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Abstract 

Sedimentary rocks at Yellowknife Bay (Gale Crater) on Mars include mudstone sampled by the 

Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, Ca-

sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral smectites. The 

John Klein smectite has basal spacing of ~10 Å indicating little interlayer hydration. The 

Cumberland smectite has basal spacing at ~13.2 Å as well as ~10 Å. The ~13.2 Å spacing 

suggests a partially chloritized interlayer or interlayer Mg or Ca facilitating H2O retention. 

Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the 

mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late 

Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars 

extended beyond Noachian time. 

Introduction 

The recent decade of orbiter- and rover-based studies of ancient sedimentary rocks on Mars 

has revealed a diverse mineralogy that constrains the nature and timing of early environments in 

the history of the planet (1, 2, 3) These studies provide a starting point for considering the 

habitability of Mars, based on an understanding of the aqueous geochemistry and mineralogy of 

rocks placed within a geologic framework (4, 5). Such an approach has been adopted by the 

Mars Science Laboratory (MSL) mission, where the science payload and advanced capabilities 

of the Curiosity rover were designed for assessment of past habitability (6). 

Mission goals for MSL placed high priority on aqueous-system mineralogy, particularly clay 

minerals and sulfate salts (6). The mission concept for the landing site in Gale Crater was to 

leave the landing spot quickly and drive to Aeolis Mons, a central mound informally known as 

Mount Sharp. Interpretation of Mars Reconnaissance Orbiter CRISM  (Compact Reconnaissance 

Imaging Spectrometer for Mars) visible-near infrared spectroscopy suggests the presence of 

hydrated minerals in sedimentary layers at the base of the mound (7). However, soon after 

landing a contact between three different geologic units, one with relatively high thermal inertia, 

was recognized within ~450 m of the landing spot, just beyond the alluvial lobe of the Peace 

Vallis fan (8). The decision to drive away from Mount Sharp toward this location has provided 

early samples of a mudstone that contains both clay minerals and sulfate salts. 

The John Klein and Cumberland drill samples were collected from the Sheepbed mudstone 

member of the sedimentary Yellowknife Bay formation, which is interpreted as a shallow 

lacustrine deposit (8). John Klein and Cumberland are the second and third solid samples, 

respectively, collected by the MSL rover Curiosity. The first sample, from an eolian deposit 

named Rocknest, is ~60 m west of the mudstone drill locations. The loose Rocknest deposit (9) 

had been used to commission Curiosity’s scoop sampling system and the lithified John Klein 

sample was used to commission the drill. Curiosity’s sampling system delivers both scooped and 

drilled powders to the same set of sieves (10). All scooped or drilled samples were sieved to 

<150 µm and portions were analyzed by the Chemistry and Mineralogy (CheMin) X-ray 

diffraction (XRD) and X-ray fluorescence (XRF) instrument (11) and the Sample Analysis at 

Mars (SAM) quadrupole mass spectrometer/gas chromatograph/tunable laser spectrometer suite 

of instruments (12, 13). 



CheMin XRD data are the focus of this paper. Although the CheMin XRD instrument is the 

prime mineralogy tool carried by Curiosity, constraints on the mudstone mineralogy are provided 

by the temperatures at which volatiles are released in SAM evolved gas analyses, particularly 

H2O release profiles (13). Other instruments on Curiosity provide additional insight into 

mineralogy. Mastcam (14, 15) multispectral images are capable of sand-size resolution and 

potential identification of certain hydrated minerals using short-wavelength near-IR filters (16). 

ChemCam has a narrow laser beam that can target veins and nodules for remote chemical 

analysis by laser-induced breakdown spectroscopy (LIBS), with sensitivity to many elements 

including hydrogen (17, 18); this capability can aid in constraining mineral compositions where 

individual minerals are ~0.5 mm or larger and is particularly sensitive to alkali and alkaline-earth 

elements (19). The MSL alpha-particle X-ray spectrometer (APXS) has proven heritage from 

previous missions and provides sensitivity to a wide range of common rock-forming elements 

(20), although analysis spot resolution is ~1.7 cm diameter, providing a bulk chemical analysis 

rather than mineral analysis for most samples. We use the results from APXS to constrain the 

composition of the X-ray amorphous components of the mudstone. The Mars Hand Lens Imager 

(MAHLI) provides high-resolution images, to 14 µm per pixel, with Bayer pattern color that can 

simulate hand-lens or close-up sample analysis (21).   

Figure 1 shows Mastcam and MAHLI images of the boreholes and drill powders for John 

Klein and Cumberland.  Cumberland (Fig. 1C) was targeted after John Klein, in order to analyze 

a part of the mudstone with fewer sulfate veins and a greater abundance of resistant concretions, 

including nodules and hollow nodules that are regarded as early cementation. The two drill holes 

are ~3 m apart. Powders of both mudstone samples are notably gray in color, unlike the reddish 

weathering and/or dust evident on the surface of the mudstone. This reddish surface of the 

mudstone did not contribute to either drill sample, for the auger does not pass powder into the 

sampling system until it is ~1.5 cm into the drill target (10). 

Mineralogical Analysis and Quantitative Mineralogy 

The X-ray diffraction patterns for John Klein and Cumberland are compared in Fig. 2A. We 

quantified the crystalline components, other than smectites, in John Klein and Cumberland 

(Table 1) by using whole-pattern fitting and Rietveld analysis (Figs. 2B,C); smectites and the 

amorphous component were quantified using a modified version of the FULLPAT program (22). 

These methods are described in (23) and elaborated in (24). Conversion of the two-dimensional 

images of Debye diffraction rings on the CCD to one-dimensional diffraction patterns was done 

in the same manner for Rocknest, John Klein, and Cumberland. For all three samples, we 

obtained unit-cell parameters (Table 2) and phase compositions (Table 3) for major phases. The 

unit-cell parameter and phase composition data reported for Rocknest, John Klein, and 

Cumberland were processed in the same manner and are therefore comparable. 

An independent assessment of the abundance of smectite and amorphous material can be 

obtained from the fixed or cell-parameter-constrained chemical compositions of the phases listed 

in Table 1 and the total sample chemical composition from APXS analysis of the drill tailings. 

This approach (24) uses a mass-balance calculation with XRD constraints on crystal chemistry 

(25, 26) and, for the present study, model smectite compositions, to estimate the composition of 

the amorphous component. Additional constraints on smectite abundance come from SAM 



evolved gas analysis, where the amount of H2O released at higher temperatures (~400-835 °C) 

can be related to dehydroxylation of various clay minerals (13). Within estimated errors these 

three methods agree, but in this paper we focus on the XRD estimates (Table 1). 

None of the coarse (>mm width) veins that cross the Sheepbed member (8) were sampled for 

CheMin and SAM analysis. However, Mastcam near-IR spectral filters are sensitive to hydration 

in certain minerals (27), and this method (24) was used to analyze veins where ChemCam and 

APXS data indicated that Ca-sulfate phases are present. This allows mapping of inferred gypsum 

distributions in the veins that were not sampled for CheMin and SAM analysis. 

The sedimentologic context of the mudstone is complex. Observations of the mudstone (8) 

lead to interpretation of an early-diagenetic association of nodules, hollow nodules, and raised 

ridges that are crosscut by late-diagenetic fractures filled with light-toned Ca-sulfates (S-Ca 

association in these veins was identified with ChemCam). Early-diagenetic hollow nodules are 

filled with light-toned sulfates only where intersected by late-diagenetic light-toned 

microfractures (8, 19). MAHLI images show that the John Klein drill spot had a surface footprint 

(1.6 cm diameter) with ~3.9% hollow nodules, ~2.5% solid nodules, and ~14.5% light-toned 

sulfate, whereas the Cumberland drill spot had ~8.5% hollow nodules, ~2.2% solid nodules, and 

no evident light-toned sulfate. Estimates of light-toned sulfate abundances from pre-drilling 

images can be deceptive because their three-dimensional distribution is dependent on variable 

occurrence of thin veins that may or may not be visible on the dust-mantled surface. A more 

accurate survey of the distribution and abundance of light-toned sulfates is obtained by analysis 

of drill-hole wall images (24), at least to the depth exposed (the lower part of each drill hole 

contains some debris). 

  The borehole samples John Klein and Cumberland provide adequate sampling of the 

mudstone matrix with a partial sampling of features that are both early-diagenetic (nodules and 

hollow nodules) and late-diagenetic (light-toned veins). The drill did not sample any early-

diagenetic raised ridges. The raised ridges were identified in LIBS and APXS analyses as 

including an Mg-Fe-Cl rich component; in images they appear to have an isopachous filling of 

several layers and may be mineralogically complex (19). Without direct sampling and CheMin 

XRD analysis, knowledge of mineralogy in the raised ridges is speculative and is not addressed 

here.  

Silicates other than Smectites 

Several detrital silicate minerals in the mudstone bear a strong resemblance to those found in 

the Rocknest eolian deposit (Tables 2, 3). Fe-forsterite, plagioclase, pigeonite, and augite are 

generally similar between Rocknest, John Klein, and Cumberland, suggesting similar mafic 

sources. Presence of pigeonite indicates mafic sources that were basaltic. However, XRD 

analyses of the mudstone samples reveal presence of orthopyroxene as well as clinopyroxenes, 

indicating a source of some mafic minerals that is either absent from or very minor in the nearby 

eolian deposit. 

It is notable that Fe-forsterite is almost absent in Cumberland and its abundance in John Klein 

is much lower than in Rocknest. Figure 1B shows that the reddish Rocknest sample coats the 



walls of the scoop that is filled with the John Klein drill powder. Testbed operations on Earth 

suggest that at least ~4% cross-contamination should be expected between samples. By the time 

Cumberland was imaged (Fig. 1D), the red Rocknest powder was almost gone, so the sampling 

system had been largely cleared of this contaminant in processing John Klein. Progressive 

dilution and a stronger cleaning cycle between John Klein and Cumberland left little if any 

Rocknest contamination in Cumberland – and conversely, some of the Fe-forsteritic olivine 

present in the John Klein sample might be contamination from the Rocknest sample. 

Phyllosilicates 

CheMin XRD data reveal the presence of phyllosilicates in John Klein and Cumberland (Fig. 

2A). A broad 001 diffraction peak in the John Klein XRD pattern extends from 12 to 9.4 Å, 

corresponding with the large interlayer spacing of a 2:1 smectite. This broad range of 001 

diffraction is common to a variety of phyllosilicates, but the breadth of this peak (and the lack of 

other well-defined peaks, such as an 002 peak at 5 Å) argue against the presence of well-

crystallized phyllosilicates such as mica or illite. Well-defined diffraction peaks for kaolinite or 

chlorite-group minerals at 7 Å are absent. A smectite with similar diffraction properties is 

present in Cumberland, although the low-angle region includes a second peak ranging from ~12-

17 Å with a maximum at ~13.2 Å. This larger interlayer spacing in the Cumberland XRD pattern 

is a noteworthy characteristic.  

The interlayer spacing in a smectite, revealed by the broad 001 peak, is affected by the layer 

charge, the nature of the interlayer cation(s) (typically K, Na, and/or Ca; less commonly Mg), the 

hydration state of the interlayer cations, and the possible presence of chloritic interlayers. The 

layer charge and interlayer cation content of a smectite are relatively stable in solid samples, so 

changes in interlayer spacing are mostly dependent on relative humidity. Modeling and 

experimental studies (28, 29) suggest that if exposed at Mars surface conditions, smectites can go 

through diurnal and seasonal hydration cycling, with substantial dependence of the amount of 

hydration on the nature of the interlayer cation. For example, Ca-smectite will hold more 

interlayer H2O than Na-smectite at the same conditions (30). The John Klein and Cumberland 

samples inside the body of Curiosity were exposed to higher and less variable temperature (a 

diurnal range of 5 to 25 °C) than they were in situ. These temperatures yield very low relative 

humidities and dehydration should be favored. The position and breadth of the 001 diffraction 

peak in the John Klein sample have not changed over 30 sols of analysis following collection, 

but at 10 Å this smectite appears to be largely dehydrated and little or no change would be 

expected. The larger 001 spacing in Cumberland has also been static, over 28 sols of analysis; 

the preservation of this wider spacing suggests a difference in the interlayer composition of the 

smectite in Cumberland compared with John Klein. 

Possible explanations for persistent larger interlayer spacing in Cumberland include smectite 

having hydrated interlayers with H2O molecules retained by high hydration-energy interlayer 

cations, possibly Mg
2+

 (28) or Ca
2+

 (30), and partial pillaring of the interlayer by metal-hydroxyl 

groups, as with incipient chloritization (31), that would prevent collapse. The nodule-bearing 

portions of the mudstone that were drilled for sampling pass laterally into mudstone with early-

digenetic Mg-rich raised ridges described above. These could be sources of Mg for cation 

exchange or incipient chloritization, focused more on Cumberland than on John Klein. Cation 



exchange occurs readily, with the interlayer cation largely reflecting the dominant cation in 

solution. Incipient chloritization by fixation of Mg-hydroxl groups can occur under surficial 

conditions when exposed to Mg-rich alkaline fluids, a process observed in some saline lakes 

(32). Hydrothermal fluids may induce this change as well (33). 

X-ray diffraction analysis of clay minerals in terrestrial laboratories has the advantage of 

additional sample processing, such as preparation of oriented mounts, controlled variation of 

relative humidity, treatment with ethylene glycol, and heat treatment. These treatments are not 

possible in CheMin on Mars. In addition, a substantial component of smectite classification is in 

determination of trioctahedral or dioctahedral crystal structure (the range from full to 2/3 

occupancy of sites in the octahedral sheet), but this is generally accomplished by analysis of the 

06l diffraction band at ~1.54 Å (trioctahedral, ~71 2 Co Kα) to ~1.50 Å (dioctahedral, ~73 2 

Co Kα). This is beyond the diffraction range of the CheMin CCD detector (~50 2). However, 

other components of the diffraction pattern correlate similarly with this structural difference. The 

position of the maximum in the 02l band, at ~ 22.5° to 23.1° Co Kα, corresponds with the range 

from trioctahedral to dioctahedral structures (Fig. 3). The 02l two-dimensional diffraction band is 

asymmetric, is often overlapped by diffraction peaks from other phases (e.g., augite), and 

therefore is not as easy to measure as 06l. However, this band provides similar information, as its 

position is related to the b unit-cell parameter in the same way as the 06l band.  The 02l 

diffraction band maximum for the John Klein and Cumberland samples (Fig. 3) is at 22.5°, 

indicative of a trioctahedral clay mineral such as saponite or Fe-saponite and not of dioctahedral 

forms such as montmorillonite. Some Fe-bearing dioctahedral smectites such as nontronite have 

similar 02l bands, but the fit is not as good as with saponite. 

 

Oxide and Sulfide Minerals 

Magnetite is the prominent oxide phase in John Klein and Cumberland, as it is at Rocknest 

(23).  Magnetite is present at 3.8 wt% in the John Klein sample and 4.4 wt% in Cumberland 

(Table 1). These abundances are significantly higher than in Rocknest (1.5 wt%). As a basic 

observation, concentration of detrital magnetite in sedimentary mudstones is surprising.  Grains 

of magnetite (ρ ~5 g/cm
3
) are not expected to be enriched in very fine grained detrital 

sedimentary rocks otherwise composed of olivine, pyroxene, and feldspar (ρ ~2.7-3.7).  By 

reason of hydraulic equivalence, grains of higher density may be present but are expected to be 

smaller in size, and enrichment should not occur (34).  Other factors are required for selective 

enrichment such as free settling of grains in turbulent flow, selective entrainment of grains from 

a granular bed by flowing water, and shearing of grains in a moving granular dispersion 

(35). However, because the Sheepbed mudstone likely formed by non-turbulent settling of fines 

from suspension in a body of standing water (8), we expect that none of these processes would 

have been influential in causing a hydraulic enrichment of heavy minerals. The relatively high 

abundance of magnetite in the Sheepbed mudstone may have been caused by authigenesis. 

Authigenesis of magnetite is further suggested by the observation that high magnetite abundance 

is associated with loss of Fe-forsterite and the appearance of smectites. 

Unit-cell parameters of magnetite in the mudstone are about 0.2% smaller than for ideal 

magnetite, with a unit-cell edge of 8.38 versus 8.39 Å. A possible explanation of the smaller cell 



size is partial (~20%) oxidation of the ferrous iron, toward the ferric defect-spinel maghemite 

(8.33 Å) in which some Fe sites are vacated to preserve charge balance. Alternatively, 

substitution of smaller cations such as Cr, Mg, or Al could account for a smaller unit cell, 

although it is not clear whether sufficient amounts of these are present. 

In addition to magnetite, the Rietveld refinements are consistent with small amounts of 

ilmenite and hematite in the mudstone samples. Also present is akaganeite, β-FeO(OH,Cl), 

which is a possible oxide host for Cl. It has been previously suggested (36), based on mid-

infrared and visible/near-infrared spectra, that akaganeite may be a precursor to hematite 

observed from orbit on Mars, but the same study concluded that goethite was a more likely 

precursor. However, the mudstone at Yellowknife Bay is not a typical martian surface material 

and the colors of the mudstone beneath its reddish dust mantle are substantially different (Fig. 1). 

Akaganeite was detected in both mudstone samples, but not at Rocknest. Akaganeite at its type 

locality on Earth (37) occurs as an alteration product of pyrrhotite, a sulfide that is also found in 

the Yellowknife Bay mudstone but not in the Rocknest sample (Table 1). Occurrence of this 

association at Yellowknife Bay may be evidence of a similar alteration relationship. Somewhat 

higher abundance of akaganeite in Cumberland than in John Klein (Table 1) suggests that it 

could be a component of concretion formation, especially of hollow nodules that appear to be 

twice as abundant at Cumberland as at John Klein. 

Sulfate Minerals 

Veins of Ca-sulfate, believed to be gypsum, have been detected by the MER rover 

Opportunity at the western edge of Cape York on the rim of Endeavour Crater (38). Calcium 

sulfate hydrates, including both gypsum and bassanite, have been inferred from OMEGA and 

CRISM orbital spectroscopy in multiple locations on Mars (39, 40), but with a lack of hydration 

bands at visible-near infrared wavelengths anhydrite has been elusive. 

CheMin XRD data show that the Sheepbed mudstone contains bassanite and anhydrite (Table 

1). Anhydrite was also detected in the Rocknest eolian deposit. We have found no XRD evidence 

for gypsum in either Rocknest or the two mudstone samples. However, Mastcam hydration index 

measurements are consistent with the presence of gypsum in some of the veins crossing the 

mudstone, showing that the vein system might contain all three of the principal Ca-sulfate 

phases. Specifically, Mastcam’s longest-wavelength filter (1013 ± 21 nm) can detect the 21 + 3 

H2O combination absorption band and/or the 3 OH overtone absorption band in specific 

hydrated minerals (16, 27, 41).  Calibrated Mastcam spectra show evidence for hydration 

associated with some light-toned, Ca-sulfate bearing features in the Sheepbed unit, including 

some veins (Fig. 4A,B) and some fillings within hollow nodules. However, the hydration 

signature is not universal in these light-toned features; several narrow veins observed in the John 

Klein vicinity show no evidence for hydration. From comparisons with laboratory reflectance 

spectra of Ca-sulfate minerals convolved to Mastcam bandpasses (Fig. 4C), the hydration 

signature near 1013 nm is consistent with the presence of gypsum, but not bassanite or anhydrite 

(24). The presence of some Ca-sulfate veins that exhibit the Mastcam hydration signature and 

others that do not, with apparent lower hydration in thinner veins, is in accord with XRD 

observation in the drill samples of bassanite and anhydrite but not gypsum. 



Before the John Klein drill sample was collected, observations by LIBS, supported by APXS 

analyses of some veins, had indicated widespread association of Ca and S in light-toned veins 

and filling hollow nodules in Yellowknife Bay.  The LIBS and APXS data and Mastcam spectral 

interpretations suggest hydrogen associated with some but not all of these light-toned materials. 

The drill locations for John Klein and Cumberland were deliberately targeted to collect samples 

of the mudstone matrix with as little sulfate veining as possible (Figures 1A and 1C). 

Nevertheless, hairline fractures and fillings within hollow nodules were observed on borehole 

walls (24) and these are likely the principal or sole hosts of Ca-sulfate minerals in the John Klein 

and Cumberland samples. 

Bassanite does not have a stability field at pressures less than 235 MPa (42), far in excess of 

the maximum pressure (~50 MPa) that would be attained if the Sheepbed mudstone had been 

buried under ~5 km of sediment (a possibility because the mudstone could be exhumed from 

beneath the 5-km-high stratigraphy of Mt. Sharp). Bassanite in the mudstone is not in 

equilibrium, but it may persist for long periods because of the unique surface conditions on 

Mars. Bassanite is relatively rare on Earth because it readily hydrates to form gypsum, even at 

low relative humidity. However, the very low vapor pressure of H2O in the atmosphere of Mars 

may favor persistence of bassanite (43, 44).  Although nominal near-equatorial surface 

conditions are unlikely to desiccate gypsum to form bassanite (44), moderate increase in 

temperature or decrease in PH2O could lead to destabilization of gypsum and formation of 

bassanite (45, 46). 

Bassanite forms in many different ways on Earth. Examples include dissolution-

reprecipitation after gypsum in sabkha environments (47), gypsum dehydration in endoevaporitic 

microbial communities under slightly alkaline conditions (48), alteration of carbonates in acid-

sulfate systems (49), and dehydration of gypsum dunes (50) or arid sedimentary rocks (51) in 

desert environments. Bassanite of undetermined origin also occurs along with gypsum in soil of 

the Transantarctic Mountains (52). In most of these bassanite occurrences on Earth, the 

associated or precursor Ca-sulfate is gypsum because bassanite is often a product of gypsum 

dehydration. In these representative studies, association of bassanite with anhydrite, as in the 

John Klein sample, does not occur and is apparently rare. This is probably because temperatures 

of anhydrite formation are generally high enough not to favor a metastable bassanite precursor, 

and hydration of anhydrite is likely to go directly to gypsum. 

Anhydrite is a common mineral on Earth, although it hydrates to form gypsum in sufficiently 

humid environments. Hydration rates for “soluble anhydrite” (having remnant channel structure 

similar to bassanite) are relatively rapid; hydration rates are much slower for insoluble anhydrite 

(53). Where activity of pore waters is above ~0.9 and up to 1.0, anhydrite is the stable Ca-sulfate 

mineral at burial depths where temperatures rise above ~50-58 °C (e.g., (54)). The temperature 

of this transition decreases as H2O activity decreases, and thus the occurrence of anhydrite, in the 

absence of other information, can be a poor guide to past temperatures. However, if an anhydrite 

occurrence carries other information that constrains the activity of water, it is a reasonable 

indicator of elevated temperature. Moreover, persistence of anhydrite, as of bassanite, indicates a 

lack of post-formation hydration. 



Low-pH acid-sulfate weathering has long been proposed for many locations on Mars (e.g., 

(55)). Acid-sulfate weathering was likely to have been much more pervasive in the Noachian, 

when major impacts had substantial influence on hydrosphere chemistry (56). In the well-studied 

Burns formation of Meridiani Planum the occurrence of Fe-sulfate phases such as jarosite is 

evidence of such conditions, with diagenesis related to persistent groundwater of high ionic 

strength (57). The absence of Fe-sulfates at John Klein and Cumberland, and the presence of Ca-

sulfates instead, is evidence of an environment with low ionic strength and circum-neutral pH. 

The X-ray Amorphous Component 

The amorphous component of the mudstone may represent soil or eolian fines accumulated 

along with crystalline detritus in the mudstone, but the nature and origin of the amorphous 

component is poorly known. Estimated composition of the amorphous component in the 

mudstone (24) varies depending on the assumed composition of the phyllosilicates, but generally 

indicates a relatively Si-poor material enriched in Fe, S, Cl, and P. The estimated compositions 

of amorphous material in the mudstone are approximately similar to the amorphous component 

of the Rocknest eolian deposit (24, 25), but possibly modified during diagenesis in the mudstone, 

including smectite formation and subsequent cation exchange or other interlayer adjustments.  

Implications of the Sheepbed Mudstone Mineral Assemblage 

Detrital plagioclase, clinopyroxenes, and Fe-forsterite identified by CheMin are generally 

similar in composition for Rocknest and the mudstone samples John Klein and Cumberland 

(Table 3). This suggests a common basaltic source for much of the crystalline detritus in both the 

eolian and mudstone samples. The abundance of magnetite relative to other crystalline phases in 

the mudstone, however, is in excess of what would be expected for likely basaltic source rocks; 

normalized to the igneous detrital minerals the magnetite abundance rises from 2.1 wt% in 

Rocknest to 8.7 wt% in John Klein and 9.5 wt% in Cumberland. Abundant magnetite in the 

mudstone could indicate either authigenic formation or a mechanism of sedimentary 

accumulation. The XRD data alone cannot distinguish between these origins, but the mudstone 

sedimentary context (8) argues against detrital accumulation of heavy minerals. 

Occurrence of gypsum, bassanite, and anhydrite in veins transecting the Yellowknife Bay 

formation is a disequilibrium association. Persistence of bassanite and anhydrite places limits on 

post-diagenesis hydration. The Sheepbed mudstone mineralogy favors both formation and 

preservation of the markers of habitability, having been formed in an aqueous depositional 

environment with late diagenesis limited to fractures that are isolated from the sediment matrix 

and with little or no evidence of hydrous alteration following late diagenesis. 

The phyllosilicate in John Klein is trioctahedral and likely a saponitic smectite. The clay 

mineral in Cumberland appears to be genetically related, with an almost identical 02l band, 

although its interlayer constituents are different. The greater basal spacing of the Cumberland 

smectite may reflect intercalation of Mg-hydroxy interlayers. Tendency toward interlayer 

modification may be widespread on Mars, as indicated by spectral studies that point to the 

common occurrence of smectite/chlorite mixed-layer clay minerals (58). 



Smectites in the mudstone could be detrital, neoformed, or formed from primary phases by 

authigenic alteration (59). Any of these origins could be compatible with a habitable 

environment. Relative to other basaltic detrital minerals, Fe-forsterite is disproportionately 

reduced in John Klein and is almost absent in Cumberland. Assuming an initial presence of 

olivine in proportions consistent with typical martian basaltic compositions (as at Rocknest (9)), 

the loss of Fe-forsterite in the mudstone is likely to be a consequence of alteration during 

authigenic formation of clay minerals. This conclusion is supported by evidence of isochemical 

alteration (19) as well as evidence of diminished Fe-forsterite abundance associated with 

proportional increase in magnetite and appearance of clay minerals (Table 1). Analogous 

alteration of Fe-forsterite is the central process in forming saponitic, trioctahedral clay minerals 

plus magnetite in chondritic meteorites at temperatures <100 °C (60). In the Sheepbed mudstone 

this process may be related to concretion formation, perhaps associated also with formation of 

akaganeite. Consequences of such a reaction could include lower Eh, higher pH that favors 

intercalation of Mg-hydroxy interlayers in the clay minerals, and possibly production of H2 gas 

that might account for the voids in the hollow nodules. This scenario of Fe-forsterite 

“saponitization” is conjectural but worth consideration. The possible formation of H2 gas as part 

of this process could be another component of habitability, providing a potential energy source 

for chemolithoautotrophs. 

The clay mineral in John Klein has a diffraction pattern suggestive of a smectite that retains 

swelling capacity, but the signature of the clay mineral in Cumberland is less definitive. Indeed, 

the larger basal spacing of the clay mineral in Cumberland suggests that it is either hydrated or 

expanded by some form of intercalation. Furthermore, the persistence of hydration over 30 sols 

in the warm body of the rover (5-25 °C) at very low RH is unlikely, so we favor the 

interpretation of a structural modification. Differences in clay mineralogy over such a short 

distance between two samples indicate variable diagenetic modification in a mineralogically 

immature sedimentary rock. 

The lack of collapsed and highly ordered illite or chlorite in the Sheepbed member mudstone 

argues against prolonged, deep burial at elevated temperature. In terrestrial shales development 

of corrensite or chlorite generally requires alteration temperature in excess of ~60-80 °C (e.g., 

(61)).  Absence of such clay mineral modification, beyond the proposed incipient chloritization 

and partial intercalation of Mg-hydroxy interlayers in clay minerals of the Cumberland sample, 

suggests alteration at temperatures lower than this. This is a fairly loose constraint at Gale Crater, 

as complete burial of the crater may have resulted in a maximum burial temperature of only ~75 

°C (62). As noted above, formation of late-diagenetic anhydrite from solutions of low salinity 

(19) may indicate temperatures above ~50 °C; however, these solutions probably originated at 

depth from zones at higher temperature. In summary, evidence from the mudstone mineralogy 

supports modest authigenesis temperatures but does not constrain depth of burial. 

The preponderance of clay mineral formation on Mars, with associated habitable 

environments, has been attributed to Noachian processes (63). Estimated ages for the Sheepbed 

mudstone are poorly constrained but sediments in the Gale Crater mound are no older than Late 

Noachin/Early Hesperian (64) and the Yellowknife Bay formation is likely no older than Early 

Hesperian (8). The Sheepbed member provides an example of an environment where clay 

mineral formation continued to occur beyond the end of the Noachian Epoch. 
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Figures 

 

 
Fig. 1. Images of mudstone drill holes and drill powders. (A) shallow (1-cm deep) test drill hole (at 

left) and sampled drill hole (6.5-cm deep) for John Klein. (B) John Klein drill sample in the scoop 

reservoir before sieving to <150 µm. (C) sampled drill hole for Cumberland, and (D) Cumberland drill 

sample in the scoop reservoir before sieving to <150 µm. Borehole diameters are 1.6 cm. Scoop inner 

width is 3.8 cm. Images used in this composite are: A = MAHLI image sol 182, B = Mastcam 34 mm 

image sol 193, C = MAHLI image sol 279, D = Mastcam 34 mm image sol 279. 

 

 



 
Fig. 2. X-ray diffraction patterns of mudstone samples. (A) X-ray diffraction patterns for John 

Klein and Cumberland superimposed. Similarity between the mudstone samples is evident but there are 

notable differences in the major smectite 001 peaks at 13.2 Å in Cumberland and at 10 Å in John Klein 

(spacing corrected for Lorentz polarization). Also labeled are reflections at 6 Å for bassanite and 3.5 Å 

for anhydrite plus Fe-forsterite, which are more abundant in John Klein than in Cumberland. Letters 

beneath the patterns indicate where major reflections would occur for chlorite or kaolinite (C,K, at 7 Å), 

and illite/mica (I, at 5 Å). (B) Rietveld refinement results for John Klein and (C) Cumberland, showing 

observed (blue) versus calculated (red) patterns, with difference curves at the bottom (gray). Vertical 

scales show intensity; horizontal scales are 2θ (Co Kα). Vertical lines mark the position of the broad 001 

basal reflection of collapsed smectite at 10 Å in John Klein and, in Cumberland, a prominent peak at 

lower 2θ (13.2 Å) with a more subdued peak at higher 2θ (10 Å). 



 

 
 

 
Fig. 3. Comparison of 02l diffraction bands of John Klein and Cumberland with other smectites. 

The 2-Theta range is selected to contain the maximum intensity positions (in Å) and profiles of the 02l 

diffraction bands. Smectites used for comparison include a range of trioctahedral (e.g., saponite SapCa-1) 

to dioctahedral (e.g., montmorillonite STx-1) smectites. 

 

  



 

 

 
Fig. 4. Mastcam “hydration signature” data for veins in the Sheepbed unit at the target “Knorr” 

acquired on sol 133, sequence mcam00805. (A) Colors indicate regions where the 937- to 1013-nm 

spectral slope is negative and below a threshold consistent with the spectra of many hydrated minerals 

(24). (B) Mastcam R0 color image of the Knorr veins at the same scale as in (A). (C) Comparison of 

Mastcam relative reflectance [R* (24)] spectra of the Knorr veins and host rock with laboratory 

reflectance spectra (65) of three Ca-sulfates with different states of hydration and a representative 

hydroxylated phyllosilicate (saponite). Solid lines are full-resolution lab spectra; diamonds indicate lab 

spectra values convolved to Mastcam bandpasses; vertical gray line indicates location of Mastcam 

hydration band. The anhydrite and gypsum data are offset by +0.25 and +0.1 reflectance units, 

respectively. Error bars in the Mastcam spectra represent the standard deviations of the group of pixels 

sampled. 

  



Tables 

Table 1: Crystalline and amorphous components (wt%) of the John Klein and Cumberland drill 

powders, compared with the Rocknest scooped eolian deposit (23).  

 

Mineral Rocknest John Klein Cumberland 

Plagioclase 29.8 22.4 22.2 

Fe-forsterite  16.4 2.8 0.9 

Augite 10.7 3.8 4.1 

Pigeonite 10.1 5.6 8.0 

Orthopyroxene  3.0 4.1 

Magnetite 1.5 3.8 4.4 

Anhydrite 1.1 2.6 0.8 

Bassanite  1.0 0.7 

Quartz 1.0 0.4* 0.1* 

Sanidine 0.9* 1.2 1.6 

Hematite 0.8* 0.6* 0.7 

Ilmenite 0.7*  0.5* 

Akaganeite  1.1 1.7 

Halite  0.1* 0.1* 

Pyrite  0.3* 

 

 

Pyrrhotite  1.0 1.0 

Smectite  22 18 

Amorphous 27 28 31 

Relative 2σ errors are comparable to those cited in (22). From plagioclase to pyrrhotite the estimated 

errors are ~6% of the amount shown for abundances >20%, ~15% for abundances of 10-20%, ~25% for 

abundances of 2-10%, and ~50% for abundances <2% but above detection limit. Phases marked (*) are at 

or near detection limit. Relative 2σ errors are ~50% of the amount shown for smectite and ~60% for the 

amorphous component. 

  



Table 2: Refined unit-cell parameters for some of the major crystalline phases in the Rocknest soil 

compared with those for the John Klein and Cumberland mudstone samples. 

 

Mineral Parameter Rocknest John Klein Cumberland 

Fe-forsterite a (Å) 10.327(7) 10.323(13) 10.360(34) 

 

 

b (Å) 6.034(7) 6.048(8) 6.035(24) 

 c (Å) 4.771(5) 4.793(10) 4.798(23) 

Plagioclase a (Å) 8.177(6) 8.183(5) 8.175(4) 

 b (Å) 12.868(9) 12.891(8) 12.887(6) 

 c (Å) 7.113(5) 7.127(5) 7.127(4) 

  (°) 93.43(4) 93.46(5) 93.49(4) 

  (°) 116.26(2) 116.29(2) 116.34(2) 

  (°) 90.13(3) 90.03(4) 90.04(3) 

Augite a (Å) 9.782(9) -* 9.796(13) 

  b (Å) 8.939(9) - 8.960(13) 

 c (Å) 5.269(7) - 5.243(9) 

  (°) 106.25(9) - 105.94(11) 

Pigeonite a (Å) 9.652(9) 9.698(15) 9.698(12) 

 b (Å) 8.92(1) 8.925(13) 8.925(12) 

 c (Å) 5.254(7) 5.230(8) 5.230(7) 

  (°) 108.0(1) 108.7(1) 108.5(1) 

Magnetite a (Å) 8.39(2) 8.384(5) 8.383(3) 

*Cell parameters for the augite in John Klein had large errors and 

therefore are not reported. 

 



Table 3: Compositions of major crystalline phases in the Rocknest soil compared with those for the 

John Klein and Cumberland mudstone samples, based on unit-cell parameters in Table 2. 

 

Rocknest 

Fe-forsterite (Mg0.62(3)Fe0.38)2SiO4 

Plagioclase (Ca0.57(13)Na0.43)(Al1.57Si2.43)O8 

Augite (Ca0.75(4)Mg0.88(10)Fe0.37)Si2O6 

Pigeonite (Mg1.13(9)Fe0.68(10)Ca0.19)Si2O6 

 

John Klein 

Fe-forsterite (Mg0.51(5)Fe0.49)2SiO4  

Plagioclase (Ca0.44(12)Na0.56)(Al1.44Si2.56)O8 

Pigeonite (Mg1.08(12)Fe0.82(7)Ca0.10)Si2O6 

 

Cumberland 

Fe-forsterite (Fe0.54Mg0.46(12))2SiO4  

Plagioclase (Ca0.43(11)Na0.57)(Al1.43Si2.57)O8 

Augite (Ca0.82(5)Mg0.68(13)Fe0.50)Si2O6 

Pigeonite (Mg1.08(11)Fe0.80(6)Ca0.12)Si2O6 

 

 

 


