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SUMMARY

Understanding the structure-function relationships at cellular, circuit, and organ-wide scale

requires 3D anatomical and phenotypical maps, currently unavailable for many organs across

species. At the root of this knowledge gap is the absence of a method that enables whole-organ

imaging. Herein we present techniques for tissue clearing in which whole organs and bodies are

rendered macromolecule-permeable and optically-transparent, thereby exposing their cellular

structure with intact connectivity. We describe PACT, a protocol for passive tissue clearing and

immunostaining of intact organs; RIMS, a refractive index matching media for imaging thick

tissue; and PARS, a method for whole-body clearing and immunolabeling. We show that in

rodents PACT, RIMS, and PARS are compatible with endogenous-fluorescence,

immunohistochemistry, RNA single-molecule FISH, long-term storage, and microscopy with

cellular and subcellular resolution. These methods are applicable for high-resolution, high-content

mapping and phenotyping of normal and pathological elements within intact organs and bodies.

INTRODUCTION

Facile and physiologically informative optical access to intact tissues has long been a goal of

biologists. As early as the 1800s, work by scientists such as Werner Spalteholz revealed the
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utility of rendering tissue optically transparent for anatomical and biomedical studies

(Spalteholz, 1914). Although the Spalteholz technique and its variants incur damage to

tissue integrity and morphology, they are still in use a century later (Steinke and Wolff,

2001), highlighting barriers to the adoption of more recent tissue-clearing methods and

modern microscopy techniques. While separate tissue clearing protocols have strengths in an

application-specific context, none is able to fully surmount the most common challenges:

confirmed generalizability across organs other than the brain or embryo, difficulties in

execution, and incompatibility with endogenous fluorescence and/or post-hoc

immunohistochemistry (Table S1). Thus motivation to improve tissue clearing protocols is

sustained around three main objectives: 1) efficient clearing of both central and peripheral

organs; 2) preservation of cellular and subcellular structures of multiple organ types; and 3)

compatibility with endogenous fluorescent protein expression and post-hoc detection of

DNA, RNA, and proteins.

The payoffs of such a method are optical access throughout large volumes of tissues,

enabling the study of cell-to-cell spatial relationships and long-range neural connectivity in

the context of preserved tissue morphology (Chung and Deisseroth, 2013; Chung et al.,

2013; Kim et al., 2013; Zhang et al., 2014). In conjunction with fluorescent tracers, tissue

clearing facilitates the identification of interacting cellular structures, including diverging or

converging nerves and vasculature at their target sites throughout the body. Fine-scale

subcellular analysis of cleared specimens using standard protein and nucleic acid probes

should also be achievable in the context of cleared tissues.

We have developed a methodology for whole-organism clearing, building upon previous

techniques such as CLARITY, SCALE, SeeDB, ClearT, 3DISCO, CUBIC, dibenzyl ether

(DBE), and BABB (Murray’s Clear) (Becker et al., 2012; Chung et al., 2013; Dodt et al.,

2007; Erturk et al., 2012; Hama et al., 2011; Ke et al., 2013b; Kuwajima et al., 2013a;

Susaki et al., 2014b). Each of these has made a clear contribution: hydrogel embedding to

stabilize tissue structures (Chung et al., 2013), fluorescent protein-compatible clearing

reagents (Susaki et al., 2014b), and imaging approaches for large or challenging tissue

samples (Becker et al., 2013; Tseng et al., 2009). Although a comprehensive discussion of

their respective strengths and weaknesses is beyond the scope of this text, a few critical

points merit mention. First, in the original proof-of-principle for each of these techniques,

the detailed methods and optimized protocols were only presented for clearing brain tissue,

and occasionally for the spinal cord (Erturk et al., 2012; Zhang et al., 2014) or whole

embryo (Dodt et al., 2007; Hama et al., 2011). 3DISCO represents, to date, the most

complete elucidation of a clearing method in peripheral tissues. However, as is the case with

many prior clearing protocols (Table S1), 3DISCO’s clearing reagents (tetrahydrofuran and

DBE) substantially quench fluorescent signals in tissue samples (Erturk et al., 2012).

CLARITY (Chung et al., 2013) and CUBIC (Susaki et al., 2014b) bypass the fluorescence

quenching problem, but CLARITY in its original form used electrophoretic tissue clearing

(ETC) to extract lipids from large samples, which can be challenging to implement and can

cause variability in final tissue quality, including epitope and fine processes damage and

tissue browning due to heating (forum.claritytechniques.org). This led to variations of

CLARITY using passive lipid extraction (Zhang et al., 2014, with protocol described in

detail in Tomer et al., 2014), along with thermal acceleration of clearing and improved
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imaging. CUBIC also achieves tissue transparency by passively clearing phospholipids and

is compatible with hydrogel embedding. The main weakness of passive clearing methods is

their slow speed, which makes them unsuited for clearing large tissue volumes or whole

organisms.

We here propose a methodology to facilitate fast, whole-brain and whole-body clearing

using the circulatory system or the cerebrospinal fluid route to directly deliver clarifying

agents. A first step was to optimize the hydrogel embedding, clearing, and imaging reagents,

which resulted in PACT, for PAssive CLARITY Technique, for quicker passive lipid

extraction of 1–3mm thick tissues. To image PACT-cleared tissue we have developed a

Refractive Index Matching Solution (RIMS) - a custom economic recipe, with outcome

similar to FocusClear™ (Chung et al., 2013; Moy et al., 2013; Tseng et al., 2009). The

PACT reagents were then delivered either intracranially or via the vasculature to achieve

whole brain and body clearing and labeling. We term the latter PARS, for Perfusion-assisted

Agent Release in Situ. All steps for PARS, including preservation, clearing, and labeling,

are performed in situ prior to tissue extraction. We demonstrate below that PARS, together

with RIMS, transform opaque, intact, whole-organisms into optically transparent,

fluorescently labeled samples for visualization with conventional confocal microscopy and

phenotypic analysis at the cellular, subcellular, and even single-molecule transcripts level.

RESULTS

Optimized Method for Passive Clearing and Immunostaining of Whole Organs in the
Rodent

Similar to the CLARITY method (Chung et al., 2013; Tomer et al., 2014), we render thick

tissue optically transparent for imaging in three main steps. First, tissue is cross-linked and

hybridized to hydrogel monomers to stabilize biomacromolecules. Second, tissue lipids are

extracted from the tissue-hydrogel matrix with ionic detergents. Third, cleared tissue is

embedded in RIMS for imaging, or for long-term storage. Although whole-body clearing

was our primary goal, we recognized that the processing of small or particularly fragile

specimens and organs would best be accomplished by a mild, passive clearing protocol. We

developed PACT for rendering rodent whole organs, their 1–3 mm thick sections, including

brain, spinal cord, kidney, heart, lung, and intestine, or human tissue biopsies transparent.

The clearing speed depends in part on the rate of lipid solvation by detergent micelles, and

the rate of diffusion of detergent micelles in tissue (Hoffman, 2002). However, unless an

applied force accelerates their diffusion through tissue, such as the electric field in

CLARITY’s ETC (Chung et al., 2013; Tomer et al., 2014), lipid extraction by large micelles

is slow. We tested different detergents at various concentrations for their ability to passively

clear 3 mm coronal mouse brain blocks over a 3-day incubation. Sodium dodecyl sulfate

(SDS) at all concentrations was superior for lipid solvation and removal from brain tissue

relative to other detergents, and moreover, only the 8% SDS concentration achieved uniform

clearing throughout the entire 3 mm block (Figure S1A).

We hypothesized that a decrease in the cross-link density of the tissue-hydrogel would

facilitate both lipid extraction and macromolecule penetration into thick, highly myelinated

or fibrous tissue during subsequent immunohistochemistry. To test this, 1mm brain sections
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were infused with varying combinations and concentrations of formaldehyde, acrylamide,

and bis-acrylamide, degassed, and polymerized at 37 °C. The efficiency of tissue clearing

(Figure 1A) and the depth of antibody penetration (Figure 1B) increased significantly when

lower concentrations of formaldehyde and acrylamide were used, and when bis-acrylamide,

an acrylamide cross-linking agent used in CLARITY (Tomer et al., 2014), was excluded

from the cocktail of hydrogel monomers. Upon observing a qualitative increase in tissue

transparency in the tissue-hydrogels prepared with lower acrylamide concentrations (Figure

1A), we assayed the different PACT tissue preparations for protein loss, tissue integrity, and

changes in weight and volume during clearing to ensure that a minimal crosslinking scheme

was sufficient to preserve tissue morphology and molecular information. The amount of

protein that leached out of tissue into SDS clearing buffer was statistically indistinguishable

between 4% PFA-fixed, uncleared tissue samples (A0P4) that were incubated in PBS as a

control, and those cleared tissue-hydrogel matrices prepared with 4% acrylamide (A4P0) or

with 4% acrylamide plus 4% PFA (A4P4) (Figure 1C). Notably, the amount of protein

recorded in the 8% SDS clearing bath solutions for all hydrogel-embedded samples was less

than the protein loss (0.57 ± 0.11 mg per mg gross weight) for the samples preserved only

with 4% PFA and incubated in PBS-0.1% TritonX-100, a mild detergent-containing buffer.

This implies that hydrogel monomers effectively crosslink and stabilize tissue protein,

which is further supported by our finding that unpolymerized, PFA-fixed tissue incubated in

8% SDS showed poor protein retention (0.63 ± 0.02 mg protein loss per mg gross weight)

(Figure 1C).

To corroborate these results on the preservation of molecular content in PACT tissue, the

relative levels of native eYFP fluorescence were visualized and quantified in PACT brain

samples from Thy1-eYFP transgenic mice. While a decrease in mean fluorescence intensity

was observed under both hydrogel formulations (A4P0, A2P0), PACT samples showed

comparable total intensity relative to uncleared tissue (Figure 1D) once the fluorescent

measurements were normalized for tissue expansion (Figure S1C). Indeed, tissue-hydrogel

matrices that were prepared using acrylamide alone (A4P0) exhibited tissue weight and

volume changes of ~174% and ~223%, respectively (Figure 1E) over A4P4 counterparts.

But, upon the transfer of tissue samples from clearing solution to mounting media, PACT

samples shrank back to their original size within a few hours (Figure S3D). This tissue

expansion-contraction has been documented in previous brain clearing protocols (Chung et

al., 2013; Hama et al., 2011; Susaki et al., 2014b), wherein it was concluded that these size

changes, though suboptimal, did not appear to negatively influence gross tissue morphology

or cellular architecture. To visualize the effect of PFA on cross-link density in the tissue-

hydrogel matrix, which is hypothesized to limit tissue expansion, PACT-cleared brain slices

were imaged via scanning electron microscopy (SEM) (Figure S1B). We noted that A2P0

matrices had the largest pore sizes, followed by A4P0, while A4P4 had the smallest

visualized pore sizes; pore size directly affects diffusion rate with faster macromolecular

diffusion times in tissue-hydrogel matrices with larger pores. Tissue deformity (i.e.

expansion and contraction) during PACT processing and mounting did not appear to affect

the overall cellular organization or protein content of samples relative to conventional

histological processing (Figure 1F–1L).Thus, we selected A4P0 for PACT given its balance
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between clearing speed, protein retention, and intermediate pore size tissue, which is

condusive to macromolecule tissue penetration during histology.

PACT Reagents are Compatible with Histology and Endogenous Fluorochromes

To ensure that the signal intensity from genetically encoded fluorescent proteins was

preserved throughout PACT processing, 1 mm-thick Thy1-eYFP tissue sections were A4P0-

hybridized, PACT-cleared, and imaged using confocal microscopy. Despite PACT clearing,

and importantly, the slow image acquisition time for thick samples the genetically expressed

eYFP was readily detected throughout the samples (Figures 1F, 1H). Furthermore, the

tissue-hydrogel matrix still permitted uniform Nissl staining of thick, cleared sections

(Figure 1F, compared to uncleared 80 µm sections in Figure 1G). The overall tissue

architecture remained constant between cleared and uncleared sections, as revealed by Nissl

staining (red), which assuages concern that successive swelling and then shrinking of tissue

caused permanent tissue deformity.

Not only were native proteins including those maintaining the structural integrity of tissue

samples, retained by the tissue-hydrogel matrix during clearing (Figures 1C, 1F, 1H), but

also the cleared tissue blocks were sufficiently macromolecule-permeable to permit labeling

of peptidic and nucleic acid epitopes using a variety of common histological markers (e.g.

antibodies, small-molecules, mRNA probes). For example, aside from Nissl, 1 mm PACT

sections from the mouse brain and spinal cord were immunolabeled with antibodies against

anti-tyrosine hydroxylase (TH) (Figure 1I); glial fibrillary acidic protein (GFAP), murine

immunoglobulin G (IgG), and ionized calcium binding adaptor molecule 1 (Iba1) (Figure

1J). These targeted moieties represent antigens occupying a wide variety of cellular

locations: membrane-localized and cytosolic, neuronal and non-neuronal antigens. PACT

clearing decreased light scattering in tissue samples such that all labels were easily resolved

across the entire 1 mm section during single-photon fluorescence imaging.

To confirm that PACT methodologies were effective on peripheral tissues as well, the

kidney, heart, lung, and intestine of Thy1-eYFP mice were excised, cleared, and labeled

with anti-integrin antibodies, acridine orange (AO), and/or SYTO24 (Figure 1K). As

observed in the central organ samples (Figure 1F, 1H–J), small-molecule dyes and

antibodies alike rapidly diffused through 1–3 mm thick A4P0-crosslinked and PACT-

cleared sections of peripheral organs. While the time for complete immunolabeling of thick

sections depends on several factors, including the tissue type, hydrogel pore size (Figure

S1B), and the extent of lipid removal (Figures 1A, S1A), we achieved uniform antibody

penetration throughout PACT samples with a 7–12 day incubation. However, for studies that

only require labeling with small molecule fluorescent dyes one may obtain rapid staining of

1–3 mm PACT brain sections with a single overnight to 3-day incubation, respectively.

Some peripheral tissues were stained even faster, wherein AO labeling of individual nuclei

in unsectioned mouse intestinal tissue (~ 400um thick) was attained in under one hour

(Figure 1K). We then determined if PACT can be applied to pathological samples. Human

skin cancer biopsies (Figure S2A) were cleared and stained with pan-cytokeratin to visualize

tumor cells (Figure 1L, Figure S2B–C). In sum, the entire PACT-cleared tissue block was
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accessible down to the subcellular level to molecular interrogation using standard

immunohistochemical methods and conventional fluorescence microscopy.

To determine if PACT is compatible with established procedures to visualize single mRNA

transcripts, we subjected PACT-processed tissue to single-molecule fluorescent in situ

hybridization, smFISH (Femino et al., 1998; Raj et al., 2008). The methodology of smFISH

is capable of detecting single RNA molecules with high specificity in fixed cells and its high

sensitivity allows for measurements of RNA abundance and subcellular localization.

However, smFISH in tissue sections remains challenging due to low signal to noise ratio

caused by tissue autofluorescence. Herein, β-actin transcripts in 100 µm-thick cleared mouse

brain sections were labeled using 24 Alexa 594-labelled 20mer oligonucleotide probes

towards β-actin mRNA. Tissue samples were slide-mounted in media containing 4',6-

diamidino-2-phenylindole (DAPI) and imaged via single-photon microscopy. β-actin

transcripts were indeed retained in the cytoplasm of neurons throughout PACT and smFISH

processing, and single points of fluorescence could be distinguished despite the high copy

number of β-actin in cells and the considerable thickness of imaged brain section (Buxbaum

et al., 2014; Raj et al., 2008) (Figure 2A). PACT tissue exhibited significantly increased

contrast of diffraction-limited spots throughout the tissue relative to uncleared tissue (Figure

2C). We found that smFISH intensity showed very little difference between PACT cleared

and uncleared tissue, while background intensity was significantly reduced (Figure 2 A–B,

2D and 2E, S2D). These findings, taken together with the increase in smFISH signal to noise

ratio seen in PACT cleared tissues, suggests that background autofluorescence in thick

samples is the main factor obscuring smFISH signal in uncleared tissue.

Recipe for Refractive Index Matching Solution for Imaging and Long-Term Storage of
Cleared Tissue

Effective imaging relies on sample immersion in a mounting media that reduces the

refractive index (RI) variations within heterogeneous tissue and that alleviates the RI

mismatch between tissue, mounting media and lens immersion media interfaces. In response

to the prohibitive cost and limited availability of FocusClear, we formulated an affordable

substitute: RIMS, for Refractive Index Matching Solution, with an RI appropriate for tissue

imaging (RI = 1.46), biological safety, and biocompatibility for tissue preservation (see

supplemental experimental procedures). To test RIMS, PACT-processed samples were

mounted in 80% glycerol, FocusClear, or RIMS, and then imaged under identical conditions

(Figure S3A). RIMS provided good optical clarity for fluorescence microscopy (Figure

S3C) and caused minimal quenching of the eYFP signal over a 3-month period (Figure

S3E). Since its performance appeared to be on par with or exceeds FocusClear (Figure S3A)

and provided a >10-fold reduction in mounting costs, RIMS was employed for all

subsequent PACT and PARS experiments. The exact RIMS formulation can be optimized in

a case-specific manner to the RI of tissue samples (Figure S3B).

Whole-Body Clearing using the Vasculature in Adult Rodents

The PACT protocol uses a 4% acrylamide monomer solution to generate the final tissue

hydrogel and results in a good combination of protein preservation, speed and ease of

clearing, and optical clarity. However passive diffusion is slow, prohibitive for large volume
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or whole organism clearing. We also noted that the acrylamide hydrogels markedly swelled

during the detergent clearing phase (Figure 1A, S1C). These two drawbacks, common to

most clearing protocols, prompted us to develop an alternate methodology to speed up

clearing and also to minimize tissue expansion during clearing. We decided to utilize the

existing vasculature networks, as is done regularly in cardiac perfusion-fixation (Gage et al.,

2012; Jonkers et al., 1984), to introduce agents directly to tissue by performing the entire

fixation and clearing procedure in situ. We term this method Perfusion-Assisted Agent

Release in Situ (or PARS). PARS utilizes the intact vasculature of the animal to infuse the

hydrogel monomer and clearing solutions directly, which then diffuse throughout the tissues

of interest.

To investigate both whether major blood vessels and whole-organism microvasculature was

accessed by the perfusate (Leong and Ling, 1990; Li et al., 2012), AlexaFluor 647-

conjugated antibodies against mouse immunoglobulin (Figure S4B, right) or Atto 647-

conjugated nanobodies against GFAP (Figure S4B, left) were perfusion-recirculated through

cardiac catheters for 24 hours. The mouse brain vasculature was extensively labeled,

illustrating the accessibility of blood vessels to perfusate (Figure S4B). Perfusate was also

observed to diffuse into surrounding tissue, as shown by the extravasculature GFAP labeling

(Figure S4B, Supplementary Video 1).

To recirculate PACT reagents into brain CSF or through whole-body vasculature for several

days-to-weeks we developed a closed-loop perfusion system. Using this custom PARS

chamber (Figure S4A), continuous intracranial perfusion of 8% SDS into CSF, via a method

we termed PARS-CSF (Figure 3), attained whole-brain clearing in 4 days (Figure 3A–3B).

Inserting the cannula more caudally into the cisterna magna (Figure 3A, right) granted

clearing of the entire length of the rat spinal cord (Figure 3B). Next, AAV9-eGFP injected

adult mice were prepared with a subdural cannula inserted directly above the olfactory bulb

(Figure 3A, left), and after 4 days of recirculating 8% SDS at 37 °C, both unmyelinated and

densely myelinated mouse brain regions near CSF circulation (most parts of the cortex,

hypothalamus, regions near the ventricles and spinal cord) were transparentized). GFP-

labeling of individual neurons, neuronal processes, and glial cells was clearly visible

throughout the brain (Figure 3C).

Herein, we surmised that the same perfusion-clearing method of PARS-CSF could be

extended to clearing whole-bodies in situ. Furthermore, the application of a pressure

gradient on tissue during the lipid extraction and antibody diffusion, respectively, might

hold the added benefit of accelerating the clearing and immunolabeling steps relative to

PACT-based clearing of individual excised whole-organs. Clearing reagents were cycled

through the whole-body vasculature (see timeline, Figure 4A), with complete clearing of all

peripheral organs and of central nervous system accomplished within 1 week and 2 weeks,

respectively, for mice and rats alike (Figure 4B–4D, S7). The minimal protein content of the

PARS perfusate, and the higher protein content of perfusate from A0P4-infused mice

(Figure 4E) suggested that the whole-organism hydrogel polymerization was both necessary

and sufficient to stabilize gross organ structure and macromolecular content. To confirm that

PARS was compatible with visualizing localized fluorescent protein expression in sparsely

labeled cells in multiple organs, we delivered a GFP transgene by systemic administration
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adeno-associated virus (AAV). AAV9:CAG-eGFP (Figure 5D) or AAV9BD1:CAG-eGFP, a

variant of AAV9 that transduces CNS neurons to a similar extent as AAV9, but exhibits

reduced astrocyte and hepatocyte transduction (Figure 5E) were delivered via the

vasculature in adult mice. In both the brain and the liver, native eGFP expression was

readily detectable and the reduced transduction of liver hepatocytes by AAV9BD1 as

compared with AAV9 was easily detected (Figure 5D versus 5E).

In comparison to PACT, we predicted that tissue volume changes during PARS processing

would be reduced since musculoskeletal structures, such as the skull, the vertebral column,

and muscle walls, would physically constrain tissue expansion. Indeed, PARS-based

clearing of rodent brains was accomplished with limited hydrogel swelling and tissue

expansion during clearing (Figures 4C–4D, S5A). Although PARS-processed brains do

swell slightly following their extraction from the skull and placement in PBS or RIMS

(Figure S5A), there was no evidence to suggest that gross changes in neuronal morphology

occurred as a result of PARS processing and post-PARS expansion (Figure 5B).

Nevertheless, we attempted to mitigate tissue swelling in RIMS through post-fixing PARS

samples in 4% PFA overnight prior to RIMS mounting. To assess the extent to which

overall tissue architecture was altered by volume changes, the intercellular distance and the

average cell size within different brain regions (cortex, striatum, thalamus) of uncleared,

PARS-cleared, and post-fixed PARS-cleared samples was measured (Figure S5B). It was

predicted that individual regions may be differentially affected by PARS processing or

RIMS incubation; for example, any sheer forces originating from perfusion-related

intracranial pressure may exert a greater insult on less myelinated tissue or cause ventricle

collapse. Post-fixing PARS samples significantly prevented the increased cell-sizes and

intercellular distances that were detected throughout PARS samples. There were no

significant differences in cell size or intercellular spacing between uncleared and post-fixed

samples in all brain regions assayed (Figure S5B).

Whole-Organism PARS Enables Phenotyping and Imaging in an Organ-by-Organ Fashion

Following whole-body PARS processing and labeling, major organs were excised, thick-

sectioned and imaged using confocal microscopy (Figures 5, 6, S6). The PARS-cleared

whole-brain (Figures 5A–B) and spinal cord (Figure 5C) of Thy1-eYFP mice were imaged,

and we concluded that PARS processing rendered entire organs optically transparent to the

extent that visualizing deep-tissue structures with cellular resolution was possible. Through

visualizing individual neurons and nephrons throughout the cleared whole-brain (Figures

5A–B; Supplementary Video 2) and kidney (Figure 6B; Supplementary Video 3)

respectively, we may posit that this optical clarity was achieved while leaving fine cellular

structures intact, in part due to the success of in situ tissue-hydrogel polymerization in

stabilizing tissue architecture, preserving protein content and endogenous fluorescence, and

maintaining the spatial relationships between subcellular and cellular tissue components

(Figure 5A–B). For example, we could resolve individual fluorescently-labeled glomeruli of

individual nephrons within 1 mm kidney sections, which establishes the ability of PARS to

access peripheral organs through intact vasculature (Figure 6B, S6). Importantly, this

includes the delivery of all immunohistochemical solutions as well, including blocking

solutions, primary and fluorescently-labeled secondary antibody cocktails, or fluorescently-
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labeled small-molecules, and wash buffers. Immunolabeling using PARS was target-

specific, uniformly distributed throughout peripheral organs, and exhibited low background,

as illustrated by the tubulin and DRAQ5 labeling in PARS-processed mouse kidney sections

(Figure 5B, Supplementary Video 2) and by the perfusion-based labeling of blood vessels in

the liver, lung, pancreas with lectin, the filamentous actin probe phalloidin, and the nucleic

acid stain DAPI (Figure S6).

DISCUSSION

Herein we introduce PARS, a method that renders intact whole-organisms transparent for

imaging with single-cell resolution while preserving fluorescent and protein-based signals

and tissue architecture. Our starting point, the CLARITY method (Chung et al., 2013)

provided scientists with a brain-processing platform for elucidating the 3D cellular

arrangement and connectome in toto. Numerous laboratories have previously reported on

new clearing reagents in the decade before CLARITY, however many of these reagents

were highly application- or tissue-specific (summarized in Table S1). In contrast, CLARITY

introduced two broadly applicable techniques pertaining to tissue preservation (hydrogel

embedding) and clearing efficiency (electrophoretic tissue clearing, ETC), both of which

could be incorporated into the design, or redesign, of other clearing procedures.

Traditionally, making tissue transparent was a process that demanded solvent incubations on

the order of weeks-to-months, as reported in other clearing protocols (Hama et al., 2011).

ETC, however, challenged the prevailing view that the rate of tissue clearing could only be

accelerated through assaying large panels of organic solvents for their ability to solubilize

tissue rapidly. Oftentimes, candidate solvents tested in these screens achieved rapid tissue

clearing, but compromised tissue structure (Hama et al., 2011) or quenched native

fluorescence (Becker et al., 2012; Erturk et al., 2012; Susaki et al., 2014b). Although the

reagents introduced by CLARITY are gentler by comparison, the needed ETC step for fast

clearing is complex to implement and causes tissue degradation from sample heating.

Although these challenges can be bypassed by the use of passive CLARITY (Tomer et al.,

2014) the slow rate of clearing make the technique impractical for scaling up or for whole-

body mapping.

With the goal of rapidly clearing whole organisms while still using mild detergents and

fluorescence non-quenching reagents throughout, we evolved PARS on the basic principles

of CLARITY, but aimed to bypass the need for ETC while maintaining faster clearing than

through passive diffusion. First we optimized the clearing agents for passive CLARITY by

removing bisacrylamide and increasing the detergent concentration to 8% SDS (PACT

reagents). The tissue clearing step was redesigned such that the electrophoretic force used by

CLARITY to drive fast lipid extraction was replaced with a perfusion-based pressure

gradient. Controlled flow of PACT reagents throughout intact tissue vasculature transforms

most peripheral organs into optically transparent tissue within 2–3 days, while whole-mouse

and whole-rat brains are rendered transparent within 1 – 2 weeks. Additionally, the self-

contained nature of clearing in situ also reduced tissue expansion during the monomer

infusion and lipid removal.
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PARS opens up the possibility of whole-organ and whole organism mapping with high

phenotypic content. With this in mind, quick, low resolution scanning of large tissue blocks

can direct investigators to restricted areas worthy of slow, high phenotypic content analysis,

including smFISH; a method that preserves fluorescent markers long-term is particularly

valuable in this respect. Both PACT and PARS methodologies are scalable, cost-effective

relative to the original CLARITY process and theoretically transferrable to other model

organisms or human tissue. Indeed, while PARS was depicted using cardiac perfusion in

rodents, the overall methodology may also be applicable to instances in which sufficiently

large vessels are available for creating a perfusion route, such as whole-organ perfusion in

larger, higher order mammals, including isolated human tissue. While PARS does achieve

increased speed of clearing and reduced swelling without tissue damage (Table S1) the

method’s unique strength lies in its scalability. Our data demonstrate, for example, that

PARS can be employed to assess AAV-mediated transduction at the cellular level in

multiple organs after systemic delivery. By eliminating the need to section individual

tissues, the PARS approach could expedite efforts to screen numerous AAV serotypes

and/or gene regulatory elements for optimal expression in the cell types of interest. In

addition to improving screening throughput and speed, a PARS-based whole-body method

could also counteract the risk of underestimating AAV transduction in target tissues due to

undersampling errors. Similarly, PARS holds the potential to refine our understanding of

peripheral nerves at their target whole-organs. Accurate maps of complex long-range fiber

bundles, such as for the vagus nerve (George et al., 2000), could help inform improvements

in existing therapies or spur the development of entirely novel therapeutic strategies, such as

for bioelectronics medicines (Famm, 2013). PARS can also facilitate biomedical work in

brain-to-body interconnections, in whole-body screening experiments for off- and on-target

agents, and in whole-organ mapping for sparse elements such as tumor cells or stem cells.

Lastly, the PARS method is compatible with cell-filling endoskeletal structures. By

combining PARS with TEMPEST – a precursor to CLARITY (Deisseroth and Gradinaru,

2014) – the in vivo expression of long-lasting keratin filaments (that outlive the cells

themselves while keeping a loyal blueprint of the morphology) within populations of interest

can facilitate accurate post-mortem quantification and mapping of long-degenerated cells

throughout the brain.

The methods we introduce here builds upon our prior work in CLARITY to expand tissue

clearing and phenotyping to whole organisms by using the intrinsic circulatory system.

Because the vascular network is not homogeneous, leading to non-uniform perfusive flow,

organs of interest will clear at different rates. To achieve optimal clearing while retaining

high tissue content, further validation for specific applications and technical improvements

will be necessary. The blood-brain barrier may present a challenge to efficient perfusion-

based transport of particularly large molecules such as antibodies (150 kDa) to the brain

relative to the periphery. To improve perfusion efficiency, one solution likely will be to

develop (or utilize when already available) smaller antibody scaffolds for immunolabeling;

these include the fragment-antigen-binding format of immunoglobulins (Fab ~50 kDa), and

nanobodies, single domain antibodies derived from camelid antibodies, whose smaller size

(~12–15 kDa) promotes tissue permeability (Harmsen and De Haard, 2007).
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Improved imaging platforms will also be needed to take full advantage of all the recent

tissue clearing work, ours and others (Becker et al., 2012; Chung et al., 2013; Dodt et al.,

2007; Ertürk et al., 2012; Ertürk and Bradke, 2013; Hama et al., 2011; Ke et al., 2013a;

Kuwajima et al., 2013b; Susaki et al., 2014a). In order to obtain cellular and subcellular

information in thick cleared tissue, it is necessary to utilize long-working distance objectives

while still preserving high magnification and numerical aperture. Scanning speed is an

additional barrier with cleared tissue blocks taking many days to be fully imaged – resonant

scanners or light-sheet microscopy (Tomer et al., 2014) can accelerate the process while

retaining high-resolution data.

Given increasing interest in the link between the brain and peripheral organs (Birmingham et

al., 2014), it will be critical to have an unsegmented view of the whole-body, with structural

connections between the brain and peripheral organs left intact. Through the development of

PARS and enabling technologies (nanobodies, imaging platforms) it is becoming possible

not only to facilitate neuroscientists’ overarching goal of creating a brain connectome, but

also to facilitate elucidation of a brain-to-body-and-back connectome as well as the

phenotyping of every other organ system in the body, healthy or diseased.

METHODS

PACT Clearing

4% paraformaldehyde (PFA)-fixed tissue sections were incubated at 4°C overnight in the

hydrogel monomer solution A4P0 (4% acrylamide in PBS) supplemented with 0.25%

photoinitiator 2,2'-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044, Wako

Chemicals USA, Inc.). A4P0-infused samples were degassed with nitrogen for 1–5 minutes

and then incubated for 2–3 hours at 37 °C to initiate tissue-hydrogel hybridization. After

removing excess hydrogel via brief PBS washes, tissue-hydrogel matrices were transferred

into 50 mL conical tubes containing 8% SDS in 0.1M PBS (pH 7.5), and depending on

tissue size, were incubated for 2–5 days at 37 °C with shaking. For immunostaining, 1–3

mm thick PACT-processed samples were washed in PBS with 4–5 buffer changes over the

course of a day and then transferred to buffer containing small-molecule dyes or primary

antibodies followed by fluorescently-conjugated secondary antibody (1:200–400, in PBS

containing 2% normal donkey serum, 0.1% TritonX-100 and 0.01% sodium azide) for 3–7

days or with small-molecule dyes for 1–3 days. Antibody or small molecule dye solutions

need to be replaced every day. Unbound antibody was removed via PBS washes, as before,

and then samples were incubated with secondary antibodies (Fab fragment secondary

antibodies are preferred, 1:200–400) for 2–5 days then washed for 1 day in PBS or

phosphate buffer (PB) prior to incubation in imaging media (RIMS). All staining and

mounting steps were conducted at room temperature with gentle shaking.

RIMS Imaging Media (RI 1.47)

40 g of Sigma D2158 (Histodenz) in 30ml of 0.02M PB with 0.1% tween-20 and 0.01%

sodium azide, pH to 7.5 with NaOH – which results in a final concentration of 88%

Histodenz w/v. Samples are incubated in RIMS until transparent (~ 1 day for PACT

samples, up to 1 week for PARS cleared brains), followed by mounting in fresh RIMS.
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smFISH

100 µm PACT sections were ethanol-permeabilized, labeled with 24 Alexa 594-labeled

20mer oligo probes towards B-actin (overnight incubation at 37 °C), washed and

coverslipped with Slowfade Gold + DAPI according to published protocols (Buxbaum et al.,

2014; Lyubimova et al., 2013). Laplacian of Gaussian filtering with a radius of 3 was

applied to visualize transcripts in both cleared and uncleared samples.

PARS Protocol

Immediately following standard cardiac perfusion with 4% PFA (in PBS, pH 7.4), the fixed

rodent was transferred onto a perfusion chamber (Figure S4A) which recirculated all

subsequent PACT and immunolabeling reagents (as above) continuously (1 ml/min) through

rodent vasculature via a peristaltic pump. Perfusion tubing connected the chamber to a

feeding needle inserted through the left ventricle into the aorta and loosely sutured in place.

The rodent was post-fixed with 4% PFA for 1 hour and then perfusion-washed with PBS for

1 hour. A4P0 monomer was cycled through vasculature overnight, followed by a 2 hour

PBS perfusion wash. Before polymerization and without disconnecting perfusion lines, the

perfusion chamber was placed into a ziplock bag (Figure S4A), and the bag containing the

chamber with rodent was degassed for 2 minutes under nitrogen gas. Polymerization was

initiated via perfusion-recirculation of 200mL of 0.25% VA-044 initiator in PBS at 37°C for

2–3 hours. The whole-body was cleared through a ≤ 2-week perfusion with 8% SDS in PBS,

pH 7.5 at 37–42 °C followed by extensive PBS perfusion-washing over 2–3 days.

Antibodies and small-molecule dyes (as above in PACT) were then delivered via a 3-day

perfusion and 1-day wash.

For the PARS-CSF variation of brain or spinal cord clearing (Figure 3A–B), transcardially-

fixed rodents were decapitated and a subdural cannula was inserted above the region of

interest and cemented to the skull. All PARS reagents are delivered in the same order and

timeframe as PARS at 1ml/min

AAV production and systemic delivery

Single stranded ssAAV-CAG-eGFP vectors packaged into AAV9 or the AAV9 variant

capsid, AAV2/9BD1, was generated and purified as described (Lock et al., 2010). The

AAV2/9BD1 capsid was modified from AAV2/9 (U. Penn) with, amongst others, an N498Y

mutation to reduce liver transduction (Pulicherla et al., 2011). 1×1012 vector genomes (vg)

of either virus was delivered intravenously into mice and tissue assessed 6 months later by

PARS for native eGFP fluorescence.

Fluorescence Microscopy

Cleared tissue samples were mounted in RIMS at room temperature using spacers from 0.5

mm – 7 mm depending on sample thickness (iSpacer, SunJin Lab Co.; Silicone Isolator,

Electron Microscopy Sciences, PA) and coverslipped. For Figure 3B, the samples were

imaged by Leica Microsystems using a Leica TCS SP8 two-photon microscope with the

Leica HC FLUOTAR L 25×/1.00 IMM CORR objective (working distance, w.d. 6.0 mm).

Other images were taken using a Zeiss LSM 780 single-photon microscope with either the
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Fluar 5×/0.25 M27 dry objective (w.d. 12.5 mm), Plan-Apochromat 10×/0.45 M27 air

objective (w.d 2.0 mm), LD SC Plan-Apochromat 20×/1.0 Corr M32 85mm scale-

immersion objective (w.d. 5.6 mm), or LD LCI Plan-Apochromat 25×/0.8 Imm Corr DIC

M27 multi-immersion objective (w.d 0.57 mm). Image reconstructions were performed

using Imaris imaging software (Bitplane). After imaging, samples were stored in RIMS at

room temperature.

For more detailed methods see Extended Supplemental Procedures and Table S2 for a

detailed list of reagents/buffers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• PACT: passive tissue clearing and immunolabeling protocol for intact thick

organs

• RIMS: compatible storage and imaging media preserves fluorescent markers

over months

• Single-molecule FISH compatible 3D phenotyping enabled for thick tissue

samples

• PARS: whole-body clearing and phenotyping compatible with endogenous

fluorescence

Yang et al. Page 16

Cell. Author manuscript; available in PMC 2015 August 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. PACT clearing of A4P0 tissue-hydrogel hybrid achieves optimal transparency and
immunohistochemistry compatibility across organs
(A) Optical transparency comparison of 3 mm adult mouse sagittal blocks of A2P0, A4P0,

and A4P4 tissue-hydrogel hybrid cleared for 24 h and 48 h. (B) Compared to A4P4, A4P0

tissue-hydrogel hybrid showed faster antibody penetration (n=6 fields of view per sample).

(C) The percentage of protein loss from1 mm mouse brain slices (n=6 slices for each

clearing condition); statistical significance is shown for each condition vs. A4P0 8% SDS

(red). (D) The integrated eYFP fluorescence intensity in arbitrary units (A.U.) of uncleared
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and cleared 1 mm Thy1-eYFP mouse brain slices (n=6 slices). (E) Compared to A4P4, the

A4P0 hydrogel-tissue hybrid showed higher tissue expansion and weight gain post clearing.

(F–H) Thy1-eYFP mouse sections stained with Nissl: (F) 1 mm cleared brain slice,

prefrontal cortex (PFC) area (left: z = 1 mm imaging stack depth); (G) 1 mm uncleared brain

slice, PFC (left: z = 100 µm imaging stack depth); (H) 1 mm spinal cord slice (z = 500 µm).

(I) Substantia nigra pars compacta (SNc) of 1 mm mouse brain slice stained with anti-

tyrosine hydroxylase (TH) antibody (z = 1 mm). (J) PFC of 1 mm adult mouse brain slices

stained with antibodies against GFAP, mouse-IgG, and Iba1 (z = 1 mm). (K) 1 mm section

of mouse kidney (z = 150 µm; arrowheads show glomeruli), heart (z = 320 µm), lung (z =

550 µm) and intestine (z = 350 µm) stained with anti-integrin antibodies, SYTO24, and

acridine orange. (L) PACT-cleared human tissue biopsy from basal cell carcinoma (BCC)

was stained with anti-pan-cytokeratin (AE1/AE3) Alexa Fluor 488 primary antibody to label

endothelial cells and DAPI (700 µm imaging stack depth). All graphs are shown in mean ±

SEM Statistical significance: for paired samples: 2-tailed Student’s t test; for multiple

comparisons: one-way ANOVA followed by Bonferroni posthoc (*p < 0.05, **p < 0.01,

***p < 0.005, and ****p < 0.0001). All confocal imaging; for objectives see Supplemental

Methods. Also see Figure S1–3 and Tables S1–2.
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Figure 2. Detection of individual mRNA transcripts in PACT tissue sections by smFISH
100µm-thick mouse brain slices were hybridized with twenty-four 20mer oligonucleotide

probes towards β-actin mRNA labeled with Alexafluor 594. (A) PACT-cleared smFISH

brain slices. Upper panel shows 30 µm maximum intensity projection. An abundant number

of diffraction limited spots corresponding to single beta-actin mRNAs (red) were readily

detected up to 30 µm in depth under 589nm illumination. Note bright amorphous granules

(yellow) are background lipofuscin vesicles that show up in both 589nm(red) and 532nm

autofluorescence (green) channels, whereas smFISH signals are in the red channel only. (B)

Compared to PACT cleared slices, smFISH in uncleared brain slices showed significantly

decreased contrast. (Lower panels in A and B show single slices of 0.5 um at 12 um depth;

the images were processed from raw data using the same contrast scale and Laplacian of
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Gaussian filtering; for raw data see Figure S2D) (C) Signal to noise ratio as a function of

depth shows PACT-clearing tissue increases the signal to noise ratio of smFISH throughout

the thickness of the sample as compared to uncleared tissue. (D) smFISH intensities show no

appreciable differences between uncleared and PACT-cleared tissue. p = 0.8722; 2-tailed

Student’s t test. (E) Comparison of background intensity between uncleared and PACT-

cleared tissue illustrates the significant reduction of background fluorescence in PACT-

cleared tissue. p = 0.0006; 2-tailed Student’s t test. All graphs are shown in mean ± s.d. For

microscopy see Supplemental Methods.
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Figure 3. PARS-CSF: a protocol for rapid whole-brain or spinal cord clearing and labeling via
the cerebrospinal fluid route (CSF) using perfusion-assisted agent release in situ (PARS)
(A) CNS tissue may be rendered transparent optically transparent by the direct perfusion of

all PARS reagents into the CSF via an intracranial brain shunt inserted either (left) below the

dura in the region directly above the olfactory bulb, or into the cisterna magna (or placed

directly above the dorsal inferior colliculus, right). The cannula, which is connected to the

perfusion lines may be cemented into position with dental acrylic. (B) Whole-brain and the

corresponding 2 mm thick slices (left) and whole-spinal cord (right) from PARS-CSF rats
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that were cleared at 37 °C for 4-days (brain) or for 2-weeks (spinal cord) are shown. The

extent of whole-brain clearing is dependent on brain tissue proximity to the cannula: the

frontal lobe was rendered optically transparent, whereas the mid-hind brain were only

weakly cleared (see 2 mm slices on right side of panel). After 24-hour incubation in RIMS,

PARS-CSF brain slices were sufficiently cleared for imaging without further sectioning. C)

Images show native eGFP fluorescence in 500 µm PARS-CSF cleared coronal brain slices

prepared from mice that, 6-months prior to clearing, received IV injections with

AAV9:CAG-eGFP. Representative sections of cortex and hippocampus are presented at

higher magnification in image boxes (right). In the layer V coronal view, an AAV9

transduced eGFP-expressing glial cell and eGFP-neuron adjacent to a blood vessel are

clearly visible. In the hippocampus (bottom), the finer neuronal processes of eGFP-

expressing CA1 neurons may be visualized with high resolution, which suggests that PARS-

CSF may be completed without severe damage to cellular morphology. For microscopy see

Supplemental Methods. Also see Figure S4.
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Figure 4. PARS achieves whole-body clearing
(A) Schematic of PARS clearing and immunostaining. (B) A comparison of optical

transparency of mouse brains and peripheral organs before and after PARS clearing. (C)

Representative images of relative mouse brain size before (first box, from left) and after

(second box) 2 weeks of PARS clearing shows that PARS circumvents hydrogel swelling

and brain tissue expansion during the clearing process. Brain tissue expands gradually after

immersion in RIMS (third box); this volume change may be mitigated via post-fixing PARS

samples in 4% PFA overnight prior to RIMS mounting (fourth box). (D) Representative
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images of relative rat brain size before (right) and after (left) 4-days of PARS clearing,

showing how PARS is a scalable method. Coronal slices of rat whole-brain samples show

gross tissue morphology, highlighting that unmyelinated areas may be cleared within 4-days

of PARS-based clearing. (E) Protein loss of PARS clearing compared to other clearing

methods (n = 4 mice for each); graph shows mean ± s.e.m.; one way ANOVA followed by

Bonferroni posthoc test was used to determine statistical significance in comparison to A4P0

8% SDS PARS clearing. * indicates p<0.05 and ** indicates p<0.01. Images for (B–D) were

taken using bright field camera. Also see Figure S4, S7, S3E, and Supplemental Movie 1.
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Figure 5. PARS enables whole-brain mapping of widespread and sparse genetically encoded
fluorescent signals with subcellular resolution
(A) Whole brain image (z = 6 mm), and (B) deep-brain imaging (z = 4 mm) of adult Thy1-

eYFP mouse after PARS clearing for 10 days. The boxes on the right show high

magnification images of indicated areas. (C) Spinal cord image of adult Thy1-eYFP mouse

after PARS clearing for 2 weeks (z = 2 mm). Lower panel shows high magnification images

of indicated region (z = 1.2 mm). (D) Images show native eGFP fluorescence in 1 mm

coronal brain slices (left) and liver (right) prepared from the PARS cleared mice that
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received IV injections of AAV9:CAG-eGFP. Image columns to the right of each coronal

brain image show the orthogonal views (z = 0.5 mm). (E) Native eGFP fluorescence in 1

mm coronal brain slices (left) and liver (right) prepared from PARS cleared mice injected

with a liver detargeted variant, AAV9BD1:CAG-eGFP. Image columns to the right of each

coronal brain image show the orthogonal views (z = 0.5 mm). For microscopy see

Supplemental Methods. Also see Figure S5 and Supplemental Movie 2 (for 5B).
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Figure 6. PARS allows rapid and uniform clearing and immunolabeling of peripheral organs
Clearing and immunohistochemical labeling was achieved in whole mice through PARS

alone. (A) PARS-cleared mouse intestine was stained with lectin, methylene blue, and

DAPI, and imaged through a depth of 500 µm. Lower panels shows maximum intensity

projection of above rendering, z = 50 µm. (z = 500 µm). (B) A 1 mm thick kidney section

was imaged (left) for anti-tubulin antibody and DRAQ5 labeling. Right panels show high

magnification images of the indicated region and the structure of glomeruli, demonstrating

that PARS enables antibody-based labeling throughout the kidney (z = 1.2 mm). For
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microscopy see Supplemental Methods. Also see Figure S6, S7, and Supplemental Movie 3

(for 6B).

Yang et al. Page 28

Cell. Author manuscript; available in PMC 2015 August 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


