
Fast modular composition in any characteristic

Kiran S. Kedlaya∗

Department of Mathematics
MIT

Christopher Umans†

Department of Computer Science
Caltech

Abstract

We give an algorithm for modular composition of de-
gree n univariate polynomials over a finite field Fq requir-
ing n1+o(1) log1+o(1) q bit operations; this had earlier been
achieved in characteristic no(1) by Umans (2008). As an
application, we obtain a randomized algorithm for factor-
ing degree n polynomials over Fq requiring (n1.5+o(1) +
n1+o(1) log q) log1+o(1) q bit operations, improving upon
the methods of von zur Gathen & Shoup (1992) and
Kaltofen & Shoup (1998). Our results also imply algo-
rithms for irreducibility testing and computing minimal
polynomials whose running times are best-possible, up to
lower order terms.

As in Umans (2008), we reduce modular composition to
certain instances of multipoint evaluation of multivariate
polynomials. We then give an algorithm that solves this
problem optimally (up to lower order terms), in arbitrary
characteristic. The main idea is to lift to characteristic 0,
apply a small number of rounds of multimodular reduction,
and finish with a small number of multidimensional FFTs.
The final evaluations are then reconstructed using the Chi-
nese Remainder Theorem. As a bonus, we obtain a very
efficient data structure supporting polynomial evaluation
queries, which is of independent interest.

Our algorithm uses techniques which are commonly em-
ployed in practice, so it may be competitive for real problem
sizes. This contrasts with previous asymptotically fast meth-
ods relying on fast matrix multiplication.

1. Introduction

The problem of MODULAR COMPOSITION is, given
three univariate polynomials f(x), g(x), h(x) over a ring
with h having invertible leading coefficient, to compute
f(g(x)) (mod h(x)). Modular composition serves as the

∗Supported by NSF DMS-0545904 (CAREER) and a Sloan Research
Fellowship.

†Supported by NSF CCF-0346991, BSF 2004329, a Sloan Research
Fellowship, and an Okawa Foundation research grant.

backbone of numerous algorithms for computing with poly-
nomials over finite fields, most notably the asymptotically
fastest methods for polynomial factorization.

In contrast to other basic modular operations on polyno-
mials (e.g modular multiplication), it is not possible to ob-
tain an asymptotically fast algorithm for modular composi-
tion with fast algorithms for each step in the natural two step
procedure (i.e., first compute f(g(x)), then reduce modulo
h(x)). This is because f(g(x)) has n2 terms, while we hope
for a modular composition algorithm that uses only about
O(n) operations. Not surprisingly, it is by considering the
overall operation (and beating n2) that asymptotic gains are
made in algorithms that employ modular composition.

Perhaps because nontrivial algorithms for modular com-
position must handle the modulus in an integrated way
(rather than computing a remainder after an easier, nonmod-
ular computation) there have been few algorithmic inroads
on this seemingly basic problem. Brent & Kung [4] gave the
first nontrivial algorithm in 1978, achieving an operation
count of O(n(ω+1)/2), where ω is the exponent of matrix
multiplication. Huang & Pan [7] achieved a slight improve-
ment, by noting that the bound is actually O(nω2/2) where
ω2 is the exponent of n × n by n × n2 matrix multiplica-
tion, and giving an upper bound on ω2 that is slightly better
than the best known bound on ω, plus one. These algo-
rithms cannot beat O(n1.5), and it is not feasible in practice
to achieve their theoretical guarantees, because those rely
on the asymptotically fastest algorithms for matrix multi-
plication, which are currently impractical. Finding new al-
gorithms for MODULAR COMPOSITION with running times
closer toO(n) was mentioned several times as an important
and longstanding open problem (cf. [15, 9], [5, Problem
2.4], [19, Research Problem 12.19]).

Very recently, Umans [18] gave an algorithm that
achieves the optimal operation count up to lower order
terms, but only in fields with small characteristic (specifi-
cally, the characteristic p was required to be no(1)).

In this paper, we essentially solve the MODULAR COM-
POSITION problem completely, presenting an algorithm for
modular composition over any finite field, whose running
time is optimal up to lower order terms. Our algorithm

2008 49th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/08 $25.00 © 2008 IEEE

DOI 10.1109/FOCS.2008.13

146

2008 49th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/08 $25.00 © 2008 IEEE

DOI 10.1109/FOCS.2008.13

146



uses the reduction from MODULAR COMPOSITION to MUL-
TIVARIATE MULTIPOINT EVALUATION from [18], and then
solves the latter problem in a completely different way, by
lifting to characteristic 0 followed by multimodular reduc-
tion and a small number of multidimensional FFTs.

In contrast to [18], our algorithm is nonalgebraic, which
carries some minor disadvantages. One is that a general
method (the “transposition principle”) for transforming an
algebraic algorithm for MODULAR COMPOSITION into one
for the transpose problem (called MODULAR POWER PRO-
JECTION, itself useful in algorithms for computing with
polynomials), does not directly apply. However, in Sec-
tion 5.2 we show that this disadvantage can be overcome
– the nonalgebraic parts of our algorithm interact well with
the transposition principle – and consequently we obtain an
algorithm for MODULAR POWER PROJECTION whose run-
ning time is optimal up to lower order terms.

A major advantage of our algorithm (apart from working
in any characteristic) is that it is simple, practical and im-
plementable. Multimodular reduction is used in practice in
a variety of settings, and while we use it recursively to state
our most general results, only two rounds are required to
achieve an algorithm for MODULAR COMPOSITION whose
running time is optimal up to lower order terms.

1.1. From modular composition to multi-
point evaluation

While the algorithms of [4] and [7] reduce MODU-
LAR COMPOSITION to matrix multiplication, the method of
[18] reduces MODULAR COMPOSITION to the problem of
MULTIVARIATE MULTIPOINT EVALUATION of polynomials
over Fq: given an m-variate polynomial f(x0, . . . , xm−1)
over Fq of degree at most d − 1 in each variable, and
given αi ∈ F

m
q for i = 0, . . . , N − 1, compute f(αi) for

i = 0, . . . , N − 1. Using this reduction, an algorithm for
MULTIVARIATE MULTIPOINT EVALUATION that is optimal
up to lower order terms yields an algorithm for MODULAR

COMPOSITION that is optimal up to lower order terms.
Unfortunately, MULTIVARIATE MULTIPOINT EVALUA-

TION does not seem susceptible to the techniques success-
fully used to obtain near-optimal (up to polylogarithmic fac-
tor) algorithms for the univariate case, and in general seems
to be a more challenging problem. In fact, prior to this
paper, there were only two nontrivial algorithms for MUL-
TIVARIATE MULTIPOINT EVALUATION. First, Nüsken &
Ziegler [11] gave an algorithm for the bivariate case that can
be generalized to yield an algorithm with operation count
O(d(ω2/2)(m−1)+1) times lower order terms, but this is not
sufficient to make any gains over Huang & Pan’s algorithm
for MODULAR COMPOSITION via the reduction. Second,
Umans [18] gave an algorithm that uses a somewhat intri-
cate lifting method using the p-power Frobenius, for p the

characteristic of Fq. This operation count for this algorithm
is optimal up to lower order terms form ≤ do(1), but it only
works in small characteristic p ≤ do(1).

This paper gives a new algorithm for MULTIVARIATE

MULTIPOINT EVALUATION over any field Fq (when m ≤
do(1)) with running time (dm +N)1+δ log1+o(1) q (for any
constant δ > 0 and sufficiently large d) that is optimal up
to lower order terms. Via the reduction, this yields an algo-
rithm for MODULAR COMPOSITION whose running time is
optimal up to lower order terms. We describe the main idea
next, for the case when q = p is prime; the reduction from
the general case to this case uses similar ideas.

1.2. Our techniques

A basic observation when considering algorithms for
MULTIVARIATE MULTIPOINT EVALUATION is that if the
evaluation points happen to be all of F

m
p , then they can be

computed all at once via the multidimensional FFT, with
an operation count that is best-possible up to logarithmic
factors. More generally, if the evaluation points happen
to be well-structured in the sense of being all of Sm for
some subset S ⊆ Fp, then by viewing Fp[X1, X2, . . . , Xm]
as Fp[X1, X2, . . . , Xm−1][Xm] and applying an algorithm
for univariate multipoint evaluation, and repeatingm times,
one can achieve an essentially optimal algorithm. But these
are both very special cases, and the general difficulty with
MULTIVARIATE MULTIPOINT EVALUATION is contending
with highly unstructured sets of evaluation points in F

m
p .

Our main idea is to use multimodular reduction to trans-
form an arbitrary set of evaluation points into a “structured”
one to which the FFT solution can be applied directly. We
lift f and each evaluation point αi to the integers by iden-
tifying the field Fp with the set {0, . . . , p − 1}. We can
then compute the multipoint evaluation by doing so over
Z and reducing modulo p. To actually compute the eval-
uation over Z, we reduce modulo several smaller primes
p1, . . . , pk, producing separate instances of MULTIVARIATE

MULTIPOINT EVALUATION over Fpi for i = 1, . . . , k. After
solving these instances, we reconstruct the original evalua-
tions using the Chinese Remainder Theorem.

This multimodular reduction can be applied recursively,
with the primes in each round shrinking until they reach
p∗ ≈ (md) in the limit. By this last round, the evalua-
tion points have been “packed” so tightly into the domain
F

m
p∗ that we can apply the FFT to obtain all evaluations in

F
m
p∗ with little loss: dm operations are required just to read

the input polynomial, and the FFT part of our algorithm re-
quires only about (dm)m operations (and recall our require-
ment that m < do(1)).

To obtain our most general result, we may need to apply
three rounds of multimodular reduction; for the application
to MODULAR COMPOSITION, only two rounds are needed,

147147



making the algorithm quite practical.

We remark that our algorithm can be used in the uni-
variate (m = 1) case (via a simple transformation to the
m � 1 case; see the proof of Corollary 3.5). The over-
all algorithm requires only elementary modular arithmetic
in Z, and the FFT. Thus, our algorithm may be competi-
tive, in simplicity and speed, with the “classical” algorithm
for univariate multipoint evaluation (see any standard text-
book, e.g., [19]). One striking contrast with the classical
algorithm is that after a preprocessing step we can achieve
poly(logn, log q) actual time for each evaluation (as op-
posed to amortized time); this can be interpreted as giving
a powerful data structure supporting polynomial evaluation
queries (see Section 4).

1.3. Why wasn’t this algorithm discovered
earlier?

In retrospect, our approach is quite simple, and, we be-
lieve, natural. Certainly this is not the first algorithm to em-
ploy multimodular reduction, or even recursive multimod-
ular reduction. We point out three conceptual barriers that
(possibly) explain why the overall algorithm and approach
may have been harder to find than it appears with the benefit
of hindsight.

First, there is a tendency to try to find algebraic algo-
rithms for algebraic problems; our gains come from allow-
ing nonalgebraic operations.

Second, the original MODULAR COMPOSITION problem
is not amenable to multimodular reduction, because in the
integers, the output of a lifted modular composition prob-
lem is longer than the input by a factor of n, rather than
a negligible factor of dm that appears after applying the
reduction to MULTIVARIATE MULTIPOINT EVALUATION.
Thus the reduction to MULTIVARIATE MULTIPOINT EVAL-
UATION (which only appeared in the last year) is more than
just a convenience; it is critical for the multimodular ap-
proach to succeed.

Finally, we benefit from multimodular reduction for a
quite different reason than other algorithms that employ
this technique. Typically, multimodular reduction is used
to reduce the “word size”, when computing with large word
sizes would be prohibitive or spoil the target complexity.
In our case we are perfectly happy computing with word
size log q, so the multimodular reduction provides no ben-
efit there. What it does do, however, is “pack” the evalu-
ation points into a smaller and smaller space, and it does
so extremely efficiently (requiring only local computations
on each point). Thus, we are benefitting from the aggregate
effect of applying multimodular reduction to an entire set,
rather than directly from the reduced word size.

1.4. Application to polynomial factorization

As noted above, MODULAR COMPOSITION is used as a
black box in a number of important algorithms for polyno-
mials over finite fields. The same is true for a related prob-
lem, MODULAR POWER PROJECTION, for which we also
obtain a near-optimal algorithm in Section 5.2. As merely
one example, we recall the case of factorization of degree n
univariate polynomials1.

Kaltofen & Shoup [9] show that an algorithm for mod-
ular composition requiring f(n, q) bit operations gives
rise to an algorithm for polynomial factorization requir-
ing n0.5+o(1)f(n, q) + n1+o(1) log2+o(1) q bit operations
(this dependence on f(n, q) is worked out explicitly in
[18]). Using our algorithm for modular composition,
we thus obtain an algorithm for polynomial factoriza-
tion requiring (n1.5+o(1) + n1+o(1) log q) log1+o(1) q bit
operations. By contrast, the best previous algorithms
that work over arbitrary finite fields (von zur Gathen &
Shoup [20] and Kaltofen & Shoup [9]) require (n2+o(1) +
n1+o(1) log q) log1+o(1) q and n1.815+o(1) log2+o(1) q bit
operations, respectively; we thus obtain an asymptotic im-
provement in the range log q < n. (Again, this improve-
ment had been obtained in [18] under the additional restric-
tion p ≤ no(1), for p the characteristic of Fq.)

In Section 6.1 we discuss two additional fundamental al-
gorithms for which our results lead to faster algorithms: ir-
reducibility testing, and computing minimal polynomials.

2. Preliminaries

In this paper, R is an arbitrary commutative ring, un-
less otherwise specified. In our complexity estimates, we
will use standard facts about fast polynomial arithmetic (cf.
[19]). For cleaner statements, we sometimes omit floors and
ceilings when dealing with them would be routine. We use
o(1) frequently in exponents. We will always write things
so that the exponentiated quantity is an expression in a sin-
gle variable x, and it is then understood that the o(1) term
is a quantity that goes to zero as x goes to infinity.

2.1. Problem statements

For ease of exposition, we restrict to the univariate ver-
sion of MODULAR COMPOSITION, defined next, which is
the one used in all applications we are aware of. One can
also define a version in which f is a multivariate polynomial
(as in [18]), and our results extend easily to that problem.

1Because our algorithms are nonalgebraic, the running times in this pa-
per count bit operations. Therefore, the reader familiar with the accounting
in previous work, which counts arithmetic operations in the field, should
expect to see an “extra” log q factor.

148148



Problem 2.1 (MODULAR COMPOSITION). Given
f(X), g(X), h(X) in R[X ], each with degree at most
n − 1, and with the leading coefficient of h a unit in R,
output f(g(X)) mod h(X).

The main insight in [18] is that MODULAR COMPOSI-
TION is reducible to MULTIVARIATE MULTIPOINT EVALU-
ATION, defined next:

Problem 2.2 (MULTIVARIATE MULTIPOINT EVALUATION).
Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1] with in-
dividual degrees at most d − 1, and evaluation points
α0, . . . , αN−1 inRm, output f(αi) for i = 0, 1, 2, . . . , N−
1.

Most of our effort in this paper is focused on obtain-
ing a nearly-optimal algorithm for MULTIVARIATE MULTI-
POINT EVALUATION; namely, one that runs in time (dm +
N)1+δ log1+o(1) |R| (for any constant δ > 0 and suffi-
ciently large d).

2.2. Useful facts

We will need the following number theory fact:

Lemma 2.3. For all integers N ≥ 2, the product of the
primes less than or equal to 16 logN is greater than N .

The constant 16 is not optimal; the Prime Number The-
orem implies that any constant c > 1 can be used for N
above some bound depending on c. A simple self-contained
proof of Lemma 2.3 appears in the full version.

We repeat the following definition from [18]:

Definition 2.4. The map ψh,� from R[X0, X1, . . . , Xm−1]
to R[Y0,0, . . . , Ym−1,�−1] is defined as follows. Given Xa,
write a in base h: a =

∑
j≥0 ajh

j and define the monomial

Ma(Y0, . . . , Y�−1)
def= Y a0

0 Y a1
1 · · ·Y a�−1

�−1 .

The map ψh,� sends Xa
i to Ma(Yi,0, . . . , Yi,�−1) and ex-

tends multilinearly to R[X0, X1, . . . , Xm−1].

For a polynomial f ∈ R[X0, X1, . . . , Xm−1] with indi-
vidual degrees at most h� − 1, we have:

f(X0, . . . , Xm−1) =

ψh,�(f)(Xh0

0 , . . . , Xh�−1

0 , · · · , Xh0

m−1, . . . , X
h�−1

m−1)

and in this sense the map ψ is the inverse of the Kronecker
substitution. We will use this map to transform instances of
MULTIVARIATE MULTIPOINT EVALUATION with parame-
ters d,m,N into instances with parameters d′ = d1/c,m′ =
cm,N by applyingψd′,c and mapping each evaluation point
α = (α0, . . . , αm−1) ∈ Rm to the evaluation point

α′ = (αd′0
0 , αd′1

0 , . . . , αd′c−1

0 , · · · , αd′0
m , αd′1

m , . . . , αd′c−1

m )

in Rm′
.

2.3. The reduction

As described in the introduction, one of the main innova-
tions in [18] is that MODULAR COMPOSITION is reducible
to MULTIVARIATE MULTIPOINT EVALUATION. That reduc-
tion’s consequence is encapsulated in the following theorem
(specialized to the univariate version of MODULAR COMPO-
SITION):

Theorem 2.5 ([18]). Given f(X), g(X), h(X) in R[X ]
each with degree at most n − 1, and with the leading co-
efficient of h a unit in R, there is, for every integer d > 0,
an algorithm that outputs f(g(X)) mod h(X) in time

O(nm2d2 log1+o(1) |R|) · poly log(n,m, d) + T (d,m,N)

(where m = �logd n	, N = dmmd ≤ nmd2, and
T (d,m,N) is the time to solve MULTIVARIATE MULTI-
POINT EVALUATION with parameters d,m,N ), provided
that the algorithm is supplied with N distinct elements of
R whose differences are units in R.

3. Fast multivariate multipoint evaluation

We describe our algorithm for MULTIVARIATE MULTI-
POINT EVALUATION, first for prime fields, then for rings
Z/rZ, and then for extension rings (and in particular, all
finite fields).

3.1. Prime fields

For prime fields, we have a straightforward algorithm
that uses fast Fourier transforms. The dependence on the
field size p is quite poor, but we will remove that in our
final algorithm using multimodular reductions.

Theorem 3.1. Given an m-variate polynomial
f(X0, . . . , Xm−1) ∈ Fp[X0, . . . , Xm−1] (p prime)
with degree at most d − 1 in each variable, and
α0, . . . , αN−1 ∈ F

m
p , there exists a deterministic al-

gorithm that outputs f(αi) for i = 0, . . . , N − 1 in

O(m(dm + pm +N) poly(log p))

bit operations.

Proof. We perform the following steps to compute f(αi)
for i = 0, . . . , N − 1.

1. Compute the reduction f of f modulo Xp
j − Xj for

j = 0, . . . ,m− 1.

2. Use a fast Fourier transform2 to compute f(α) = f(α)
for all α ∈ F

m
p .

2We need the finite field Fourier transform here, since we care about
evaluations over Fp.

149149



3. Look up and return f(αi) for i = 0, . . . , N − 1.

In Step 1, the reductions modulo Xp
j − Xj may be per-

formed using mdm arithmetic operations in Fp, for a total
complexity of O(mdm poly(log p)).

In Step 2, we may perform the FFTs one variable
at a time for a total time of O(mpm poly(log p)). The
details follow: we will give a recursive procedure for
computing evaluations of an m-variate polynomial with
individual degrees at most p − 1 over all of F

m
p , in

time m · O(pm poly(log p)). When m = 1, we ap-
ply fast (univariate) multipoint evaluation at a cost of
O(p poly(log p)). Form > 1, write f(X0, X1, . . . , Xm−1)
as

∑p−1
i=0 X

i
0fi(X1, . . . , Xm−1), and for each fi, recur-

sively compute its evaluations at all of F
m−1
p in time (m −

1) ·O(pm−1 poly(log p)). Finally, for each β ∈ F
m−1
p eval-

uate the univariate polynomial
∑p−1

i=0 X
i
0fi(β) at all of Fp

at a cost of O(p poly(log p)), again using fast (univariate)
multipoint evaluation. The overall time is

(m−1)·O(pm−1 poly(log p))·p+O(p poly(log p))·pm−1,

which equals m ·O(pm poly(log p)) as claimed.
In Step 3, we look up N entries from a table of length

pm, for a total complexity of O(mN poly(log p)). This
gives the stated complexity.

3.2. Rings of the form Z/rZ

We now apply multimodular reduction recursively to re-
move the suboptimal dependence on p. Our main algorithm
for rings Z/rZ (r arbitrary) appears in Figure 1. It accepts
an additional parameter t which specifies how many rounds
of multimodular reduction should be applied.

To bound the running time it will be convenient to define
the function

λi(x) = x log x log log x log log log x · · · log(i−1)(x).

Note that λi(x) ≤ x(log x)log
∗ x = x1+o(1) (where log∗ x

denotes the least nonnegative integer i such that log(i)(x) ≤
1) and that λi(x) ≤ λj(x) for x ≥ 0 and i < j ≤ log∗ x.

Theorem 3.2. Algorithm MULTIMODULAR re-
turns f(αi) for i = 0, 1, . . . , N − 1, and it runs
in O((λt(d)m + N)λt(log r)λt(d)tλt(m)m+t+1) ·
O(log(t) r)m · poly log(md log r) bit operations.

Proof. Correctness follows from the fact that 0 ≤ f̃(α̃i) ≤
dm(r− 1)md < p1 · · · pk by Lemma 2.3, and Theorem 3.1.

Observe that in the i-th level of recursion, the primes ph

have magnitude at most �i = O(λi(m)λi(d) log(i) r). For
convenience, set �0 = 1.

At the i-th level of the recursion tree, the algorithm is
invoked at most �0�1�2 · · · �i−1 times. Each invocation in-
curs the following costs from the steps before and after the

recursive call in Step 4. Step 1 incurs complexity at most
O((dm + mN)�i). Step 2 incurs complexity O(�i log �i)
using the Sieve of Eratosthenes (cf. [17, §5.4]). Step 3 in-
curs complexityO((dm +mN)�i poly(log �i)) by using re-
mainder trees to compute the reductions modulo p1, . . . , pk

all at once [2, §18], [19, Theorem 10.24]. Step 5 incurs
complexity O(N�i poly(log �i)) as in [2, §23] or [19, The-
orem 10.25]. At the last level (the t-th level) of the recur-
sion tree when the FFT is invoked, Step 4 incurs complexity
O((dm + �mt +N)m�t poly(log �t)).

Thus, using the fact that poly log(�i) ≤
poly log(md log r) for all i, each invocation at level
i < t uses O((dm + N)m�i) · poly log(md log r)
operations while each invocation at level t uses

O((dm + �mt +N)m�t) · poly log(md log r)

operations. There are a total of �0�1�2 · · · �i−1 invocations
at level i. The total number of operations is thus

(�1�2 · · · �t ·O((dm + �mt +N)m)

+
t−1∑
i=1

�1�2 · · · �i ·O((dm +N)m)

)
·poly log(md log r)

which is at most

O(�1�2 · · · �t)·O((dm+�mt +N)m)·poly log(md log r)

operations over all t levels. The bound in the theorem state-
ment follows.

Plugging in parameters, we find that this yields an al-
gorithm whose running time is optimal up to lower order
terms, when m ≤ do(1).

Corollary 3.3. For every constant δ > 0 there is an algo-
rithm for MULTIVARIATE MULTIPOINT EVALUATION over
Z/rZ with running time (dm + N)1+δ log1+o(1) r, for all
d,m,N with d sufficiently large and m ≤ do(1).

Proof. Let c be a sufficiently large constant (depending on
δ). We may assume m > c by applying the map from
Definition 2.4, if necessary, to produce an equivalent in-
stance of MULTIVARIATE MULTIPOINT EVALUATION with
more variables and smaller individual degrees. Now if
log(3) r < m, then we choose t = 3. Plugging into The-
orem 3.2, we obtain the claimed bound after observing that
the O(log(t) r)m term is at most O(m)m, and we know
that m ≤ do(1). Otherwise log(3) r ≥ m, and we choose
t = 2, which gives the claimed bound after observing
that the O(log(t) r)m term is at most O(log(2) r)log

(3) r ≤
O(logo(1) r).

150150



Algorithm MULTIMODULAR(f, α0, . . . , αN−1, r, t)

where f is a m-variate polynomial f(x0, . . . , xm−1) ∈ (Z/rZ)[x0 , . . . , xm−1] with degree at most d − 1 in each
variable, α0, . . . , αN−1 are evaluation points in (Z/rZ)m, and t is the number of rounds.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[X0, . . . , Xm−1] from f by replacing each coefficient with
its lift in {0, . . . , r − 1}. For i = 0, . . . , N − 1, construct the m-tuple α̃i ∈ Z

m from αi by replacing each
coordinate with its lift in {0, . . . , r − 1}.

2. Compute the primes p1, . . . , pk less than or equal to � = 16 log(dm(r − 1)md), and note that k ≤ �.

3. For h = 1, . . . , k, compute the reduction fh ∈ Fph
[X0, . . . , Xm−1] of f̃ modulo ph. For h = 1, . . . , k and

i = 0, . . . , N − 1, compute the reduction αh,i ∈ F
m
ph

of α̃i modulo ph.

4. If t = 1, then for h = 1, . . . , k, apply Theorem 3.1 to compute fh(αh,i) for i = 0, . . . , N − 1; otherwise if
t > 1, then run MULTIMODULAR(fh, αh,0, . . . , αh,N−1, ph, t− 1) to compute fh(αh,i) for i = 0, . . . , N − 1.

5. For i = 0, . . . , N −1, compute the unique integer in {0, . . . , (p1p2 · · · pk)−1} congruent to fh(αh,i) modulo
ph for h = 1, . . . , k, and return its reduction modulo r.

Figure 1. Algorithm MULTIMODULAR.

3.3. Extension rings

Using algorithm MULTIMODULAR and some additional
ideas, we can handle extension rings, and in particular, all
finite fields. The strategy is to lift to Z[Z], then evaluate at
Z = M and reduce modulo r′ for suitably large integers
M, r′. Our algorithm appears in Figure 2.

Theorem 3.4. Algorithm MULTIMODULAR-
FOR-EXTENSION-RING returns f(αi) for
i = 0, 1, . . . , N − 1, and it runs in
O((λt(d)m + N)λt(log q)λt(d)t+2λt(m)m+t+3) ·
O(log(t−1)(d2m2 log q log log q))m · poly log(md log q)
bit operations.

Proof. To see that the algorithm outputs f(αi) for i =
0, . . . , N − 1, note that f̃(α̃i) ∈ Z[Z] has nonnegative
coefficients and its degree is at most (e − 1)dm. More-
over, the value at Z = 1 of each coordinate of α̃i and
each coefficient of f̃ is at most e(r − 1), so f̃(α̃i)(1) ≤
dm(e(r − 1))(d−1)m+1 = M − 1. In particular, each co-
efficient of f̃(α̃i) belongs to {0, . . . ,M − 1}. We now see
that the polynomials f̃(α̃i), Qi ∈ Z[Z] both have degree
at most (e − 1)dm and coefficients in {0, . . . ,M − 1},
and their evaluations at Z = M are congruent modulo
r′ = M (e−1)dm+1. This implies that the polynomials coin-
cide, so the reduction ofQi modulo r andE(Z) agrees with
the corresponding reduction of f̃(α̃i), which equals f(αi).

We expect a log q = log(re) term in the running time,
and recall that Algorithm MULTIMODULAR is invoked over

a ring of cardinality r′ = M (e−1)(d−1)m+1. We have:

log r′ = log(M (e−1)(d−1)m+1)

≤ (e− 1)dm log(dm(e(r − 1))(d−1)m+1 + 1)

≤ O(ed2m2(log e+ log r))

≤ O(log q log log q)d2m2. (1)

The dominant step is step 3, whose complexity is given by
Theorem 3.2. Combining this with (1) above yields the
stated complexity.

Similar to Corollary 3.3, we obtain:

Corollary 3.5. For every constant δ > 0 there is an algo-
rithm for MULTIVARIATE MULTIPOINT EVALUATION over
any ring (Z/rZ)[Z]/(E(Z)) of cardinality q, with running
time (dm +N)1+δ log1+o(1) r, for all d,m,N with d suffi-
ciently large and m ≤ do(1).

Proof. The proof is the same as the proof of Corollary 3.3,
except the two cases depend onm in relation to the quantity
r′ appearing in the proof of Theorem 3.4. The argument in
the proof of Corollary 3.3 yields the claimed running time
with r′ in place of q; we then use the inequality log r′ ≤
O(log q log log q)d2m2.

4. A data structure for polynomial evaluation

In this section we observe that it is possible to interpret
our algorithm for MULTIVARIATE MULTIPOINT EVALUA-

151151



Algorithm MULTIMODULAR-FOR-EXTENSION-RING(f, α0, . . . , αN−1, t)

whereR is a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomialE(Z) of degree e,
f is an m-variate polynomial f(X0, . . . , Xm−1) ∈ R[X0, . . . , Xm−1] with degree at most d − 1 in each variable,
α0, . . . , αN−1 are evaluation points in Rm, and t > 0 is the number of rounds.

Put M = dm(e(r − 1))(d−1)m+1 + 1 and r′ = M (e−1)dm+1.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[Z][X0, . . . , Xm−1] from f by replacing each coefficient
with its lift which is a polynomial of degree at most e − 1 with coefficients in {0, . . . , r − 1}. For i =
0, . . . , N − 1, construct the m-tuple α̃i ∈ Z[Z]m from αi by replacing each coordinate with its lift which is a
polynomial of degree at most e− 1 with coefficients in {0, . . . , r − 1}.

2. Compute the reduction f ∈ (Z/r′Z)[X0, . . . , Xm−1] of f̃ modulo r′ and Z −M . For i = 0, . . . , N − 1,
compute the reduction αi ∈ (Z/r′Z)m of α̃i modulo r′ and Z − M . Note that the reductions modulo r′

don’t do anything computationally, but are formally needed to apply Algorithm MULTIMODULAR, which only
works over finite rings Z/rZ.

3. Run MULTIMODULAR(f, α0, α1, . . . , αN−1, r
′, t) to compute βi = f(αi) for i = 0, . . . , N − 1.

4. For i = 0, . . . , N − 1, compute the unique polynomialQi[Z] ∈ Z[Z] of degree at most (e− 1)(d− 1)m with
coefficients in {0, . . . ,M − 1} for which Qi(M) has remainder βi modulo r′ = M (e−1)dm+1, and return the
reduction of Qi modulo r and E(Z).

Figure 2. Algorithm MULTIMODULAR-FOR-EXTENSION-RING.

TION as a data structure supporting rapid “polynomial eval-
uation” queries.

Consider a degree n univariate polynomial f(X) ∈
Fq[X ] (and think of q as being significantly larger than n).
If we store f as a list of n coefficients, then to answer a
single evaluation query α ∈ Fq (i.e. return the evalua-
tion f(α)), we need to look at all n coefficients, requiring
O(n log q) bit operations. On the other hand, a batch of
n evaluation queries α1, . . . , αn ∈ Fq can be answered all
at once using O(n log2 n) Fq-operations, using fast algo-
rithms for univariate multipoint evaluation (cf. [19]). This
is often expressed by saying that the amortized time for an
evaluation query isO(log2 n) Fq-operations. Can such a re-
sult be obtained in a non-amortized setting? Certainly, if we
store f as a table of its evaluations in Fq , then a single evalu-
ation query α ∈ Fq can be trivially answered inO(log q) bit
operations. However, the stored data is highly redundant;
it occupies space q log q, when information-theoretically
n log q should suffice.

By properly interpreting our algorithm for MULTIVARI-
ATE MULTIPOINT EVALUATION, we arrive at a data struc-
ture that achieves “the best of both worlds”: we can prepro-
cess the n coefficients describing f in nearly-linear time, to
produce a nearly-linear size data structure T from which we
can answer evaluation queries in time that is polynomial in

logn and log q. This is a concrete benefit of our approach
to multipoint evaluation even for the univariate case, as it
seems impossible to obtain anything similar by a suitable re-
interpretation of previously known algorithms for univariate
multipoint evaluation.

Theorem 4.1. Let R = (Z/rZ)[Z]/(E(Z)) be a ring of
cardinality q, and let f(X) ∈ R[X ] be a degree n polyno-
mial. Choose any constant δ > 0. For sufficiently large n,
one can compute from the coefficients of f in time at most
T = n1+δ log1+o(1) q a data structure of size at most T
with the following property: there is an algorithm that given
α ∈ Fq, computes f(α), in time poly logn ·log1+o(1) q with
random access to the data structure.

Proof. We will choose parameters d,m such that dm = n,
and apply map ψd,m from Definition 2.4 to f .

Then, given this m-variate polynomial f , algo-
rithm MULTIMODULAR-FOR-EXTENSION-RING computes
f with coefficients in Z/r′Z. This is followed by t
rounds of multimodular reduction which produce reduced
polynomials fp1,p2,...,pt ∈ Fpt [X ] for certain sequences
p1, p2, . . . , pt of primes (the pi are the moduli in the t
rounds of multimodular reduction). Each fp1,p2,...,pt is
evaluated over its entire domain F

m
pt

using the multidimen-
sional FFT. The key observation is that these computations

152152



do not depend on the evaluation points, and can thus com-
prise a preprocessing phase that produces the data structure
consisting of tables of evaluations of each fp1,p2,...,pt .

Using notation from the proof of Theorem 3.2, there
are at most �1�2 · · · �t reduced polynomials, each pt

has magnitude at most �t, and it holds that �i =
O(λi(m)λi(d) log(i) r′). Referring to the proof of Theorem
3.1, we see that the cost incurred to produce the required ta-
bles of evaluations is at most

T = �1�2 · · · �t ·O(m�mt ) · poly log(�t)
≤ O(λt(m)t+m+1λt(d)t+mλt−1(log r′)) ·

(log(t) r′)m · poly log(md log r′)

At this point, an evaluation query α ∈ R can be
answered from the tables by first computing the point
(α, αd, . . . , αdm−1

) ∈ Rm, then (as in algorithm
MULTIMODULAR-FOR-EXTENSION-RING) lifting each co-
ordinate to Z/r′Z and finally applying t rounds of
multimodular reduction, to produce reduced evaluation
points αp1,p2,...,pt ∈ F

m
pt

. The desired evaluations
fp1,p2,...,pt(αp1,p2,...,pt) can be found in the pre-computed
tables, and then f(α) is reconstructed by t rounds of appli-
cation of the Chinese Remainder Theorem. Again adopting
the notation from the proof of Theorem 3.2, this reconstruc-
tion is invoked �1�2 · · · �i−1 times at level i, each time with
cost O(�i poly log(�i)). The overall cost for an evaluation
query is thus

t∑
i=1

�1�2 · · · �i−1 ·O(�i poly log(�i))

≤ O(�1�2 · · · �t) · poly log(md log r′)

≤ O(λt(m)tλt(d)tλt−1(log r′)) · poly log(md log r′)

It remains to choose the parameters d,m and t. If r′ >
22n

, then we choose d = n,m = 1, t = 2; if r′ ≤ 22n

,
then choose d = logc n andm = (logn)/(c log logn) for a
sufficiently large constant c, and t = 4. These choices give
the claimed running times for preprocessing and queries,
with r′ in place of q. As in the proof of Theorem 3.4, we
have log r′ ≤ O(log q log log q)d2m2, which completes the
proof.

Theorem 4.1 is surprising in light of a number of lower
bounds for this problem under certain restrictions. For ex-
ample, in the purely algebraic setting, and when the under-
lying field in R, Belaga [1] shows a lower bound on the
query complexity of 
 3n

2 � + 1 (and Pan [12] has given a
nearly-matching upper bound). Miltersen [10] proves that
the trivial algorithm (with query complexity n) is essen-
tially optimal when the field size is exponentially large and
the data structure is limited to polynomial size, and he con-
jectures that this lower bound holds for smaller fields as

well (this is in an algebraic model that does not permit the
modular operations we employ). Finally, Gál and Miltersen
[6] show a lower bound of Ω(n/ logn) on the product of
the additive redundancy (in the data structure size) and the
query complexity, thus exhibiting a tradeoff that rules out
low query complexity when the data structure is required to
be very small (i.e., significantly smaller than 2n).

5. Fast modular composition, and its transpose

We now obtain fast algorithms for MODULAR COMPO-
SITION and MODULAR POWER PROJECTION via the reduc-
tion of Theorem 2.5, and the transposition principle.

5.1. Modular composition

By applying the reduction in Theorem 2.5, we obtain
a nearly-linear time algorithm for MODULAR COMPOSI-
TION. We emphasize that to achieve this running time
only requires invoking Algorithm MULTIMODULAR-FOR-
EXTENSION-RING with t = 2, which makes the overall al-
gorithm (arguably) practical and implementable. Indeed,
use of a single round of multimodular reduction is quite
common in practice; for instance, Shoup’s NTL library [14]
uses multimodular reduction for most basic arithmetic in-
volving multiprecision integer polynomials.

Theorem 5.1. Let R be a finite ring of cardinality q given
as (Z/rZ)[Z]/(E(Z)) for some monic polynomial E(Z).
For every δ > 0, if we have access to n1+O(δ) distinct el-
ements of R whose differences are units in R, then there is
an algorithm for MODULAR COMPOSITION overR running
in n1+δ log1+o(1) q bit operations, for sufficiently large n.

Proof. Let c be a a sufficiently large constant (depend-
ing on δ), and set d = n1/c and m = c. Then ap-
plying Theorem 2.5, we obtain an algorithm for MODU-
LAR COMPOSITION with running time n1+2/c log1+o(1) q ·
poly log(n,m, d) + T (d,m,N), where N ≤ nmd2 ≤
cn1+2/c, and T (d,m,N) is the time for MULTIVARIATE

MULTIPOINT EVALUATION with parameters d,m,N . We
solve this instance via Theorem 3.4 with t = 2.

Corollary 5.2. For every δ > 0, there is an algo-
rithm for MODULAR COMPOSITION over Fq running in
n1+δ log1+o(1) q bit operations, for sufficiently large n.

Proof. Construct an extension field Fq′ of Fq with cardinal-
ity at least n1+O(δ); apply Theorem 5.1 with R = Fq′ .

Remark. In the running times claimed in Corollaries 3.3,
3.5, 5.2, and Theorem 5.1, we have chosen to present
bounds that interpret “almost linear in x” as meaning “for
all δ > 0, there is an algorithm running in time x1+δ for

153153



sufficiently large x.” In all cases, it is possible to choose δ
to be a sub-constant function of the other parameters, giving
stronger, but messier, bounds.

5.2. Fast modular power projection

In this section, we consider the “transpose” of MODU-
LAR COMPOSITION, defined next:

Problem 5.3 (MODULAR POWER PROJECTION). Given a
linear form π : Rn → R, and polynomials g(X), h(X) in
R[X ], each with degree at most n− 1, and with the leading
coefficient of h a unit inR, output π(g(X)i mod h(X)) for
i = 0, 1, . . . , n− 1.

One can view MODULAR COMPOSITION as multiplying
the n × 1 column vector of coefficients of f on the left by
the n×nmatrixAg,h, whose columns are the coefficients of
g(X)i mod h(X) for i = 0, 1, . . . , n− 1. Then MODULAR

POWER PROJECTION is the problem of multiplying the col-
umn vector of coefficients of π on the left by the transpose
of Ag,h.

By a general argument (the “transposition principle”),
linear straight-line programs computing a linear map yield
linear straight-line programs with essentially the same com-
plexity for computing the transposed map.

Theorem 5.4 ([5, Thm. 13.20]). Let φ : Rn → Rm be a
linear map that can be computed by a linear straight-line
program of length L and whose matrix in the canonical ba-
sis has z0 zero rows and z1 zero columns. Then the trans-
posed map φt : Rm → Rn can be computed by a linear
straight-line program of size L− n+m− z0 + z1.

If our algorithm for MODULAR COMPOSITION com-
puted only linear forms in the coefficients of polynomial
f then we would have a similarly fast algorithm for MOD-
ULAR POWER PROJECTION via the above theorem. Unfor-
tunately, the lifting to characteristic 0 followed by modular
reduction is not algebraic, and so we cannot apply Theorem
5.4 directly. However, with some care, we can isolate the
nonalgebraic parts of the algorithm into preprocessing and
postprocessing phases, and apply the transposition principle
to algebraic portions of the algorithm. In the next two theo-
rems, we consider the transpose of MULTIVARIATE MULTI-
POINT EVALUATION and then MODULAR POWER PROJEC-
TION; the proofs are in the full version.

Theorem 5.5. Let R be a finite ring of cardinality q given
as (Z/rZ)[Z]/(E(Z)) for some monic polynomial E(Z).
There is an algorithm for the transpose of MULTIVARI-
ATE MULTIPOINT EVALUATION with parameters satisfying
N = dm, with running time at most that claimed in Theo-
rem 3.4.

Theorem 5.6. Let R be a finite ring of cardinality q given
as (Z/rZ)[Z]/(E(Z)) for some monic polynomial E(Z).
For every δ > 0, if we have access to n1+O(δ) distinct el-
ements of R whose differences are units in R, then there is
an algorithm for MODULAR POWER PROJECTION over R
running in n1+δ log1+o(1) q bit operations, for sufficiently
large n.

6. Conclusions

We conclude by outlining some applications of our new
algorithms, and open problems.

6.1. Applications

Fast algorithms for MODULAR COMPOSITION and MOD-
ULAR POWER PROJECTION give rise to improvements in
various basic operations with polynomials over finite fields,
as indicated already in [18]. Here is an incomplete but
indicative list of such problems, with the dependence on
the running times for MODULAR COMPOSITION and MOD-
ULAR POWER PROJECTION made explicit. Below we
use C(n, q) and P (n, q) for the number of bit opera-
tions required for MODULAR COMPOSITION and MODU-
LAR POWER PROJECTION, respectively (operating on de-
gree n polynomials, over Fq).

• Univariate polynomial factorization. We are given
f(X) ∈ Fq[X ] of degree n and we must output the
irreducible factors. Variants of the Cantor-Zassenhaus
method break this problem into three stages: square-
free factorization, distinct-degree factorization, and
equal-degree factorization. Yun’s algorithm for the
first stage takes n1+o(1) log2+o(1) q bit operations;
Kaltofen & Shoup’s algorithm for the second stage [9]
takes n0.5+o(1)C(n, q) + n1+o(1) log2+o(1) q bit op-
erations; von zur Gathen & Shoup’s randomized al-
gorithm for the third stage [20] takes O(C(n, q)) +
n1+o(1) log2+o(1) q bit operations. Thus with our
algorithm for MODULAR COMPOSITION, we ob-
tain a randomized algorithm that takes (n1.5+o(1) +
n1+o(1) log q) log1+o(1) q bit operations for the poly-
nomial factorization problem.

• Irreducibility testing. We are given f(X) ∈ Fq[X ]
of degree n, and we want to determine whether
or not it is irreducible. Rabin’s algorithm [13]
can be implemented to take (n1+o(1)) log1+o(1) q +
C(n, q) log2 n bit operations, so we obtain a running
time of n1+o(1) log1+o(1) q, which is best-possible up
to lower order terms.

• Computing minimal polynomials. We are given
g(X), h(X) ∈ Fq[X ], both of degree at most n, and

154154



we must output the minimal polynomial of g(X) in the
ring Fq[X ]/(h(X)); i.e., the monic polynomial f(X)
of minimal degree for which f(g(X)) mod h(X) =
0. Shoup’s randomized algorithm [16] runs in ex-
pected time (n+C(n, q)+P (n, q))no(1), so we obtain
a running time of n1+o(1) log1+o(1) q, which is best
possible up to lower order terms.

The fact that our algorithm applies to extension rings
leads to some additional applications. For instance, if
P (X) ∈ (Z/pn

Z)[X ] is a monic polynomial whose re-
duction modulo p is monic (of the same degree) and irre-
ducible, then the ring R = (Z/pn

Z)[X ]/(P (X)) admits
a unique Frobenius automorphism F : R → R satisfying
F (r) ≡ rp (mod p) for all r ∈ R. Once one has computed
F (X), one can then evaluate F efficiently using modular
composition. Such rings R arise as quotients of unramified
extensions of the ring of p-adic integers; consequently, fast
Frobenius evaluation leads to improvements in certain algo-
rithms based on p-adic numbers. An explicit example was
suggested by Hendrik Hubrechts, in his use of deformations
in p-adic Dwork cohomology to compute zeta functions of
hyperelliptic curves over finite fields; use of our algorithms
leads to a runtime improvement by substituting for our mod-
ular composition algorithm in [8, §6.2].

6.2. Open problems

We briefly mention some open problems. Our algorithm
for MULTIVARIATE MULTIPOINT EVALUATION is only op-
timal up to lower order terms in case m ≤ do(1). It would
be interesting to describe a near-optimal algorithm in the re-
maining cases, or perhaps just the multilinear case to start.
It would also be satisfying to give a near-optimal algebraic
algorithm for MULTIVARIATE MULTIPOINT EVALUATION

in arbitrary characteristic ([18] does so for the case of small
characteristic).

As noted earlier, the reduction from MODULAR COM-
POSITION to MULTIVARIATE MULTIPOINT EVALUATION

plays an important role in our work because it is easier to
control the growth of integers when solving the lifted ver-
sion of MULTIVARIATE MULTIPOINT EVALUATION. One
wonders whether there are other problems involving poly-
nomials that can exploit the combination of transforming
the problem to a multivariate version with smaller total de-
gree, and then lifting to characteristic zero followed by mul-
timodular reduction.

Finally, the reduction to MULTIVARIATE MULTIPOINT

EVALUATION can be seen, loosely, as a generalization of
the “baby steps/giant steps” approach of [4]. We won-
der whether this generalization can improve algorithms for
other problems whose currently best algorithms use a “baby
steps/giant steps” technique, such as automorphism projec-
tion and automorphism evaluation as discussed in [9].

Acknowledgements. We thank Swastik Kopparty and
Madhu Sudan for some references mentioned in Section 4,
and Ronald de Wolf and the FOCS 2008 referees for helpful
comments.

References

[1] E. G. Belaga. Evaluation of polynomials of one variable
with preliminary preprocessing of the coefficients. Problemy
Kibernet., 5:7–15, 1961.

[2] D. J. Bernstein. Fast multiplication and its applica-
tions (version of 7 Oct 2004). Preprint available at
http://cr.yp.to/papers.html#multapps.

[3] A. Bostan, G. Lecerf, and E. Schost. Tellegen’s principle
into practice. In ISSAC, pages 37–44, 2003.

[4] R. P. Brent and H. T. Kung. Fast algorithms for manipulating
formal power series. J. ACM, 25(4):581–595, 1978.

[5] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
Complexity Theory, volume 315 of Grundlehren der mathe-
matischen Wissenschaften. Springer-Verlag, 1997.

[6] A. Gál and P. B. Miltersen. The cell probe complexity of
succinct data structures. Theor. Comput. Sci., 379(3):405–
417, 2007.

[7] X. Huang and V. Y. Pan. Fast rectangular matrix multiplica-
tion and applications. J. Complexity, 14(2):257–299, 1998.

[8] H. Hubrechts. Point counting in families of hyperelliptic
curves (version of 31 Mar 2007). Preprint available at
http://wis.kuleuven.be/algebra/hubrechts/.

[9] E. Kaltofen and V. Shoup. Subquadratic-time factoring of
polynomials over finite fields. Mathematics of Computation,
67(223):1179–1197, 1998.

[10] P. B. Miltersen. On the cell probe complexity of polynomial
evaluation. Theor. Comput. Sci., 143(1):167–174, 1995.

[11] M. Nüsken and M. Ziegler. Fast multipoint evaluation of
bivariate polynomials. In ESA, pages 544–555, 2004.

[12] V. Y. Pan. Methods of computing values of polynomials.
Russian Math. Surveys, 21(1):105–136, 1966.

[13] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM
J. Comput., 9(2):273–280, 1980.

[14] V. Shoup. NTL 5.4.2. Available at
http://www.shoup.net/ntl/.

[15] V. Shoup. Fast construction of irreducible polynomials over
finite fields. J. Symb. Comput., 17(5):371–391, 1994.

[16] V. Shoup. Efficient computation of minimal polynomials in
algebraic extensions of finite fields. In ISSAC, pages 53–58,
1999.

[17] V. Shoup. A Computational Introduction to Number The-
ory and Algebra (version 2.3). Cambridge University Press,
2008. Available at http://www.shoup.net/ntb/.

[18] C. Umans. Fast polynomial factorization and modular com-
position in small characteristic. In STOC, pages 481–490,
2008.

[19] J. von zur Gathen and J. Gerhard. Modern Computer Alge-
bra. Cambridge University Press, 1999.

[20] J. von zur Gathen and V. Shoup. Computing Frobenius
maps and factoring polynomials. Computational Complex-
ity, 2:187–224, 1992.

155155


