
Intl. Workshop on Automatic Face and Gesture Recognition, Zurich, Switz., (June 1995)Face Localization via Shape StatisticsM.C. Burly, T.K. Leungz, and P. Peronayxy California Institute of Technology, 116-81, Pasadena, CA 91125, USAz University of California at Berkeley, 387 Soda Hall, Berkeley, CA 94720, USAx Universit�a di Padova, Italyfburl,peronag@systems.caltech.edu, leungt@robotics.eecs.berkeley.eduAbstractIn this paper, a face localization system is pro-posed in which local detectors are coupled with astatistical model of the spatial arrangement of facialfeatures to yield robust performance. The outputsfrom the local detectors are treated as candidate loca-tions and constellations are formed from these. Thee�ects of translation, rotation, and scale are elimi-nated by mapping to a set of shape variables. Theconstellations are then ranked according to the like-lihood that the shape variables correspond to a faceversus an alternative model. Incomplete constella-tions, which occur when some of the true featuresare missed, are handled in a principled way.1 IntroductionThe problem of face recognition has received consid-erable attention in the literature [11, 24, 21, 4, 19,17, 22, 10]; however, in most of these studies, thefaces were either embedded in a benign backgroundor were assumed to have been pre-segmented. Forany of these recognition algorithms to work in real-world applications, a system is needed that can reli-ably locate faces in cluttered scenes and with occlu-sions.Recent studies have begun to address the problemof face localization. Burel and Carel [5] proposed amethod using multi-resolution analysis and learningfrom examples (multi-layer perceptron) to search forfaces in an image. Yang and Huang [23] have de-scribed a system that uses a hierarchical knowledge-based method to locate faces. Also, Amit [1] has de-veloped a system for aligning X-ray images of handsthat is similar in some respects to the system we pro-pose for localizing faces. Our algorithm improvesupon these other systems in two primary respects:(1) we are able to explicitly handle occlusions, and(2) we are able to exploit the statistical structure offace images in a principled way.Our system consists of the following steps. First,a set of local detectors is applied to the image toidentify candidate locations of features such as theeyes, nose, and nostrils. To enforce the proper spa-tial arrangement of features, we form constellationsfrom the pool of candidate feature locations and de-termine which constellations are the most face-like.The representation and ranking of the constellationsis accomplished using the statistical theory of shape,which was developed by Kendall [13, 14, 15], Book-stein [2, 3], and others [6, 18, 15]. A key result thatwe use was obtained by Dryden and Mardia [6] whoderived the exact density of the shape variables forthe case when the original �gure space variables obeya multivariate Gaussian distribution.

2 Local Feature DetectorsThe initial step in our face localization algorithm isto identify candidate locations for various facial fea-tures using simple detectors. Any detector could beused, but in our experiments we have chosen to �lterthe incoming image with a set of multi-orientation,multi-scale Gaussian derivative �lters [12, 9]; thendetectors for speci�c facial features are synthesizedby comparing the set of �lter responses at a givenlocation to a template set of responses. This com-parison is done in a rotation and scale invariant way.A detection is declared if the degree of match � ex-ceeds a threshold �0.This algorithm was tested on a well-controlleddatabase containing 180 images of 18 subjects. Thesubjects were imaged at a distance of two metersagainst a plain white background. All views werequasi-frontal and were collected under the same light-ing conditions. The performance of three detec-tors synthesized for di�erent facial features is shownin Figure 1 using receiver operating characteristics(ROC curves) [20]. Each ROC curve shows the trade-o� between the probability of detecting the targetfeature and the average number of false alarms perimage as the detection threshold �0 is varied. For lowvalues of �0, the target feature is detected with highprobability, but there are a signi�cant number of falsealarms. For higher values, the number of false alarmsis reduced, but so too is the probability of detectingthe true feature.Notice that to detect the left eye with probability90%, the average number of false alarms per imageis �ve. If we insist on at most two false alarms perimage, the detection probability will drop to 73%.These results are optimistic because the faces in thisdatabase were imaged against a plain white back-ground; with a cluttered background, the numberof false alarms would certainly increase. Our ba-sic conclusion is that feature detectors based on thelocal brightness information are simply not reliableenough to provide consistent face localization. Webelieve this conclusion applies not only to our partic-ular choice of detectors (Gaussian derivative �lters)but to feature detectors in general.The unreliability of the local feature detectorsleads to two problems: false alarms and, more se-riously, missing features. In the sequel, we proposea rigorous probabilistic framework for handling theseproblems by coupling the output of the feature detec-tors with a statistical model of the spatial arrange-ment of facial features.
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Left-Eye Nose/Lip Left-NostrilFigure 1: Probability of detecting true feature vs. the average number of false alarms per image.3 ConstellationsThe output of the i-th feature detector (i = 1; : : : ; N)is a set Si of candidate locations for the feature. Aspecial point that allows for missing features is ap-pended to each of these sets. A constellation z is thende�ned as any ordered N -tuple of points in which thei-th point is drawn from Si. Constellations contain-ing the special point will be referred to as incompleteconstellations.Let Z be the set of all possible constellationsthat can be formed from the Si's and let mi bethe number of points in Si (excluding the specialpoint). Then, the number of possible constellationsis jZj =QNi=1(1 +mi).Assuming the local feature detectors perform well,jZj will not be too large, and a face localization algo-rithm could be implemented that enumerates eachconstellation and ranks it according to how face-like the arrangement of features is. For the \easydatabase" described in the previous section, this ap-proach may be computationally reasonable. How-ever, if the detectors perform signi�cantly worse (aswould be expected in a cluttered environment) or ifmore features are used, the total number of candi-date constellations will greatly increase. For exam-ple, in Figure 2, the total number of constellations is�106. Fortunately, we will see in Section 6 that fullenumeration is unnecessary, and an intelligent searchthrough the constellations can be performed. First,however, we need to discuss how constellations arerepresented and compared.
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4 ShapeTo determine how face-like a particular constellationis, the representation of z as an ordered N -tuple ofpoints in the plane is inconvenient because the use-ful information is clouded by the e�ects of transla-tion, rotation, and scale. The information we reallywant is \what remains after di�erences due to [thesee�ects] have been factored out", which is preciselywhat Kendall [13] has de�ned as shape.In our previous work on face localization [16], aconstellation of N points was represented using theset of d = N(N � 1)=2 mutual distances betweenthe feature points. This representation automati-cally guaranteed invariance with respect to transla-tion and rotation. In addition, invariance to scalingwas obtained by estimating the scale via maximumlikelihood and then dividing it out. De�ning proba-bility distributions over this space of scaled mutualdistances, however, was not ideal since the space isdegenerate | many points in Rd, where the vectorsof mutual distances lie, do not correspond to validplanar constellations.In the statistics literature, this problem is handledby transforming a constellation from R2N , the 2N -dimensional space of feature points, to a 2N � 4 di-mensional space of shape variables. Essentially, onedimension is dropped for factoring out scale, one forrotation, and two for translation. Kendall [13] de-notes this new shape space as �N2 and shows that itcan be identi�ed with a version of the complex pro-jective space CPN�2. Dryden and Mardia [6] havefound the joint probability density junction over theshape variables under the assumption that the orig-inal feature points are positioned in the plane ac-cording to a general 2N -dimensional Gaussian dis-tribution. This is the fundamental result from shapestatistics that we exploit in our face localization sys-tem.Dryden and Mardia begin their derivation byassuming the �gure space variables (xi; yi), i =1; : : : ; N are distributed according to a general 2N -dimensional Gaussian distribution:X = [x1; : : : ; xN ; y1; : : : ; yN ]T � N2N (�;
) (1)The e�ects of translation, rotation, and scale can beeliminated by transforming two points to �xed ref-erence positions. The positions of the other pointsafter this transformation de�ne the shape variables.For ease of notation, we will transform the �rst �g-ure point to the origin and the second �gure point



to (1; 0). The transformation of the �rst point to theorigin can be e�ected by premultiplying X by the2N � 2N matrix LT de�ned below:LT = � I� 1eT1 00 I� 1eT1 � (2)In this equation I and 0 are the N �N identity andzero matrices, respectively, 1 is a N � 1 vector ofones, and e1 is the vector [1; 0; : : : ; 0]T . Followingthis transformation, we haveX� 4= [0; x�2; : : : ; x�N ; 0; y�2 ; : : : ; y�N ]T = LTX (3)Omitting the �xed values in X� yields the reducedvectorX�R, which also follows a Gaussian distributionX�R 4= [x�2; : : : ; x�N ; y�2 ; : : : ; y�N ]T = LTRX (4)X�R � N2N�2(�;�) (5)where � = LTR� and � = LTR
LR. Elimination ofscale and rotation by mapping the points such that(x�2; y�2)! (1; 0) yields the shape vectorU = [u3; : : : ; uN ; v3; : : : ; vN ]T (6)where (for i = 3; : : : ; N)ui = (x�i x�2 + y�i y�2 ) = �x�22 + y�22�vi = (y�i x�2 � x�i y�2 ) = �x�22 + y�22� (7)The joint probability density function (pdf) of U isgiven in the following theorem:Theorem 1 (Shape Density [6]) Under the mul-tivariate Gaussian model for the �gure-space coordi-nates (Equation 1), the joint probability density func-tion of the shape vector U is pU (U)= q � exp(�g=2)(2�)N�2 �r j	jj�j � (N� 2)!(2�22)N�2 (8)where q = N�2Xi=0 �2i1�2i2 L(� 12 )i f�r21gL(� 12 )N�2�if�r22g (9)g = �T��1�� �T	�1� (10)	�1 = [u ...v]T��1[u ...v] (11)� = 	[u ...v]T��1� (12)u = [1; u3; : : : ; uN ; 0; v3; : : : ; vN ]T (13)v = [0;�v3; : : : ;�vN ; 1; u3; : : : ; uN ]T (14)r2k = ��Tk ��2 = �2�2k� for k = 1; 2 (15)and �21 � �22 are the eigenvalues of 	 with corre-sponding eigenvectors �1; �2. The function L(a)i (x)is the generalized Laguerre polynomial of degree i:L(a)i (x) = iXk=0(1 + a)i(�x)k= f(1 + a)kk!(i� k)!g (16)where (1+a)0 4= 1 and (1+a)k = (a+k) � (1+a)k�1.

5 Ranking of ConstellationsGiven two constellations z1 and z2, how do we de-cide which one is more face-like? Since translation,rotation, and scale are irrelevant, we transform toshape variables and rephrase the problem as a test ofhypothesis for the vector observation [S(z1)S(z2)]T .The �rst hypothesis H1 is that z1 is from a face andz2 is not. The competing hypothesis H2 is that z2 isfrom a face and z1 is not. Denoting the probabilitydensity of the shape variables conditioned on beinga face by p(S(z)jF ) and conditioned on not beinga face by p(S(z)jF), standard results from decisiontheory [7, 8] show that the optimal discriminant isL� = p(S(z1)jF ) � p(S(z2)jF )p(S(z1)jF ) � p(S(z2)jF ) (17)which can be rewritten asL� = L(S(z1))L(S(z2)) (18)where L(S(z)) 4= p(S(z)jF )p(S(z)jF) (19)Equation 19 provides the proper function for rank-ing a constellation z according to how face-like it is.In words, the ranking function is just the probabilitythat z corresponds to a face versus the probabilityit was generated by an alternative mechanism (to bediscussed further below). The constellation receiv-ing the highest ranking value L will defeat any otherconstellation in a head-to-head comparison to decidewhich is more face-like.The Alternative Hypothesis F : To imple-ment the ranking function of Equation 19, p(S(z)jF )should be determined from Equation 8. However, itis unclear how to calculate p(S(z)jF ) since the dis-tribution conditioned on F has yet to be de�ned. A�rst guess might be to use the pdf of shape vari-ables resulting from randomly placing N points inthe image plane. The problem with this idea is thatsome candidate constellations may consist of n < Ntrue features and N � n bad features (detector falsealarms). We believe the proper approach is to ex-pand p(S(z)jF) as follows:X p(S(z)jb1; : : : ; bN) � Pr(b1; : : : ; bN)XPr(b1; : : : ; bN) (20)where bi = 0 or 1 depending on whether feature i isa false alarm or the true feature. The summationsabove go over all N -tuples having at least one bi = 0.Since the feature detectors essentially work in-dependently in disjoint neighborhoods of the im-age, the probability Pr(b1; b2; : : : ; bN ) may reason-ably be modeled as a product of independent termsPr(b1; b2; : : : ; bN) =QNi=1 Pr(bi), wherePr(bi = 0) = (1� i) + i � mi � 1mi (21)Pr(bi = 1) = imi (22)



Here mi is the average number of candidates locatedfor the i-th feature and i is the probability that thetrue location of the i-th feature is detected.The conditional probability p(S(z)jb1; b2; : : : ; bN )can be approximated using the density in Equation 8,with the o� diagonal elements of � that correspond tothe bad features (bi = 0) replaced by zeros and the di-agonal elements replaced by �2W (a large value equalto the variance in position of detector false alarms).Incomplete Constellations: Incomplete constel-lations that result when a feature is missed by thedetectors can be handled with our algorithm. Theranking function of Equation 19 can be written asfollows:L(S(z)) = p(S(zo)jo; F ) � p(ojF )p(S(zo)jo; F ) � p(ojF ) (23)where o denotes which variables were observed andzo denotes the values of the observed variables. Themarginal distributions over the observed values areobtained using the appropriate submatrices of � and� in the shape density equation. The two featuresused to determine the transformation to shape vari-ables must be selected from among the observed vari-ables. The choice of which two features to use heredoes a�ect the value of the probability density func-tion; however, it does not a�ect the ranking function,which is a ratio of densities.The probabilities p(ojF ) and p(ojF ) are deter-mined from the feature detector performance as fol-lows: p(ojF) = Yo i �Yo (1� i) (24)p(ojF ) = Yo mi � 1mi �Yo 1mi (25)where the products are taken over the observed andnot-observed variables, respectively. Recall that iis the probability of detection and mi is the averagenumber of false alarms per image. In practice, theprobability of detection should be reduced by somefactor � to account for the possibility of occlusions.6 Intelligent SearchNow that we have a method for ranking constella-tions, we could simply look at every constellationz 2 Z, perform the mapping to shape variables, andevaluate the ranking function L(S(z)) to �nd themost face-like constellations. However, the compu-tational complexity of this brute-force approach willlimit its applicability to situations in which the num-ber of features N and the number of candidate lo-cations for each feature mi are small. Therefore, inthis section, we de�ne an intelligent search algorithmthat signi�cantly reduces the number of constella-tions that must be checked.Observe that given the positions of two points onthe face, the possible positions of all other featuresare highly constrained. We may use this intuition asfollows. First, we form all partial constellations con-taining exactly two points; there areP(i<j)mimj ofthese, each of which is considered in turn.

For de�niteness, we begin with the partial con-stellation consisting of the �rst point P1;1 in S1 andthe �rst point P2;1 in S2. These two points de�ne amapping from �gure space to a set of shape variables.This mapping is applied to the two given features (toplace them at �xed reference positions) and to allthe candidates for the remaining features. Now, inthe standardized reference space, we know where theother features should be and how much uncertaintyexists in their location. The uncertainty regions (i.e.,the regions where we expect to �nd the features) canbe obtained o�-line using either the analytical shapedensity or the empirical density measured on trainingfaces (discussed further below).Candidate constellations are formed only from thetwo given points P1;1 and P2;1 plus the candidate fea-ture points that fall inside the respective uncertaintyregions. (The special point is also permitted.) Theseconstellations are scored with the ranking functionand then the next pair of points P1;1 and P2;2 is con-sidered. This process is repeated for all pairs of twopoints.We further limit the complexity of the algorithmin two ways. First, we use a two-tiered thresholdingscheme in which the pairs of points discussed abovemust both be strong features, meaning that they ex-ceed a higher detection threshold �1 than the othercandidate points. Second, we place an upper limit onthe range of possible scales. If the distance betweenthe two given points is too large, then candidate con-stellations are not formed from these. This provesimportant because it limits the e�ective size of thesearch areas in the �gure space.Uncertainty Regions: Figure 3 shows how theuncertainty regions can be determined empirically.For this example we used �fteen facial features thatwere manually located on 180 training faces. The fea-ture de�nitions are shown in Figure 3a. The othertwo �gures show the superposition of shape variablesas determined from 180 training faces. In Figure 3b,the two eyes were used as reference features andmapped to standard positions; the remaining cloudsof points show the variability in the other feature lo-cations (e�ectively the marginal distributions). Fig-ure 3c is similar except the left eye and nose/lip junc-tion were mapped to reference positions. These em-pirical uncertainty regions can be encoded using el-lipses or more coarsely as circles or rectangles.7 Experimental ResultsWe have tested our face localization system on a re-alistic database of images collected in an ordinarycomputer laboratory. The database contains a to-tal of 900 images, but we have currently analyzedonly the �rst 150. These images show one subjectseated 2{3 meters away from the camera and allowedto move freely, make facial expressions, etc. Thebackground was complicated and continually chang-ing due to people walking around behind the subject.The parameters for our system were determinedfrom a separate database containing 180 images of18 di�erent people in a studio setting. Five featureswere used: the two eyes, the nose/lip junction, and
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Figure 3: (a) 15 facial features on a typical face, (b) uncertainty in shape variables when the two eyes are usedas references, (c) uncertainty when the left eye and nose/lip are used as references.the two nostrils. The ROC curves obtained from thisdatabase (three of these are shown in Figure 1) wereused to estimate the detector performance parame-ters i and mi. The estimated i's were reduced byan additional factor � = 0:9 to allow for feature oc-clusion.The shape parameters were also determined fromthe training database. In [6], Dryden and Mardia rec-ommended using the set of observed shape vectors ina maximum likelihood procedure to infer the parame-ters of the shape distribution; however, they acknowl-edged that the \estimation can be problematic forcompletely general covariance structures." We im-plemented the ML procedure and also encountereddi�culties. Hence, we decided to use the followingdirect method. In the studio database all the sub-jects were imaged from the same distance with thehead basically upright, so the e�ects of scale and ro-tation are minimal. It is, therefore, reasonable tosuppose that after normalization for translation, thefeature positions are jointly Gaussian. Thus, the pa-rameters of the Gaussian (� and 
) can be estimateddirectly. Although this method is not strictly correct(e.g., inter-subject scale variations are absorbed intothe Gaussian), we believe it is an adequate approxi-mation.The performance of our face localization systemis illustrated in Figure 4 for several images from thelab sequence. Overall, the baseline system correctlylocalized the face in 84% of the 150 images. As asecond experiment, we added the constraint that thehead orientation be within 15� of upright; however,this only increased the performance to 87%. In bothcases, most of the errors occurred during one portionof the sequence in which the head was signi�cantlyrotated in depth. This failure was due to the factthat the feature detectors were designed for frontalviews of the face and therefore missed the featureswhen the head was rotated in depth.8 ConclusionsWe described an algorithm to localize quasi-frontalviews of faces in cluttered images. The algorithmcombines a set of local feature detectors with a sta-tistical description of the spatial arrangement of thefeatures. Initial evaluations on a realistic databaseof 150 images indicate a correct localization rate ofapproximately 84% (increased to 87% if the upright-
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