expression of SoxE in ventral

notochord cells. However, broad expression of amphioxus ColA

throughout the axial mesoderm implies that amphioxus ColA

expression in this tissue is not SoxE-dependent as it is in neural

crest-derived cartilage. Twist and SoxD are also coexpressed with

ColA in the axial mesoderm of neurulae. Twist marks strips of

ventral and dorsal notochord cells and is downregulated before

larval stages. SoxD is broadly coexpressed with ColA , but like Twist

, it is downregulated in early larvae. Notochord expression of ColA

also overlaps with weak expression of Ets in the anterior notochord

at neurula stages. In vertebrates, SoxD genes are necessary for

Col2a1 expression in notochord-derived cells[42]. Coexpression of

amphioxus SoxD and ColA in the notochord may reflect an

evolutionarily conserved regulatory relationship in axial meso-

derm. Taken together, we find little evidence that a gene network

resembling the neural crest chondrogenic program operates in the

amphioxus notochord. However, it is possible that both the

amphioxus notochord and cranial neural crest cells utilize SoxD

genes to regulate fibrillar collagen expression.

Lecticans and endothelins are vertebrate novelties

associated with the evolution of cartilage
In vertebrate cartilages, lecticans are the major chondroitin sulfate-

binding proteins. We could not identify clear amphioxus orthologs

of lecticans (i.e. aggrecan) in the amphioxus genome. We did isolate

two EST clones similar to the c-terminal domain of vertebrate

lecticans (Tab. 1), but neither was expressed in embryos or larvae.

Histological and biochemical assays demonstrate that amphioxus

gill bars contain acid mucopolysaccharides and chondroitin

sulfate[27]. It is possible that genes structurally related to lecticans,

but not strictly orthologous to them, bind chondroitin sulfate in

amphioxus. In vertebrates, endothelins are secreted molecules which

induce and pattern pharyngeal arch cartilages[43]. We did not

find a clear homolog of vertebrate endothelins in the amphioxus

genome. Like the lecticans, this class of genes may represent

a vertebrate novelty associated with the evolution of cellular

cartilage. Recent genomic comparisons confirm the absence of

endothelins in protochordates and indicate that other families of

signaling molecules associated with neural crest migration and

differentiation are unique to vertebrates[24]. Thus, the evolution

of chondrogenic neural crest is associated with the cooption of

evolutionarily ancient transcriptional regulators, as well as the

appearance of novel downstream effector genes and signaling

molecules like lecticans and endothelins.

De novo assembly of the vertebrate CNC cartilage

program via cooption of primitively mesodermal

genes
It is unknown how neural crest cells acquired the genetic

machinery necessary to form cellular cartilage. One possibility is

this occurred relatively rapidly by wholesale cooption of an ancient

chondrogenic program. Alternately, chondrogenic ability could

have evolved gradually in neural crest cells via piecemeal cooption

of individual genetic components. We find that no embryonic or

larval tissue in amphioxus co-expresses all or most cartilage

network orthologs, supporting de novo assembly of the vertebrate

chondrogenic neural crest gene program. Though it is possible

that some cartilage network orthologs are re-deployed together

after metamorphosis, we view this as unlikely since most

amphioxus tissue types, including the primary gill bars, form

during larval stages[44].

Assuming that the vertebrate chondrogenic gene network is

unique to vertebrates, we asked what the primitive function of

these genes may have been in the vertebrate ancestor. While

expression patterns alone do little to inform the precise functions

of genes, similar expression of orthologous genes across related

phyla often reflects conserved functional relationships. As

mentioned above, SoxE and ColA both mark the neural tube in

amphioxus, suggesting a vertebrate-type regulatory relationship

between these genes in neural tissue predates the evolution of

vertebrate cartilage. In adult hemichordates, which lack a central

nervous system, SoxE and ColA are also coexpressed in pharyngeal

endoderm, indicating this regulatory cassette may have evolved

before the origins of chordates.

In both sea urchins and vertebrates, Alx and Ets genes are

expressed in skeletogenic mesenchyme. Expression of amphioxus

Alx and Ets genes in pharyngeal mesoderm which gives rise to

collagenous skeletal elements may reflect conservation of an

ancient deuterostome skeletogenic gene program coopted by

neural crest cells. Functional studies will reveal if these genes act to

regulate gill bar formation in amphioxus and if they can be

considered components of a primitive chordate skeletogenic gene

program.

In addition to Alx and Ets, we found that most other amphioxus

orthologs of vertebrate CNC and cartilage markers were expressed

in mesodermal derivatives, while relatively few genes mark

epidermal, neural, or endodermal cells (Figure 1B). Similar

expression of vertebrate chondrogenic neural crest markers in

mesodermal derivatives suggests that most components of the

vertebrate neural crest cartilage program operated primitively in

mesoderm. This is consistent with the overlapping developmental

potentials of cranial neural crest cells and mesoderm to generate

connective tissue, muscle, and cartilage. In sum, our data suggests

that the vertebrate chondrogenic program likely evolved via serial

cooption of primitively mesodermal genes to neural crest cells in

the first vertebrates.

MATERIALS AND METHODS
Vertebrate protein sequences were used to BLAST search an

amphioxus EST database (Jr Kai Yu, unpublished results) for

putative amphioxus orthologs. Access to library clones was kindly

provided by Drs.J.K. Yu and Linda Holland. Degenerate PCR

using primers against vertebrate Sox8, Sox9, and Sox10 (SoxE591:

TACGAYTGGWCIYTNGTNCCIATGCC, Sox-

E391:GGCTGRTAYTTRTAITCIGGRTRRTC) followed by

phage library screening (library a gift of Jim Langeland) was used

to isolate an amphioxus SoxE ortholog. Amphioxus genome release

v1.0 (Joint Genome Institute) was searched for putative orthologs

of vertebrate SoxD, Barx1, and GDF5. Fragments of these genes

were isolated by PCR using diluted phage library and a vector-

specific primer (SoxD) or genomic DNA (Barx, GDF). Forward and

reverse primer sequences were:

SoxD59: CCCCACATCAAGCGGCCAATGAATG

BarxEx159: TATAGCTGGTTGTGCCTCTTG

BarxEx139: AACATTCTACACACTGCGACG

BarxEx2 59: GGAGGAGTTTACAGAGAGTAAC

BarxEx2 39: ACAAGTCTTGTTGTGACCTGTAC

BarxEx3 59: GCAATTAGCCTACGGACAC

BarxEx3 39: GCGTGTTCCGATTAGTACAG
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GDF5Ex1 59: GAAAGGGGTAGATTGATTTCTTTTC

GDF5Ex1 39: TACAGCCTTGTCGACGAAC

GDF5Ex2 59: ATTTTGAACAGCTGCCGGG

GDF5Ex2 39: CTGGGGTTCATGGAGTTG

For each amphioxus gene, in situ hybridization was performed

on embryos and larvae ranging from 12 hour early neurula to 2.5d

feeding larva (2–3 gill slits) as described previously. In the cases of

Barx and GDF, in situ probes made against their amplified exonic

sequences were pooled and used together. Embryos were

embedded in 20% gelatin in Phosphate Buffered Saline and

cryostat sectioned. Wholemount embryos in 40% glycerol/PBS,

and sections, were photographed using a Zeiss AxioSkop 2 Plus.

Images were processed using Adobe Photoshop.
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