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Abstract 

 

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity 

rover began making detailed measurements of the cosmic ray and energetic particle 

radiation environment on the surface of Mars on 7 August 2012. We report and discuss 

measurements of the absorbed dose and dose equivalent from galactic cosmic rays and 

solar energetic particles on the Martian surface for ~300 days of observations during the 

current solar maximum. These measurements provide insight into the radiation hazards 

associated with a human mission to the surface of Mars, and provide an  anchor point to 

model the subsurface radiation environment, with implications for microbial survival 

times of any possible extant or past life, as well as for the preservation of potential 

organic biosignatures of the ancient Martian environment.  
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Main Text: 
 
Introduction  

The radiation exposure on the surface of Mars is much harsher than that on the surface of 

the Earth for two reasons: Mars lacks a global magnetic field to deflect energetic charged 

particles (1), and the Martian atmosphere is much thinner (<1%) than that of Earth, 

providing little shielding against the high energy particles that are incident at the top of 

its atmosphere. This environmental factor, for which there is no analog on Earth, poses a 

challenge for future human exploration of Mars (2-9), and is also important in 

understanding both geological and potential biological evolution on Mars. The radiation 

environment on Mars has been previously estimated and modeled (10-17). Here we 

report in situ measurements of the ionizing radiation environment on the surface of Mars;  

these can be used to test and validate radiation transport models.  

 

There are two types of energetic particle radiation incident at the top of the Mars 

atmosphere, Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Both 

GCRs and SEPs interact with the atmosphere and, if energetic enough, penetrate into the 

Martian soil, or regolith, where they produce secondary particles (including neutrons and 

γ-rays) that contribute to the complex radiation environment on the Martian surface, 

which is quite unlike that observed at the Earth’s surface.  

 

GCRs are high energy particles (10 MeV/nuc to >10 GeV/nuc) which are modulated by 

the heliosphere and anti-correlated with solar activity (18). The composition varies 

slightly depending on solar modulation, with the proton abundance in the range 85-90%, 

helium ions ~10-13%, electrons ~1%, and about 1% heavier nuclei (19-20). Because of 

their high energies, GCRs are difficult to shield against, and can penetrate up to several 

meters into the Martian regolith. SEPs are produced in the solar corona as a result of high 

energy processes associated with flares, coronal mass ejections (CMEs) and their 

corresponding shocks. SEP events are sporadic and difficult to predict, with onset times 

on the order of minutes to hours and durations of hours to days. SEP fluxes can vary by 
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several orders of magnitude, and are typically dominated by protons, but composition can 

vary substantially (21). SEP protons and helium ions with ion energies below ~150 

MeV/nuc (“soft” spectrum events) are not able to penetrate to the Martian surface. 

Typical column depths of the Martian atmosphere at Gale Crater are on the order of 20 

g/cm2, thus energetic particles with energies less than ~150 MeV lose all of their energy 

before passing through this amount of material. However, during “hard spectrum” events, 

ions can be accelerated to energies well above 150 MeV/nuc with substantial fluxes 

reaching the Martian surface. In all events, secondary neutrons produced by SEPs in the 

atmosphere can reach the surface. The RAD measurements reported here cover 

observations of GCRs as well as hard and soft SEP events seen from the Martian surface. 

Together with the radiation environment results from RAD inside the Mars Science 

Laboratory (MSL) spacecraft during its cruise to Mars (22), these measurements 

correspond to all three phases (outbound interplanetary journey, Mars surface stay, and 

return journey) of a human Mars mission at this time in the solar cycle, and thus are 

directly relevant to planning for future human missions.  

 

If Martian life exists, or existed in the past, it is reasonable to assume it is or was based 

on organic molecules (23-24), and will therefore share with terrestrial life the 

vulnerability to energetic particle radiation (25-26). Thus we present here extrapolations 

of the RAD surface dose measurements (using transport models) to the Martian 

subsurface, with implications for estimating lethal depths and microbial survival times 

(26-30). The radiation environment on Mars may also play a key role in the chemical 

alteration of the regolith and Martian rocks over geologic time scales, affecting the 

preservation of organics including potential organic biosignatures of the ancient Martian 

environment (26-27). The RAD surface measurements provide a baseline for inferring the 

flux in these more shielded environments (by validating and anchoring transport models), 

and thus the foundation for understanding the limits to preservation of organic matter in 

the soil and rocks of Gale Crater.  
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Results & Discussion 
 
The Curiosity rover landed successfully on Mars in Gale Crater at ~-4.4 km MOLA 

(Mars Orbiter Laser Altimeter) altitude on 6 August 2012. On 7 August 2012, the RAD 

began taking observations of the radiation environment on Mars, incidentally 100 years 

to the day after the discovery of cosmic rays on Earth by Victor Hess from a balloon in 

Austria (31). The results reported here are time series of absorbed dose rate, the average 

absorbed dose rate and average dose equivalent rate, and LET spectra for ~300 Sols (1 

Martian Sol = 24 hrs 39 min.) from Aug. 7, 2012 to June 1, 2013.  

Figure 1 shows the radiation dose rate measured by RAD on the Mars surface during the 

first 300 Sols on Mars, near the maximum of Solar Cycle 24. The GCR dose rate can be 

seen to vary between 180 and 225 µGy/day, owing to the combined effects of: diurnal 

variations from atmospheric pressure changes, Mars seasonal variations at Gale Crater 

and heliospheric structure variability due to solar activity and rotation.  

 

The diurnal dose rates vary by a few percent due to diurnal change in the Mars 

atmospheric column between Sols 290-302 (Fig. 2a). This diurnal variation of the total 

atmospheric column mass is related to the daily thermal tides that Mars experiences each 

Sol, whereby the direct heating of the Martian atmosphere by the Sun produces global 

scale waves that redistribute atmospheric mass (33). Comparison of the RAD dose rate to 

the Rover Environment Monitoring Station (REMS) (34) atmospheric pressure 

measurements shows there is an anti-correlation between total dose rate and atmospheric 

pressure (Fig. 2b), which in turn is directly related to column depth.  

 

On the Mars surface, during the 300-day period near the maximum of solar cycle 24, we 
find an average total GCR dose rate at Gale Crater (-4.4 km MOLA) of 0.210 +/- 0.040 
mGy/day, compared to 0.48 +/- 0.08 mGy/day measured during cruise inside the MSL 
spacecraft (Fig. 3, Table 1). The difference in dose rate is driven by several influences: 
First, the shielding of the lower hemisphere provided by the planet reduces the dose rate 
by a factor of ~2. Second, further deviations from this factor of 2 are due to interactions 
of primary GCRs with the nucleons in the atmosphere (and soil). Additionally, the 
effective atmospheric shielding is thicker than the spacecraft shielding of the instrument 
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during cruise. The dose rate is also influenced by the modulation of the GCR flux by the 
sun, i.e. a stronger solar modulation results in overall lower GCR fluxes and thus lower 
dose rates. The solar modulation parameter during the surface mission to date has been 
~577 MV, whereas the average Φ during cruise was ~635 MV (resulting in lower 
effective GCR flux). 
 

We find the average Quality Factor <Q> on the Martian surface to be 3.05 +/- 0.3, 

compared with 3.82 +/- 0.3 measured during cruise. This smaller <Q> is due to the 

thicker shielding in the field of view (FOV) on the surface, because during cruise, 

approximately half of the RAD FOV was lightly shielded (< 10 g cm-2) (35). The column 

depth of the Martian atmosphere averaged about 21 g cm-2 over the first 300 sols of 

Curiosity’s mission. Combining the tissue dose rate measurement with <Q> yields an 

average GCR dose equivalent rate on the Mars surface of 0.64 ± 0.12 mSv/day (Fig. 4).  

 

The SEP dose was obtained by subtracting the average GCR dose rate for the duration of 

the SEP event. It is found to be 50 µGy in the less-shielded of the two detectors used for 

dosimetry. Because the composition of SEP events (observed both on the surface and 

during cruise) are dominantly protons, for which <Q> = ~1, the dose equivalent from this 

event was about 50 µSv, approximately equal to 25% of the GCR dose equivalent for the 

one day duration of the event.  

 

The frequency and intensity of SEP events is highly variable and still unpredictable, and 

although these observations were made near solar maximum, this current solar activity 

cycle is very weak by historical norms (36). Substantial/ Notable SEP events throughout 

recent history (February 1956, August 1972, September 1989, etc.) have been reported 

and modeled to be several orders of magnitude more intense than those currently 

observed to date by the RAD (37).  

 

Implications for Future Human Missions to Mars. Combining our measurements with 

those obtained during the cruise phase (22), we estimate a Total Mission dose equivalent 

of ~1.01 Sv for a round trip Mars surface mission with 180 days (each way) cruise, and 

500 days on the Martian surface for this current solar cycle (Table 2). These mission 
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phase durations are based on one possible NASA Design Reference Mission (38); many 

mission designs and many mission windows at different times in the solar cycle or a 

different solar cycle would result in somewhat different radiation exposures. Because 

GCR flux is modulated by solar activity (decreasing during solar activity maximum and 

increasing during solar activity minimum) and the risk for exposure to SEPs increases 

with solar activity, the contribution of each to the total mission dose of a future Mars 

mission  depends on when in the solar cycle the mission occurs (3-6).  

 

Estimates of Subsurface Dose Rates. The dose and dose equivalent rates reported in 

Tables 1 and 2 can be extrapolated to obtain rates below the Martian surface, using the 

surface measurements to anchor model predictions. Refining estimates of the subsurface 

radiation environment is important because in-situ regolith-based materials are prime 

candidates for astronaut shelter shielding materials to reduce or mitigate the biological 

hazards associated with radiation exposures on future long duration human missions. 

These improved subsurface radiation estimates give insight into the potential for the 

preservation of possible organic biosignatures as a function of depth as well as survival 

times of possible microbial or bacterial life forms left dormant beneath the surface.  

 
Several studies have modeled the expected subsurface radiation regime (26, 39), but the 

dose values depended until now on the modeled radiation environment on the surface. 

Dartnell et al. (26-27) assumed an absorbed dose of ~150 mGy/year at the Martian 

surface, whereas Pavlov et al. (28-29) assumed an absorbed dose of 50 ±5 mGy/year. The 

actual absorbed dose measured by the RAD (76 mGy/yr at the surface; Table 3) allows 

for more precise estimations of the subsurface dose. Differences may be due in part to 

differing assumptions in the models about the level of solar modulation compared to the 

actual level during the measurement period as well as the amount of atmospheric 

shielding above the surface. Also, all of the above models must assume a rock, ice, or soil 

density. Based on compositional and morphological observations of the rocks at the John 

Klein site in Gale Crater (42), we estimate a rock density of 2.8 g/cm3, which 

approximates the density of an iron-rich mudstone or siltstone. Although our estimates of 

subsurface dose depend strongly on the models we used, they are useful for comparison 
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purposes. Also note that the natural background radioactivity on present-day Mars is 

thought to be on the order of ~1 µGy/day (43), suggesting that GCR radiation is no 

longer the dominant source of radiation below ~3 m. This also implies that the 

effectiveness of regolith-based shielding materials no longer improves beyond a thickness 

of ~3 meters. 

 

Implications for Microbial Survival Times. Energetic particles ionize molecules along 

their tracks. The energy deposited by ionization or excitation greatly exceeds that 

required to break many molecular bonds, including those in DNA, other organic 

molecules and water, thus ionizing radiation is extremely damaging to biomolecules 

through both direct and indirect mechanisms. Thus, measurements of the surface and 

subsurface radiation environment are critical for estimating the survival probability and 

survival times of possible dormant life forms found in the Martian soil, regolith, rock, 

and ice. For this, the dose rates can be used to calculate the time it would take for 

different bacterial species to accumulate a lethal dose of radiation in different subsurface 

depths (44). 

 

Even the radioresistant organism D. radiodurans would, if dormant, be eradicated in the 

top several meters in a timespan of a few million years (28-29). However, inferred 

recurring climate changes in the post-Noachian era, due to variations in the planetary 

obliquity on time scales of several hundred thousand to a few million years (45), could 

lead to recurring periods of metabolic activity of these otherwise dormant life forms. In 

this case, it is hypothesized that accumulated radiation damages could be repaired and the 

“survival clock” of such life forms could be reset to zero for the next dormant phase (26, 

28), which could in turn lead to possible survival to present times. It has been (27) 

estimated that a 2-meter depth drill was necessary to access viable radioresistant cells that 

may have gone through this reanimation step within 450,000 years.  Applying the RAD 

dose results, we estimate that only a 1-meter depth drill is necessary to access the same 

viable radioresistant cells.  
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Implications for the Preservation of Environmental Records and Organic Biosignatures. 

Whether the bulk of the Martian atmosphere was lost prior to the Noachian era (~3.7-4.0 

Gy ago), as recent isotope ratio measurements by Curiosity suggest (46), or towards the 

end of the Noachian era (39, 47-49), it is thought that the Martian surface has had little 

protection from energetic particles for most of its history (50). Over such geologic time 

scales, an enormous fluence of high energy charged particles (both primary and 

secondary) has interacted with, and most likely altered, the Martian regolith, contributing 

substantially to the unique chemistry of the Martian soil and rocks (51-52), and affecting 

the preservation of environmental records. The assessments of habitability and potential 

biosignatures of any ancient environment depend on the robustness of the preserved 

record, and ionizing radiation strongly influences chemical compositions and structures, 

especially for water, salts, and redox-sensitive components such as organic matter (53-

56). Carbon isotopic compositions may also be altered in the upper 50 cm of rock and 

soil (28). Organic molecules hold high potential for recording biosignatures (57), and 

organic matter (biogenic or abiogenic) may provide a source of carbon for habitable 

environments (42). Our  RAD surface measurements and subsurface estimates constrain 

the preservation window for Martian organic matter following exhumation and exposure 

to ionizing radiation in the top few meters of the Martian surface. Prior studies focused 

on the top few centimeters of rock, such as that accessible by the MSL drill. Using the 

amino acid degradation rates observed by (58), Pavlov et al. (29) modeled a ~1000-fold 

decrease in 100 amu molecules in ~1 billion years at 4-5 cm depth. The higher dose rate 

to rocks determined by RAD reduces this period to ~650 million years. They postulated 

that higher mass molecules would degrade much faster, assuming a molecular chemistry 

comparable to amino acids. While this assumption is suitable for biomolecules (proteins) 

of endolithic organisms, it is not representative of Martian biomolecules that survive 

early diagenesis in sediments, geological organic matter in basalts (59), or exogenously 

delivered organics (60). Degradation rates for molecules of other organic chemistry are 

not reported, but survival of organic matter in carbonaceous chondrites demonstrates that 

meteoritic organic matter survives ionizing radiation for billions of years.  

Regardless of the source of Martian organic matter (meteoritic, geological, or biological), 

its bonds are susceptible to cleavage and radical formation by ionizing charged particle 
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radiation. Permanent bond scissions, subsequent cross-linking with other radicals, and 

volatile formation can occur. Radicals that are formed from cleaved bonds are highly 

reactive and will react with inorganic and organic chemicals in the immediate 

environment. In the presence of both radiation and reactive environmental chemicals, 

organic matter is highly susceptible to alteration and eventual destruction. Irradiation of 

water and hydroxyl (-OH) groups produces free radicals and molecules (H+, OH+, H2O2) 

that will oxidize hydrocarbons and aromatic macromolecules to produce small organic 

salts and CO2 via Fenton reactions (61). On Mars, this oxidation process is likely 

accelerated by the presence of iron mineral catalysts. Further, ionizing radiation plays a 

key role in the formation of oxychlorine compounds in the atmosphere (62) and ices (63), 

which have been deposited in sediments (64-66) where they may have undergone 

radiolysis (52) causing eventual oxidation of any organics by the resulting products.  

Although the presence of Martian organic matter has not been confirmed via in situ 

observation, our RAD measurements suggest that the most favorable conditions for 

finding evidence of organics on Mars is in rocks or soils that have been more recently 

exposed (e.g. eroded canyon walls or recent impact craters) and do not show signs of 

aqueous activity following exhumation.  

 

Materials and Methods 

The RAD instrument (67) consists of a combined charged and neutral particle detector, 

with a solid state detector telescope, CsI calorimeter, and plastic scintillator for neutron 

detection. Active coincidence logic discriminates against charged particles entering the 

detector from outside the charged particles telescope’s field of view, and anti-coincidence 

logic enables detection of neutrons and γ-rays. The RAD has a wide dynamic range for 

charged particles and is able to measure all ion species that contribute to the radiation 

exposure on the surface of Mars with a geometry factor of ~0.9 cm2 sr. The RAD 

measures differential fluxes of stopping charged particles with energies up to 95 

MeV/nuc for protons and 4He, and up to 450 MeV/nuc for 56Fe. Neutral particles are 

identified in the energy range from about 10 MeV to 100 MeV.  The dE/dx resolution of 
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the RAD is sufficient to distinguish between major particle species.  The RAD measures 

dE/dx in silicon, but these measurements can also be approximately related to Linear 

Energy Transfer (LET) in water. The RAD dynamic range corresponds to the LET range 

from 0.2 to ~1000 keV/µm in water.  

 

Dose equivalent is determined by convoluting the Linear Energy Transfer (LET) 

spectrum of the measured particles with a quality factor, Q(L) (68), that is an 

approximate measure of biological effectiveness of different radiation types. Dose is a 

purely physical quantity, with units of Gray or milligray (1 Gray = 1 joule/kg). Dose 

equivalent is dose weighted by a dimensionless biological effectiveness factor which 

takes into account the energy absorption characteristics of biological tissue, and is 

expressed in Sieverts or millisieverts.  

 

Observations of SEP Event on 11 April 2013 

Figure 5a shows the dose rate time series associated with the SEP event enhancement 

seen on 11-12 April 2013 resulting from an M-class flare on the Sun. Although the SEP 

event appeared relatively weak in terms of flux increase as seen from Earth (GOES-13) 

(69), its energy spectrum was hard enough to produce an enhancement of ~30% over the 

GCR dose rate on the Martian surface. The 40-100 MeV proton flux seen by STEREO-B 

(70) increased almost 4 orders of magnitude at the peak of this event (Fig 5b). Note that 

the minimum proton energy required to reach the surface in Gale Crater is about 150 

MeV.  STEREO-B was leading Mars (in longitude) at the time of the event, and had 

similar, but not identical, magnetic connection to the Sun. This event was the first “hard 

spectrum” SEP event seen by RAD on the Mars surface. Because Mars was in solar 

conjunction at this time, GOES-13 was nearly 180 degrees in heliospheric longitude 

away, with fluxes of >50 and >100 MeV protons increasing by only two orders of 

magnitude (Fig. 5c). This SEP event was very broad in heliospheric extent, expanding to 

greater than 180 degrees in heliographic longitude from the Sun. (Interestingly, this event 

was not observed by STEREO-A, which was trailing Mars at the time.) These 

observations from the RAD provide an additional data point to test models of the 3-D 

structure and propagation of SEPs through the inner heliosphere.   
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Figure 1. Time series of radiation dose rate measured by RAD on the surface of Mars. 
During this time, RAD observed a dose rate enhancement from one hard SEP event on 
Sol 242 (12-13 April 2013), and several Forbush decreases (32), resulting from soft SEP 
event-related Interplanetary Coronal Mass Ejections (ICMEs) on Sols 50, 97, 208, and 
259. (These ICMEs serve as magnetic shields against the GCR, thus reducing the 
observed flux.) Occasional brief gaps can also be seen, usually caused by RAD having 
been powered off so that other activities could take place on the spacecraft without 
interference.  
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Figure 2. Comparison of RAD dose rate vs time and atmospheric pressure. a) RAD daily 
dose rate vs time. b) Comparison of RAD dose rate to REMS atmospheric pressure. 
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Figure 3. Comparison of charged particle LET spectrum measured on the Mars surface 
(red) to that measured during cruise inside the MSL spacecraft (black) with variable 
shielding (22). The energy deposited in silicon has been converted to LET in water.  
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Figure 4: Comparison of the radiation dose equivalent for a 500 day surface stay to that 
from a 180 day transit to Mars (22), a six month stay on the International Space Station 
(ISS), and several earth-based sources of radiation. Dose is a purely physical quantity, 
with units of Gray or milligray (1 Gray = 1 joule/kg).  
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Figure 5. a) Dose rate enhancement from a solar energetic particle (SEP) event observed 
on the Martian surface by RAD on Sol 242 (11-12 April 2013), while Mars was in solar 
conjunction. b) the same SEP event seen from the STEREO-B spacecraft, almost 
magnetically aligned with Mars, and c) The same SEP event seen by the GOES-13 
satellite in earth orbit, almost 180 degrees away in heliospheric longitude.  
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Tables 

 

Table 1. Radiation Environment Measured by MSL/RAD (2012-13) (GCR only) 

	
  

Charged	
  particle	
  fluxes	
  for	
  both	
  cruise	
  and	
  surface	
  were	
  calculated	
  using	
  the	
  single-­‐
ended	
  geometric	
  factor	
  for	
  a	
  two-­‐detector	
  coincidence	
  (0.90	
  cm2	
  sr).	
  Fluence	
  rates	
  
were	
  calculated	
  using	
  all	
  hits	
  above	
  threshold	
  in	
  a	
  single	
  detector	
  (B,	
  with	
  area	
  1.92	
  
cm2).	
  Solar	
  modulation	
  was,	
  on	
  average,	
  slightly	
  stronger	
  during	
  the	
  first	
  300	
  sols	
  on	
  
the	
  surface	
  than	
  during	
  cruise.	
  	
  

	
  

	
   	
  

RAD	
  Measurement	
   Mars	
  Surface	
   MSL	
  Cruise	
   Units	
  

Charged	
  Particle	
  Flux	
  	
  
(A	
  *	
  B)	
  

	
  
0.64	
  ±	
  0.06	
   1.43	
  ±	
  0.03	
   cm-­‐2	
  s-­‐1	
  sr-­‐1	
  

Fluence	
  Rate	
  (B)	
   1.84	
  ±	
  0.34	
   3.87	
  ±	
  0.34	
   cm-­‐2	
  s-­‐1	
  

Dose	
  Rate	
  (Tissue-­‐like)	
  
(E	
  detector)	
   0.21	
  ±	
  0.04	
   0.48	
  ±	
  0.08	
   mGy/day	
  

	
  Avg.	
  Quality	
  Factor	
  <Q>	
   3.05	
  ±	
  0.26	
   3.82	
  ±	
  0.30	
   (dimensionless)	
  

Dose	
  Equivalent	
  Rate	
   0.64	
  ±	
  0.12	
   1.84	
  ±	
  0.30	
   mSv/day	
  
Total	
  Mission	
  Dose	
  Equivalent	
  
(NASA	
  Design	
  Reference	
  
Mission,	
  DRM)	
  

320	
  ±	
  50	
  
(500	
  days)	
  

662	
  ±	
  108	
  
(2x180	
  days)	
  

mSv	
  
	
  



	
  

25	
  

Table	
   2:	
   Mars	
   Radiation	
   Environment	
   Summary	
   during	
   2012-­‐13	
   Solar	
  
Maximum	
   (GCR	
  &	
   SEP).	
  The GCR dose rates are per day and the SEP doses are per 
event, showing a range from the sampling of 5 (medium-size) SEP events observed 
during cruise and the 1 (small) event observed on the surface. Although the one SEP 
event observed on the Martian surface was small, it is our only statistical sampling to date 
(see Materials and Methods).	
  

	
  

	
   GCR	
  Dose	
  Rate	
  
(mGy/day)	
  

GCR	
  Dose	
  
Equiv.	
  Rate	
  
(mSv/day)	
  

SEP	
  Dose	
  
(mGy/event)	
  

SEP	
  Dose	
  
Equivalent	
  
(mSv/event)	
  

MSL	
  Cruise	
  
(Zeitlin	
  et	
  al.	
  2013)	
  

(22)	
  

0.464	
   1.84	
   1.2-­‐19.5a	
   1.2-­‐19.5	
  

Mars	
  Surface	
  
	
  

0.210	
   0.64	
   0.025b	
   0.025	
  

	
  

	
  

	
  

	
  

Table	
   3:	
   Mars	
   Subsurface	
   Radiation	
   Estimates	
   (scaled	
   to	
   RAD	
   Surface	
  
Measurements).	
  Both	
   subsurface	
  dose	
   estimates	
   and	
  dose	
   equivalent	
   rated	
  were	
  
determined	
   by	
   scaling	
   HZETRN	
   model	
   (40,	
   41)	
   calculations	
   to	
   RAD	
   surface	
  
measurement	
  values	
  (Table	
  2).	
  

	
  

Depth	
  below	
  
Surface	
  

Effective	
  
Shielding	
  

mass	
  (g/cm2)	
  

GCR	
  Dose	
  
Rate	
  
(mGy/yr)	
  	
  

GCR	
  Dose	
  
Equiv.	
  Rate	
  
(mSv/yr)	
  

Mars	
  Surface	
  
(RAD)	
  

0	
   76	
   232	
  

-­‐10	
  cm	
   28	
   96	
   295	
  
-­‐1	
  m	
   280	
   36.4	
   81	
  
-­‐2	
  m	
   560	
   8.7	
   15	
  
-­‐3	
  m	
   840	
   1.8	
   2.9	
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