
Supplementary Materials 
 

X-ray Diffraction Samples and Measurements 

X-ray diffraction analysis of the Rocknest scoop sample is described in (23); similar analyses 

were performed for John Klein and Cumberland. John Klein and Cumberland were the first two 

drill samples collected by Curiosity. All scooped or drilled samples pass through the Collection 

and Handling for In situ Martian Rock Analysis (CHIMRA) sample collection and processing 

system (10). All powders for X-ray diffraction are processed through a 150-m sieve before 

delivering a portion to the CheMin inlet funnel.  

The sieved drill powders were placed into sample cells with 6 μm thick Mylar® windows. 

Mylar® contributes a minor, broad scattering signature in diffraction patterns that is generally 

“swamped” by diffraction from the loaded sample. In addition, an aluminized light shield also 

contributes “peaks” to the observed diffraction patterns. Only ~10 mm
3
 of material is required to 

fill the active volume of the sample cell, which is a disc-shaped volume 8 mm in diameter and 

175 m thick. A collimated ∼70 μm diameter X-ray beam illuminates the center of the sample 

cell. A piezoelectric vibration system on each cell pair shakes the material during analysis, 

causing grains in the cell to pass through the X-ray beam in random orientations. 

CheMin measures XRD and XRF data simultaneously using Co radiation in transmission 

geometry (11). The instrument operates in single-photon counting mode so that between each 

readout the majority of CCD pixels are struck by either a single X-ray photon or by no photons. 

In this way, the system can determine both the energy of the photons striking the CCD (XRF) 

and the two-dimensional (2-D) position of each photon (XRD). The energy and positional 

information of detected photons in each frame are summed over repeated 10-sec measurements 

into a “minor frame” of 30 min of data (180 frames). The 2-D distribution of Co K X-ray 

intensity represents the XRD pattern of the sample. Circumferential integration of these rings, 

corrected for arc length, produces a conventional 1-D XRD pattern. For conversion of the 2-D 

CCD pattern to a 1-D pattern we have used FilmScan
©

 software from Materials Data, Inc. 

 CheMin generally operates for only a few hours each night, when the CCD can be cooled to 

its lowest temperature, collecting as many minor frames as possible for the available analysis 

time, usually five to seven per night. XRD data were acquired over multiple nights for the John 

Klein and Cumberland drill samples to provide acceptable counting statistics. Total data 

collection times were 33.9 hr for John Klein and 20.2 hr for Cumberland. The data for individual 

minor frames and for each night’s analysis were examined separately, and there was no evidence 

of any changes in instrumental parameters as a function of time over the duration of these 

analyses. Before sample delivery and analysis, the empty cell was analyzed to confirm that it was 

indeed empty before receiving the sample. The flight instrument was calibrated on the ground 

before flight using a quartz-beryl standard, and measurement of this standard on Mars showed no 

changes in instrument geometry or dimensions. 

Crystalline Components.  All XRD data were first evaluated by comparisons and searches of 

the International Centre for Diffraction Data (ICDD) Powder Diffraction File using Bruker AXS 

DIFFRAC.EVA (
©

2000, Bruker AXS, Karlsruhe, Germany) and MDI Jade
©

 (Materials Data 

Incorporated, Livermore, CA) software packages, which revealed the presence of plagioclase, 

forsterite, magnetite, augite, pigeonite, orthopyroxene, akaganeite, bassanite, and anhydrite. John 



Klein was the first drill sample analyzed and there was immediate evidence of a phyllosilicate, 

represented by a broad diffraction peak at 8.5-11 2 Co Kα. The comparatively large 

instrumental peak width for the CheMin instrument (~0.3 2 full-width at half-maximum at 25 

2) limits our ability to determine accurately the presence of some minor crystalline phases (<2 

wt. %). The data were analyzed further via Rietveld methods, using Topas (
©

2000, Bruker AXS, 

Karlsruhe, Germany). We used the fundamental-parameters approach within Topas, along with 

additional convolutions, to model the experimental profiles. We also used an emission spectrum 

including Co K with a refinable Co K component. The Rietveld method involves constructing 

a model consisting of the crystal structures of all component phases, and the differences between 

the observed and simulated diffraction patterns are minimized by varying components of the 

model, including scale factors (related to phase abundance), unit-cell parameters, and crystallite-

size and strain broadening parameters for each phase. Atomic positions and site occupancies 

were generally not varied, although octahedral site occupancies were varied for forsteritic 

olivine, augite, and pigeonite, and Na-Ca occupancies were varied for the plagioclase 

component. This method thus provides information on all well-ordered phases (i.e., crystalline), 

but it is not directly applicable to disordered phases such as clay minerals or amorphous 

components.  

Clay Mineral and Amorphous-component Abundances. Neither smectites nor X-ray 

amorphous samples are amenable to Rietveld analysis. Instead, the FULLPAT full-pattern fitting 

method was used (22). FULLPAT operates on the principle that diffraction and scattering 

patterns for all phases in a sample are additive. By fitting full diffraction patterns, including the 

background, which contains important information on sample composition and matrix effects, 

explicit analysis of amorphous or partially ordered materials can be accomplished if the 

amorphous/disordered phases are included in the analyses as distinct phases. Thus, FULLPAT 

allows direct analysis of the abundance of clay minerals and amorphous components, rather than 

determining them as the difference from 100% in an internal-standard quantitative analysis. Like 

all full-pattern fitting methods, accurate analysis requires representative standards or structure 

models. A large variety of pure mineral standards, disordered materials (allophanes, ferrihydrite, 

aluminosilicate gels), and a synthetic glass of Gusev basaltic composition were measured.  Each 

of these was run as a pure phase and was also mixed with a beryl standard in 50:50 wt. ratio to 

determine a Reference Intensity Ratio (RIR) for subsequent use in FULLPAT.  All standard data 

were measured on a CheMin IV instrument at the NASA Johnson Space Center; the CheMin IV 

instrument geometry is very similar to the instrument on MSL and is considered a good proxy for 

the flight instrument. Peak areas for each phase were compared against the intensity of the beryl 

100 peak, and the measured beryl RIR of 1.70 relative to corundum (measured on a laboratory 

instrument) was used to convert the RIR(beryl) to the conventional RIR(corundum) value. 

During FULLPAT analysis, the intensity of each standard pattern was normalized to the intensity 

of a pure pattern of corundum used as datum. Thus, using the corundum datum 113 reflection 

intensity and the measured RIR for each standard phase, the pattern of each disordered phase 

could be normalized to the appropriate overall intensity based on its measured intensity area used 

for the RIR determination. 

Because few standard data for pure phases have been measured on the CheMin flight 

instrument, an alternate method for calculating standard data representative of the MSL CheMin 

instrument was also employed.  This process involved first determining instrumental peak shapes 

and widths as a function of 2θ using the beryl standard measured on the MSL instrument. We 



then calculated diffraction patterns for each standard using the appropriate crystal structure 

information and the instrumental profiles determined above for Co K radiation. The final step 

in calculation of standard data for FULLPAT is to normalize the intensity of the calculated 

pattern to the corundum datum pattern using the calculated RIR as outlined above. The scaled 

measured and calculated library patterns, for both ordered and amorphous phases, were then used 

with FULLPAT. 

 

Estimating Compositions and Abundances of Clay Minerals and Amorphous Components 

from XRD and APXS data. 

 

The relative proportions of crystalline and amorphous plus smectite components and their 

respective bulk compositions were estimated by combining the APXS chemical compositions of 

the mudstone samples, and the chemical composition of crystalline components including Fe 

oxidation state (from stoichiometry or XRD unit-cell parameters) weighted by their CheMin 

XRD abundance (phases from plagioclase to pyrrhotite in Table 1 in this paper). To estimate the 

chemical composition of the amorphous material relative to that of the total amorphous plus 

smectite component, the chemical compositions (H2O/OH-free basis) of two saponites were 

assumed for the trioctahedral smectite: griffithite and Clay Minerals Society saponite SapCa-1. 

Among the clay minerals analyzed in the laboratory, griffithite has an 02l diffraction band 

similar to the smectite component of both John Klein and Cumberland. The proportion of each 

smectite, calculated by increasing the smectite concentration until the MgO concentration in the 

amorphous component was ~0 wt.%, is an upper limit for its concentration.  

  



 
Table S-1.  Chemical composition of John Klein drill fines from APXS and CheMin measurements, calculated chemical 

compositions of crystalline and combined amorphous and smectite components, and calculated chemical compositions of 

amorphous components assuming griffithite and saponite SapCa-1 as trioctahedral smectites. 

  
APXS XRD Smectite+ Griffithite Model

e
 SapCa-1 Model

f
 

(wt.%) APXS
a
 +CHMN

b
 Crystalline

c
 Amorphous

d
 Griffithite Amorphous SapCa-1 Amorphous 

SiO2 42.07 42.03 42.65 41.76 49.71 32.94 57.60 30.10 

TiO2 0.97 0.97 -0.02 1.41 -0.01 2.98 0.56 2.03 

Al2O3 8.67 8.66 12.48 6.97 9.52 4.14 4.11 9.08 

Cr2O3 0.42 0.42 -0.01 0.61 -0.01 1.30 -0.02 1.07 

FeO+Fe2O3 19.86 13.51 -0.23 19.59 16.48 23.04 0.74 33.46 

Fe-Cryst 0.00 0.47 1.51 0.00 0.00 0.01 0.00 0.01 

FeO-Cryst 0.00 3.24 10.53 0.00 0.00 0.00 0.00 0.00 

Fe2O3-Cryst 0.00 2.06 6.71 0.00 0.00 0.00 0.00 0.00 

Fe2O3-npOx 0.00 0.58 1.87 0.00 0.00 0.00 0.00 0.00 

MnO 0.27 0.27 0.00 0.39 0.07 0.75 0.03 0.66 

MgO 9.06 9.05 4.88 10.90 20.66 0.07 25.70 0.01 

CaO 7.76 7.75 9.47 6.99 2.83 11.61 7.72 6.46 

Na2O 3.01 2.90 2.98 2.86 0.05 5.98 1.75 3.68 

Na-Cryst 0.00 0.04 0.13 0.00 0.00 0.00 0.00 0.00 

K2O 0.57 0.57 0.30 0.69 0.01 1.44 0.87 0.56 

P2O5 0.93 0.93 -0.02 1.35 -0.02 2.87 0.09 2.28 

SO3 5.61 3.83 1.07 5.05 -0.09 10.76 0.07 8.72 

S-Cryst 0.00 0.33 1.07 0.00 0.00 0.01 0.00 0.01 

SO3-Cryst 0.00 0.95 3.10 0.00 0.00 -0.01 0.00 -0.01 

Cl 0.56 0.53 0.33 0.62 -0.01 1.31 -0.02 1.08 

H2O-Cyst 0.00 0.12 0.40 0.00 0.00 -0.01 0.00 0.00 

Sum 99.76 99.20 99.20 99.20 99.19 99.19 99.20 99.19 

         

Relative to Whole Sample 30.7 69.3 36.4 32.8 29.4 39.9 
a
Composition of drill fines.

 b
Composition of drill fines modified according to chemical composition of XRD crystalline phases 

(excluding smectite). 
c
Composition of XRD crystalline component calculated from compositions of individual crystalline 

components and their relative proportions from Table 1. 
d
Composition of amorphous plus smectite component. Cr2O3, MnO, 

and P2O5 were modeled with the amorphous component. 
e
Composition of griffithite (H2O/OH-free basis) and the amorphous 

phase calculated assuming griffithite is the smectite and MgO ~0 wt.% in the amorphous phase. 
f
Composition of SapCa-1 

(H2O/OH-free basis) and the amorphous phase calculated assuming SapCa-1 is the smectite and MgO ~0 wt.% in the 

amorphous phase. 

 

  



 
Table S-2.  Chemical composition of Cumberland drill fines from APXS and CheMin measurements, calculated chemical 

compositions of crystalline and combined amorphous and smectite components, and calculated chemical compositions of 

amorphous components assuming griffithite and saponite SapCa-1 as trioctahedral smectites. 

  
APXS XRD Smectite+ Griffithite Model

e
 SapCa-1 Model

f
 

(wt.%) APXS
a
 +CHMN

b
 Crystalline

c
 Amorphous

d
 Griffithite Amorphous SapCa-1 Amorphous 

SiO2 43.02 43.33 43.72 43.15 49.71 34.98 57.59 31.54 

TiO2 0.97 0.98 0.57 1.16 -0.01 2.62 0.57 1.64 

Al2O3 8.57 8.63 12.38 6.96 9.53 3.75 4.11 9.25 

Cr2O3 0.43 0.43 -0.01 0.63 -0.01 1.43 -0.02 1.15 

FeO+Fe2O3 22.35 15.27 -0.25 22.21 16.43 29.39 0.66 39.54 

Fe-Cryst 0.00 0.38 1.23 0.00 0.00 0.00 0.00 0.00 

FeO-Cryst 0.00 3.63 11.74 0.00 0.00 0.00 0.00 0.00 

Fe2O3-Cryst 0.00 2.37 7.65 0.01 0.00 0.02 0.00 0.01 

Fe2O3-npOx 0.00 0.86 2.79 0.00 0.00 0.00 0.00 0.00 

MnO 0.27 0.27 0.00 0.40 0.07 0.80 0.03 0.69 

MgO 9.41 9.48 5.00 11.48 20.66 0.02 25.70 0.03 

CaO 6.29 6.34 7.91 5.63 2.86 9.09 7.75 3.92 

Na2O 2.98 2.87 2.86 2.97 0.05 6.60 1.74 3.95 

Na-Cryst 0.00 0.05 0.08 0.00 0.00 0.00 0.00 0.00 

K2O 0.50 0.50 0.39 0.55 0.01 1.23 0.88 0.30 

P2O5 0.95 0.96 -0.02 1.39 -0.02 3.16 0.08 2.44 

SO3 2.57 1.61 0.73 2.00 -0.04 4.55 0.15 3.50 

S-Cryst 0.00 0.28 0.74 0.07 0.00 0.17 0.00 0.13 

SO3-Cryst 0.00 0.28 0.91 0.00 0.00 -0.01 0.00 -0.01 

Cl 1.39 0.53 0.32 0.63 -0.01 1.43 -0.02 1.15 

H2O-Cyst 0.00 0.15 0.49 0.00 0.00 0.00 0.00 0.00 

Sum 99.70 99.20 99.24 99.24 99.23 99.23 99.23 99.23 

         

Relative to Whole Sample 30.9 69.1 38.4 30.7 30.8 38.3 
a
Composition of drill fines.

 b
Composition of drill fines modified according to chemical composition of XRD crystalline phases 

(excluding smectite). 
c
Composition of XRD crystalline component calculated from compositions of individual crystalline 

components and their relative proportions from Table 1. 
d
Composition of amorphous plus smectite component. Cr2O3, MnO, 

and P2O5 are modeled with the amorphous component. 
e
Composition of griffithite (H2O/OH-free basis) and the amorphous 

phase calculated assuming griffithite is the smectite and MgO ~0 wt.% in the amorphous phase. 
f
Composition of SapCa-1 

(H2O/OH-free basis) and the amorphous phase calculated assuming SapCa-1 is the smectite and MgO ~0 wt.% in the 

amorphous phase. 

 

Mastcam Hydration Signatures 

The Mastcam instrument is a pair of CCD cameras with fixed focal lengths (34-mm and 100-

mm) mounted roughly 2-m above the surface on the rover's mast (14). Each camera obtains 

images through a Bayer pattern of RGB filters and telecentric microlenses bonded onto the CCD 

and an 8-position narrowband filter wheel that provides the ability to obtain spectra in 12 unique 

wavelengths (41). These multispectral observations have been calibrated to radiance (I) using 

pre-flight calibration coefficients, to radiance factor (I/F, where F is the solar irradiance at the 

top of the Martian atmosphere at the time of the observation) using associated observations of 

the Mastcam calibration target, and to relative reflectance (R*) by dividing I/F by the cosine of 



the solar incidence angle (a similar procedure was used to calibrate Mars Exploration Rover 

(MER) Pancam images to I/F and R*; (66, 67)). 

Mastcam’s longest wavelength filters have some sensitivity to hydrated and/or hydroxylated 

minerals (27). Specifically, the 1013 nm near-IR filters (referred to as filters L6 and R6 (41)) can 

detect an absorption due to the 2ν1 + ν3 H2O combination band and/or the 3ν OH overtone when 

this band minimum occurs longward of roughly 980 nm (e.g., as in water ice, some carbonates, 

and hydrated sulfates). This narrow hydration band leads to a Mastcam spectral profile that is 

“flat” in the near-IR, with a sharp downturn at the longest Mastcam wavelength (Fig. 4C) that 

can be used as a “hydration signature.” This profile is distinguishable from spectra of iron-

bearing minerals with broad absorptions near 1000-nm, which have an overall negative spectral 

slope in the near-IR.  

The Mastcam hydration signature can be used to remotely identify and map candidate 

hydrated surface materials in Mastcam near-IR filter images based on the technique developed 

for the MER Pancam instruments (16, 68) and applied to images acquired along the Spirit (16, 

69) and Opportunity (38, 70) traverses. Mastcam spectra exhibiting a hydration signature are 

defined as those with a spectral slope (R*/) in calibrated R* data from 937 to 1013 nm less 

than -4.0 x 10
-4

 nm
-1

 and a nearly-flat R* spectral profile between 805 and 937 nm (with absolute 

slope values less than 2.0 x 10
-4

 nm
-1

). Slope thresholds were modified slightly from those used 

for the Pancam hydration signature (16) in order to minimize noise in the Mastcam hydration 

maps.  

It is important to note that the absence of a hydration signature in Mastcam data does not 

necessarily indicate an absence of hydrated minerals; in the spectra of many H2O and/or OH 

bearing minerals, including phyllosilicates such as saponite (Fig. 4C), the hydration band is 

centered closer to 950 nm and cannot be detected by Mastcam’s longest wavelength filter. Of the 

various hydration states of Ca-sulfate (gypsum, bassanite and anhydrite), only gypsum 

(CaSO4•2H2O) is detectable to Mastcam (and also to MER Pancam (38)). Anhydrite (CaSO4) 

lacks a hydration band, and the weak hydration band in bassanite (CaSO4•0.5H2O) is centered 

near 950 nm (Fig. 4C). 

  



Mapping of Light-toned Veins and Nodules in Borehole Walls 

 

Light-toned veins and nodules are visible in both the John Klein and Cumberland borehole 

walls. Analyses by LIBS and APXS indicate that these late-diagenetic features are associated 

with Ca-sulfate; in contrast the mudstone matrix is relatively sulfate-poor (8, 19). Sulfate 

minerals detected by CheMin in the borehole samples include anhydrite and bassanite. An initial 

ChemCam RMI image taken to support localization of the LIBS analysis spots also showed a 

striking distribution of veins and nodules in the John Klein drill hole. Subsequently, to better 

understand the distribution of late-diagenetic veins and nodules, several off-axis images of both 

boreholes were taken using the Mars Hand Lens Imager (MAHLI) to get relatively complete 

coverage of the borehole walls to the full visible depth.  Some images were acquired at night 

using MAHLI white light LED illumination. The images were processed to compare the light-

toned vein and nodule abundances between John Klein and Cumberland, and to compare sulfate 

mineral abundances determined by CheMin with mapped abundances of light-toned fillings. 

Drill hole depth and wall visibility - Both the John Klein and Cumberland holes were drilled 

to a depth of about 6.5 cm. Autofocused MAHLI image sub-frames covering only the floor of 

each hole—acquired shortly after drilling was completed on the same sol that the rock was 

drilled—provided a measure of the distance between the camera lens and the bottom of the hole. 

Similar autofocused sub-frames acquired outside the hole permitted subtraction of one from the 

other to estimate hole depth. In both cases, the hole was measured to be about 3.2 ± 0.3 cm deep. 

While the drill penetrated to 6.5 cm, drill cuttings/debris filled the lower half of each after the 

drill bit was withdrawn. These ranges, relative to the MAHLI lens, were estimated from its focus 

motor count position (m), which, when the dust cover is open and the range is between 2.1 and 

210 cm, relates to range (r, in cm) between lens and target by r = ((0.576786m
–1

) + (–11.8479) + 

(2.80153×10
–3

m) + (–2.266488×10
–7

m
2
) + (6.26666×10

–12
m

3
))

–1
. Thus, for the drill hole wall 

analysis presented here, only half of the depth and half of the surface area of each wall was 

observed.   

Processing - Of the focus stack images acquired at each drill hole, those that were in best 

focus on the drill hole walls were chosen to accurately represent the entire surface area of the 

drill hole. Both the John Klein and Cumberland drill holes have MAHLI images from four map 

directions (approximately S, W, N, E). Some of the MAHLI nighttime LED-illuminated images 

show more detail of the vein material than do the day, solar-illuminated, images, such as the W, 

N and E images for Cumberland. Images with the least compression and best focus and contrast 

were selected and each was cropped in Adobe Photoshop© to 1903 pixels wide and 1847 pixels 

high, or 6.343 inches wide and 6.157 inches high, at 300 dpi. The width is slightly larger than the 

height due to the ellipsoid shape of the drill hole as viewed from off-axis angles. A master image 

was created to hold all the images. The master image is 3805 pixels wide and 3693 pixels high, 

or 25.543 inches wide and 24.597 inches high, at 300 dpi. Drill hole images were aligned from 

left to right in order S, W, N, E with the long axis of the drill hole ellipse oriented left-right. 

Some of the images were tilted and/or had different image scales. In order to correct this, one 

drill hole image was selected to be the template orientation (long axis left-right) and size. A new 

layer was created so that an ellipse template could be created to correctly align and size the other 

images. In the new layer the elliptical marquee tool was used to trace out an ellipse that exactly 

fit the image that was selected as the base image.  That layer was copied and pasted to cover all 

four images. Each drill hole image was then aligned with the transformation tool to best fit the 



ellipse template and the opacity of the ellipse templates was adjusted to 50%. The drill hole 

ellipse template was used as the surface area marker for mapping. Some of the images 

overlapped, in which case the image with the best representation of the vein was used. 

Easily identifiable marks in the images were used to end one image and start another, so that 

the entire surface was represented with no overlap. The ellipses were then cut with the polygonal 

lasso tool to represent the mapping area. The regular lasso tool was used to remove from the 

image any drill cuttings or debris visible on the bottom of the drill hole. All four images were 

then converted to greyscale (second row of images in Figs. S-1 and S-2). The bottom row of 

images was processed to enhance contrast to better show the veins. Next, the previously created 

surface area marker layers were copied and placed over the bottom row of high contrast images. 

These were used to cut out un-mapped areas of the drill holes. Each drill-hole image was cut and 

copied into a new layer. Surface-area marker layers were processed one at a time by using the 

color range tool to select light-toned vein material. The vein representation was increased to 

include different shades by selecting additional vein colors until a good representation of the 

veins was obtained. The selected area was added or removed with the lasso tool. After this was 

done, the actual drill hole image was deselected and the surface area marker was selected to 

create a simple representation of the vein in the mapping area. 

The vein-to-total surface area percentage was derived from this final representation. The 

surface area marker was selected with the magic wand tool and the expanded view of the 

histogram window. With the full area minus the vein area, the histogram window was refreshed 

to give a pixel amount. This was repeated for every surface area marker and the results were used 

to calculate vein/(vein + surface minus vein) = percent vein per total surface area. 

Results - The surface area of vein exposure in Cumberland is ~1.7%, very similar to the total 

sulfate mineral abundance of 1.5% (bassanite plus anhydrite, based on the abundances in Table 

1). The surface area of vein exposure in John Klein is ~5.2%, compared with a total sulfate 

mineral abundance of 3.6% (bassanite plus anhydrite, based on the abundances in Table 1). The 

apparent excess of mapped vein area compared to sulfate mineral abundance, notably in the John 

Klein borehole and sample, could be attributed to several factors, including the generally low 

grain densities of the Ca-sulfates (ρ ~2.73 for bassanite to ~2.97 for anhydrite, slightly more than 

andesine at ~2.67 but less than the pyroxenes at ~3.3-3.7 and much less than magnetite at ~5.1). 

However, the greater contributors to the difference are likely to be the inability to map the full 

borehole depth because of fill (the upper ~1.5 cm of the borehole does not make it into the 

sample processing system (10)), the unknown bulk densities of both the veins and the matrix, the 

errors in image analysis and quantitative crystalline XRD, and the errors in estimating 

abundances of the amorphous and clay mineral components from XRD data. Nevertheless, the 

mapped vein areas in both boreholes are sufficient to account for all of the sulfates detected by 

XRD. 

 



 

Fig. S-1: Analysis of veins in the John Klein borehole wall. Upper row shows primary images 

in grayscale with sectors (black) selected for mapping from each MAHLI image (MAHLI 

images collected on sol 270). Second row from top shows contrast-stretched images (note dark 

LIBS laser spots in the north image). Bottom row shows images processed to enhance the pixel 

representation of vein and nodule abundances for quantitative analysis; total vein and nodule 

area is 5.18% of the borehole wall. 



 

Fig. S-2. Analysis of veins in the Cumberland borehole wall. Upper row shows primary 

images in grayscale with sectors (black) selected for mapping from each MAHLI image 

(MAHLI images collected on sol 279). Second row from top shows contrast-stretched images. 

Bottom row shows images processed for pixel representation of vein and nodule abundances; 

vein and nodule area is 1.74% of the borehole wall. 
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