Table S1. Methodological Considerations of Major Clearing Protocols of the Last Decade, Related to Figures 1, 4, S1, and S5 | Technique | Clearing
time for
whole-brain | Complete transparency | Fluorescent quenching | Tissues
validated | Significant contribution to field | Drawback | |---|-------------------------------------|---|---|--|--|--| | BABB,
THF,
DBE(Beck
er et al.,
2012; Dodt
et al.,
2007) | hours-days | Yes, but tissue
shrinkage | Yes (Ertürk
et al., 2012a;
Ke et al.,
2013) | Rodent brain,
spinal cord,
peripheral tissues | Among first clearing reagents | Harsh
reagents (Ke
et al., 2013) | | ClearT2(Ku
wajima et
al., 2013) | days | No | No-partial
(Ke et al.,
2013) | Rodent brain and embryo | Less quenching than BABB; novel reagents | Immunlabeling only through 120 µm | | Scale
(A2, U2)
(Hama et
al., 2011) | weeks-
months
(slowest) | Yes, but tissue
swelling
(Chung et al.,
2013; Ke et al.,
2013;
Kuwajima et
al., 2013) | No-minimal
(Ke et al.,
2013;
Kuwajima et
al., 2013) | Mouse brain,
embryo (Hama et
al., 2011) | Transparency
without quenching;
IHC/F | Slow; tissue
deformation;
potential
protein loss
with clearing
(Ke et al.,
2013) | | 3DISCO
(Ertürk et
al., 2012a;
Ertürk and
Bradke,
2013) | < week | Yes | No, but
signal decay
w/in days
(Ertürk et al.,
2012a;
Ertürk and
Bradke,
2013) | Peripheral/central organs, embryos, tumors (Ertürk and Bradke, 2013); Central (Erturk et al., 2012b) and peripheral (Jung et al., 2014) nerves | Balance between rapidity and quality of cleared tissue; imaging protocol | Requires
immediate
sample
imaging; IHC-
very limited | | CLARITY
(Chung
and
Deisseroth
, 2013;
Chung et
al., 2013;
Kim et al.,
2013) | 10 days | Yes | No | Rodent, human
and non-human
primate brains,
spinal cord,
zebrafish (Zhang
et al., 2014) | Hydrogel-
embedding; best
tissue quality when
performed correctly;
IHC/F | ETC difficult,
customized
equipment,
expensive
(Chung et al.,
2013) | | Advanced
CLARITY
(Tomer et
al., 2014;
Zhang et
al., 2014) | 3 weeks | Yes | No | Whole mouse brain | No ETC – passive
thermal CLARITY,
COLM, CLARITY
objectives, rapid
imaging protocol | Requires
COLM set-up | | SeeDB (Ke
et al.,
2013; Ke
and Imai,
2014) | days
(fastest) | No | No | Young rodent
brains (Ke et al.,
2013) | No tissue deformation, fast | Tissue
browning,
incomplete
clearing, | | CUBIC
(Susaki et
al., 2014) | 2 weeks | Mostly-Yes | No | Rodent and non-
human primate
brain | CUBIC informatics,
optimized Scale
(Susaki et al., 2014) | Brain only;
potential
protein loss
during clearing | | PACT, | days-weeks | Yes | No | All major rodent | optimized/simplified | Slower than | |-------|------------|-----|----|------------------|----------------------|-------------| | PARS | | | | organs; whole- | CLARITY; permits | 3DISCO | | | | | | body clearing | long-term tissue | | | | | | | | storage; IHC/F | | IHC: Compatible with immunohistochemistry IHC/F: Compatible with immunohistochemistry, immunofluorescent labeling; validated for (> 0.5 mm) depth of antibody penetration IHC: IHC-incompatible, IHC-unverified, or strong restrictions, such as only compatible with lipophilic tissue dyes, or poor antibody penetration (<< 0.5 mm) COLM: CLARITY-optimized light sheet microscopy; CLARITY objectives possess a several-millimeter working distance, which permits whole-brain or thick slice imaging. The COLM set-up grants rapid sample imaging and thus improves the throughput of whole-brain analysis. However, regardless of the imaging methodology followed: e.g. such as those provided in COLM, 3DISCO and CUBIC protocols, whole-brain and large sample imaging requires a specialized, expensive microscopy set-up.