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Abstract

In this paper, a face localization system is pro-
posed in which local detectors are coupled with a
statistical model of the spatial arrangement of facial
features to yield robust performance. The outputs
from the local detectors are treated as candidate loca-
tions and constellations are formed from these. The
effects of translation, rotation, and scale are elimi-
nated by mapping to a set of shape variables. The
constellations are then ranked according to the like-
lihood that the shape variables correspond to a face
versus an alternative model. Incomplete constella-
tions, which occur when some of the true features
are missed, are handled in a principled way.

1 Introduction

The problem of face recognition has received consid-
erable attention in the literature [11, 24, 21, 4, 19,
17, 22, 10]; however, in most of these studies, the
faces were either embedded in a benign background
or were assumed to have been pre-segmented. For
any of these recognition algorithms to work in real-
world applications, a system is needed that can reli-
ably locate faces in cluttered scenes and with occlu-
sions.

Recent studies have begun to address the problem
of face localization. Burel and Carel [5] proposed a
method using multi-resolution analysis and learning
from examples (multi-layer perceptron) to search for
faces in an image. Yang and Huang [23] have de-
scribed a system that uses a hierarchical knowledge-
based method to locate faces. Also, Amit [1] has de-
veloped a system for aligning X-ray images of hands
that is similar in some respects to the system we pro-
pose for localizing faces. Our algorithm improves
upon these other systems in two primary respects:
(1) we are able to explicitly handle occlusions, and
(2) we are able to exploit the statistical structure of
face images in a principled way.

Our system consists of the following steps. First,
a set of local detectors is applied to the image to
identify candidate locations of features such as the
eyes, nose, and nostrils. To enforce the proper spa-
tial arrangement of features, we form constellations
from the pool of candidate feature locations and de-
termine which constellations are the most face-like.
The representation and ranking of the constellations
is accomplished using the statistical theory of shape,
which was developed by Kendall [13, 14, 15], Book-
stein [2, 3], and others [6, 18, 15]. A key result that
we use was obtained by Dryden and Mardia [6] who
derived the exact density of the shape variables for
the case when the original figure space variables obey
a multivariate Gaussian distribution.

2 Local Feature Detectors

The initial step in our face localization algorithm is
to identify candidate locations for various facial fea-
tures using simple detectors. Any detector could be
used, but in our experiments we have chosen to filter
the incoming image with a set of multi-orientation,
multi-scale Gaussian derivative filters [12, 9]; then
detectors for specific facial features are synthesized
by comparing the set of filter responses at a given
location to a template set of responses. This com-
parison is done in a rotation and scale invariant way.
A detection is declared if the degree of match 7 ex-
ceeds a threshold 7o.

This algorithm was tested on a well-controlled
database containing 180 images of 18 subjects. The
subjects were imaged at a distance of two meters
against a plain white background. All views were
quasi-frontal and were collected under the same light-
ing conditions. The performance of three detec-
tors synthesized for different facial features is shown
in Figure 1 using receiver operating characteristics
(ROC curves) [20]. Each ROC curve shows the trade-
off between the probability of detecting the target
feature and the average number of false alarms per
image as the detection threshold 7 is varied. For low
values of 79, the target feature is detected with high
probability, but there are a significant number of false
alarms. For higher values, the number of false alarms
is reduced, but so too is the probability of detecting
the true feature.

Notice that to detect the left eye with probability
90%, the average number of false alarms per image
is five. If we insist on at most two false alarms per
image, the detection probability will drop to 73%.
These results are optimistic because the faces in this
database were imaged against a plain white back-
ground; with a cluttered background, the number
of false alarms would certainly increase. Our ba-
sic conclusion is that feature detectors based on the
local brightness information are simply not reliable
enough to provide consistent face localization. We
believe this conclusion applies not only to our partic-
ular choice of detectors (Gaussian derivative filters)
but to feature detectors in general.

The unreliability of the local feature detectors
leads to two problems: false alarms and, more se-
riously, missing features. In the sequel, we propose
a rigorous probabilistic framework for handling these
problems by coupling the output of the feature detec-
tors with a statistical model of the spatial arrange-
ment of facial features.
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Figure 1: Probability of detecting true feature vs. the average number of false alarms per image.

3 Counstellations

The output of the i-th feature detector (i =1, ..., N)
is a set S; of candidate locations for the feature. A
special point that allows for missing features is ap-
pended to each of these sets. A constellation z is then
defined as any ordered N-tuple of points in which the
i-th point is drawn from S;. Constellations contain-
ing the special point will be referred to as incomplete
constellations.

Let Z be the set of all possible constellations
that can be formed from the S;’s and let m; be
the number of points in S; (excluding the special
point). Then, the number of possible constellations
is |Z] =[], (1 + my).

Assuming the local feature detectors perform well,
|Z| will not be too large, and a face localization algo-
rithm could be implemented that enumerates each
constellation and ranks it according to how face-
like the arrangement of features is. For the “easy
database” described in the previous section, this ap-
proach may be computationally reasonable. How-
ever, if the detectors perform significantly worse (as
would be expected in a cluttered environment) or if
more features are used, the total number of candi-
date constellations will greatly increase. For exam-
ple, in Figure 2, the total number of constellations is
~10°. Fortunately, we will see in Section 6 that full
enumeration is unnecessary, and an intelligent search
through the constellations can be performed. First,
however, we need to discuss how constellations are
represented and compared.
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Figure 2: Candidate feature locations produced by
the detectors: left eye-o, right eye-o, nose/lip-*, left
nostril-+, right nostril-x.

4 Shape

To determine how face-like a particular constellation
is, the representation of z as an ordered N-tuple of
points in the plane is inconvenient because the use-
ful information is clouded by the effects of transla-
tion, rotation, and scale. The information we really
want is “what remains after differences due to [these
effects] have been factored out”, which is precisely
what Kendall [13] has defined as shape.

In our previous work on face localization [16], a
constellation of N points was represented using the
set of d = N(N — 1)/2 mutual distances between
the feature points. This representation automati-
cally guaranteed invariance with respect to transla-
tion and rotation. In addition, invariance to scaling
was obtained by estimating the scale via maximum
likelihood and then dividing it out. Defining proba-
bility distributions over this space of scaled mutual
distances, however, was not ideal since the space is
degenerate  many points in R¢, where the vectors
of mutual distances lie, do not correspond to valid
planar constellations.

In the statistics literature, this problem is handled
by transforming a constellation from R?Y the 2N-
dimensional space of feature points, to a 2N — 4 di-
mensional space of shape variables. Essentially, one
dimension is dropped for factoring out scale, one for
rotation, and two for translation. Kendall [13] de-
notes this new shape space as I and shows that it
can be identified with a version of the complex pro-
jective space CPY 2. Dryden and Mardia [6] have
found the joint probability density junction over the
shape variables under the assumption that the orig-
inal feature points are positioned in the plane ac-
cording to a general 2/N-dimensional Gaussian dis-
tribution. This is the fundamental result from shape
statistics that we exploit in our face localization sys-
tem.

Dryden and Mardia begin their derivation by
assuming the figure space variables (zi,y:i), i =
1,..., N are distributed according to a general 2/N-
dimensional Gaussian distribution:

X =z, an . yn] ~ Now(,Q) (1)

The effects of translation, rotation, and scale can be
eliminated by transforming two points to fixed ref-
erence positions. The positions of the other points
after this transformation define the shape variables.
For ease of notation, we will transform the first fig-
ure point to the origin and the second figure point



to (1,0). The transformation of the first point to the
origin can be effected by premultiplying X by the
2N x 2N matrix LT defined below:

r_ | I—1ef 0
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In this equation I and O are the NV x IV identity and
zero matrices, respectively, 1 is a N x 1 vector of
ones, and e; is the vector [1,0,...,0]7. Following
this transformation, we have

X 200,25, 0%, 0,55, .., yx]T =LTX  (3)

Omitting the fixed values in X* yields the reduced
vector X7, which also follows a Gaussian distribution

* A * * * *
XR = [m27"'azN7y21"'ayN]T:Lgx (4)

Xz ~ MNonv_o(p,X) (5)
where ¢ = LLv and £ = LLQLg. Elimination of
scale and rotation by mapping the points such that
(z3,y5) — (1,0) yields the shape vector

UZ[’U,3,...,’ILN,1)3,...,’UN]T (6)

where (for i =3,...,N)

(zizs +yiys) [ (25° +957)
(yizs —xiys) / (a5” +y57) (7)

The joint probability density function (pdf) of U is
given in the following theorem:

Theorem 1 (Shape Density [6]) Under the mul-
tivariate Gaussian model for the figure-space coordi-
nates (Equation 1), the joint probability density func-
tion of the shape vector U is pyy (U)

u; =
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and o} > o3 are the eigenvalues of U with corre-

sponding eigenvectors ¢, ¢o. The function ,Cga)(m)
is the generalized Laguerre polynomial of degree i:

i

L) = (1 +a)i(—2)"/{(1+a)kk!(i — k)'} (16)

k=0

where (14+a)o 21 and (14+a)r =(a+k)-14+a)k_1.

5 Ranking of Constellations

Given two constellations z; and z2, how do we de-
cide which one is more face-like? Since translation,
rotation, and scale are irrelevant, we transform to
shape variables and rephrase the problem as a test of
hypothesis for the vector observation [S(z1) S(z2)]" .
The first hypothesis H; is that z; is from a face and
z is not. The competing hypothesis H» is that z» is
from a face and z; is not. Denoting the probability
density of the shape variables conditioned on being
a face by p(S§(z)|F) and conditioned on not being
a face by p(S(z)|F), standard results from decision
theory [7, 8] show that the optimal discriminant is

p(S(21)|F) - p(S(22)|F)

- ul (17)
p(S(z1)|F) - p(S(22)|F)
which can be rewritten as
_ L(S(z))
L= T@m) (18)
where
LS(z) 2 PSEIF) 19
(S(2)) ()P (19)

Equation 19 provides the proper function for rank-
ing a constellation z according to how face-like it is.
In words, the ranking function is just the probability
that z corresponds to a face versus the probability
it was generated by an alternative mechanism (to be
discussed further below). The constellation receiv-
ing the highest ranking value L will defeat any other
constellation in a head-to-head comparison to decide
which is more face-like.

The Alternative Hypothesis F: To imple-
ment the ranking function of Equation 19, p(S(z)|F)
should be determined from Equation 8. However, it
is unclear how to calculate p(S(z)|F) since the dis-
tribution conditioned on F has yet to be defined. A
first guess might be to use the pdf of shape vari-
ables resulting from randomly placing N points in
the image plane. The problem with this idea is that
some candidate constellations may consist of n < NV
true features and N — n bad features (detector false
alarms). We believe the proper approach is to ex-
pand p(S(z)|F) as follows:

Zp(S(z)\bl,...,bN)-Pr(bl,...,bN)

ZPr(bl,...,bN)

where b; = 0 or 1 depending on whether feature i is
a false alarm or the true feature. The summations
above go over all N-tuples having at least one b; = 0.

Since the feature detectors essentially work in-
dependently in disjoint neighborhoods of the im-
age, the probability Pr(bi,bs,...,by) may reason-
ably be modeled as a product of independent terms
Pr(b1, b, ...,bn) = [, Pr(bi), where

(20)

m; —

Pr(b; = 0)

(=) +i- (21)

Pr(b; = 1) Jo (22)

m;



Here m; is the average number of candidates located
for the i-th feature and ~; is the probability that the
true location of the i-th feature is detected.

The conditional probability p(S(z)|b1,bs,...,bn)
can be approximated using the density in Equation 8,
with the off diagonal elements of ¥ that correspond to
the bad features (b; = 0) replaced by zeros and the di-
agonal elements replaced by o3, (a large value equal
to the variance in position of detector false alarms).

Incomplete Constellations: Incomplete constel-
lations that result when a feature is missed by the
detectors can be handled with our algorithm. The
ranking function of Equation 19 can be written as
follows:
L(S(Z)) _ p(S(ZO)‘OaE) p(O‘E) (23)
p(S(zo)lo, F) - p(o|F)
where o denotes which variables were observed and
zo denotes the values of the observed variables. The
marginal distributions over the observed values are
obtained using the appropriate submatrices of y and
3 in the shape density equation. The two features
used to determine the transformation to shape vari-
ables must be selected from among the observed vari-
ables. The choice of which two features to use here
does affect the value of the probability density func-
tion; however, it does not affect the ranking function,
which is a ratio of densities. .
The probabilities p(o|F) and p(o|F) are deter-
mined from the feature detector performance as fol-

lows:
I TJa- (24)
Hmszl Hmi (25)

o

p(o|F) =

p(o|F) =

where the products are taken over the observed and
not-observed variables, respectively. Recall that ;
is the probability of detection and m; is the average
number of false alarms per image. In practice, the
probability of detection should be reduced by some
factor a to account for the possibility of occlusions.

6 Intelligent Search

Now that we have a method for ranking constella-
tions, we could simply look at every constellation
z € Z, perform the mapping to shape variables, and
evaluate the ranking function L(S(z)) to find the
most face-like constellations. However, the compu-
tational complexity of this brute-force approach will
limit its applicability to situations in which the num-
ber of features N and the number of candidate lo-
cations for each feature m; are small. Therefore, in
this section, we define an intelligent search algorithm
that significantly reduces the number of constella-
tions that must be checked.

Observe that given the positions of two points on
the face, the possible positions of all other features
are highly constrained. We may use this intuition as
follows. First, we form all partial constellations con-
taining exactly two points; there are Z(i<j) m;m; of
these, each of which is considered in turn.

For definiteness, we begin with the partial con-
stellation consisting of the first point P;; in S; and
the first point Pp; in S2. These two points define a
mapping from figure space to a set of shape variables.
This mapping is applied to the two given features (to
place them at fixed reference positions) and to all
the candidates for the remaining features. Now, in
the standardized reference space, we know where the
other features should be and how much uncertainty
exists in their location. The uncertainty regions (i.e.,
the regions where we expect to find the features) can
be obtained off-line using either the analytical shape
density or the empirical density measured on training
faces (discussed further below).

Candidate constellations are formed only from the
two given points P11 and P> ; plus the candidate fea-
ture points that fall inside the respective uncertainty
regions. (The special point is also permitted.) These
constellations are scored with the ranking function
and then the next pair of points P;; and P»  is con-
sidered. This process is repeated for all pairs of two
points.

We further limit the complexity of the algorithm
in two ways. First, we use a two-tiered thresholding
scheme in which the pairs of points discussed above
must both be strong features, meaning that they ex-
ceed a higher detection threshold 7 than the other
candidate points. Second, we place an upper limit on
the range of possible scales. If the distance between
the two given points is too large, then candidate con-
stellations are not formed from these. This proves
important because it limits the effective size of the
search areas in the figure space.

Uncertainty Regions: Figure 3 shows how the
uncertainty regions can be determined empirically.
For this example we used fifteen facial features that
were manually located on 180 training faces. The fea-
ture definitions are shown in Figure 3a. The other
two figures show the superposition of shape variables
as determined from 180 training faces. In Figure 3b,
the two eyes were used as reference features and
mapped to standard positions; the remaining clouds
of points show the variability in the other feature lo-
cations (effectively the marginal distributions). Fig-
ure 3c is similar except the left eye and nose/lip junc-
tion were mapped to reference positions. These em-
pirical uncertainty regions can be encoded using el-
lipses or more coarsely as circles or rectangles.

7 Experimental Results

We have tested our face localization system on a re-
alistic database of images collected in an ordinary
computer laboratory. The database contains a to-
tal of 900 images, but we have currently analyzed
only the first 150. These images show one subject
seated 2-3 meters away from the camera and allowed
to move freely, make facial expressions, etc. The
background was complicated and continually chang-
ing due to people walking around behind the subject.

The parameters for our system were determined
from a separate database containing 180 images of
18 different people in a studio setting. Five features
were used: the two eyes, the nose/lip junction, and
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Figure 3: (a) 15 facial features on a typical face, (b) uncertainty in shape variables when the two eyes are used
as references, (¢) uncertainty when the left eye and nose/lip are used as references.

the two nostrils. The ROC curves obtained from this
database (three of these are shown in Figure 1) were
used to estimate the detector performance parame-
ters v; and m;. The estimated +v;’s were reduced by
an additional factor & = 0.9 to allow for feature oc-
clusion.

The shape parameters were also determined from
the training database. In [6], Dryden and Mardia rec-
ommended using the set of observed shape vectors in
a maximum likelihood procedure to infer the parame-
ters of the shape distribution; however, they acknowl-
edged that the “estimation can be problematic for
completely general covariance structures.” We im-
plemented the ML procedure and also encountered
difficulties. Hence, we decided to use the following
direct method. In the studio database all the sub-
jects were imaged from the same distance with the
head basically upright, so the effects of scale and ro-
tation are minimal. It is, therefore, reasonable to
suppose that after normalization for translation, the
feature positions are jointly Gaussian. Thus, the pa-
rameters of the Gaussian (v and §2) can be estimated
directly. Although this method is not strictly correct
(e.g., inter-subject scale variations are absorbed into
the Gaussian), we believe it is an adequate approxi-
mation.

The performance of our face localization system
is illustrated in Figure 4 for several images from the
lab sequence. Overall, the baseline system correctly
localized the face in 84% of the 150 images. As a
second experiment, we added the constraint that the
head orientation be within 15° of upright; however,
this only increased the performance to 87%. In both
cases, most of the errors occurred during one portion
of the sequence in which the head was significantly
rotated in depth. This failure was due to the fact
that the feature detectors were designed for frontal
views of the face and therefore missed the features
when the head was rotated in depth.

8 Conclusions

We described an algorithm to localize quasi-frontal
views of faces in cluttered images. The algorithm
combines a set of local feature detectors with a sta-
tistical description of the spatial arrangement of the
features. Initial evaluations on a realistic database
of 150 images indicate a correct localization rate of
approximately 84% (increased to 87% if the upright-

head constraint is enforced). The errors occur pri-
marily on images where the face is not viewed
frontally.

We are working on a number of extensions to the
system. Among these are using more features, re-
designing the feature detectors, and extending the
shape statistics framework to affine deformations in
order to handle rotations in depth. Also, the effi-
ciency and performance of the algorithm can be im-
proved by incorporating additional information that
is available from the feature detectors, e.g., the scale
and orientation at which the feature is detected, as
well as the quality of the feature match.
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