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ABSTRACT
We propose a semi-analytical model for the self-intersection of the fallback stream in tidal
disruption events (TDEs). When the initial periapsis is less than about 15 gravitational radii, a
large fraction of the shocked gas is unbound in the form of a collision-induced outflow (CIO).
This is because large apsidal precession causes the stream to self-intersect near the local escape
speed at radius much below the apocentre. The rest of the fallback gas is left in more tightly
bound orbits and quickly joins the accretion flow. We propose that the CIO is responsible
for reprocessing the hard emission from the accretion flow into the optical band. This picture
naturally explains the large photospheric radius [or low blackbody (BB) temperature] and
typical line widths for optical TDEs. We predict the CIO-reprocessed spectrum in the infrared
to be Lν ∝ ν∼0.5, shallower than a BB. The partial sky coverage of the CIO also provides
a unification of the diverse X-ray behaviours of optical TDEs. According to this picture,
optical surveys filter out a large fraction of TDEs with low-mass blackholes due to lack of a
reprocessing layer, and the volumetric rate of optical TDEs is nearly flat wrt. the blackhole
mass in the range M � 107 M�. This filtering also causes the optical TDE rate to be lower
than the total rate by a factor of ∼10 or more. When the CIO is decelerated by the ambient
medium, radio emission at the level of that in ASASSN-14li is produced, but the time-scales
and peak luminosities can be highly diverse. Finally, our method paves the way for global
simulations of the disc formation process by injecting gas at the intersection point according
to the prescribed velocity and density profiles.
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1 IN T RO D U C T I O N

Tidal disruption events (TDEs) hold promise for probing the other-
wise dormant supermassive blackholes (BHs) at the centres of most
galaxies (Rees 1988). The story starts with simple initial conditions:
a star, of certain mass and radius, approaches the BH on a parabolic
orbit of certain specific angular momentum. The star can be treated
as a point mass until it reaches the tidal radius where the tidal
forces exceed the star’s self-gravity. The hydrodynamical disruption
phase, despite its complexity, is understood to at least order-unity
level, thanks to decades of analytical and numerical studies (e.g.
Lacy, Townes & Hollenbach 1982; Carter & Luminet 1983; Rees
1988; Evans & Kochanek 1989; Laguna et al. 1993; Ayal, Livio &
Piran 2000; Lodato, King & Pringle 2009; Guillochon & Ramirez-
Ruiz 2013; Stone, Sari & Loeb 2013; Tejeda et al. 2017; Gafton &
Rosswog 2019; Goicovic et al. 2019; Steinberg et al. 2019). The
result is that the post-disruption stellar debris acquires a spread of
specific orbital energy, which is roughly given by the gradient of
the BH’s gravitational potential across the star at the tidal radius.
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This means that roughly half of the stellar debris is unbound and
the other half is left in highly eccentric bound orbits.

After the disruption phase, the star is tidally stretched into a
very long thin stream and the evolution of the stream structure in
the transverse and longitudinal directions are decoupled (Kochanek
1994). Thus, the system enters the free-fall phase where each stream
segment follows its own geodesic like a test particle (Coughlin
et al. 2016). Then, after passing the apocentres of the highly
eccentric orbits, the bound debris falls back towards the BH at a
rate given by the distribution of specific energy (Evans & Kochanek
1989; Phinney 1989). Due to relativistic apsidal precession, the
bound debris, after passing the pericentre, collides violently with
the still in-falling stream (see Fig. 1). It has been shown that
shocks at the self-intersection point is the main cause of orbital
energy dissipation and the subsequent formation of an accretion
disc (Rees 1988; Kochanek 1994; Hayasaki, Stone & Loeb 2013;
Guillochon, Manukian & Ramirez-Ruiz 2014; Shiokawa et al.
2015; Bonnerot et al. 2016). However, the aftermath of the self-
intersection is an extremely complex problem, which depends on
the interplay among magnetohydrodynamics, radiation, and general
relativity in 3D. No numerical simulations to date have been able
to provide a deterministic model for TDEs with realistic star-to-
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Figure 1. The star was initially in a parabolic orbit (orange curve). After
the tidal disruption, the bound materials are in highly eccentric elliptical
orbits of different semimajor axes (red curves) but have nearly the same
apsidal precession angle per orbit. Materials in their second orbits (blue
curves) collide with what is still in the first orbit. The subject of this paper
is to study the dynamics of the shocked gas after the collision.

BH mass ratio and high eccentricity (see Stone et al. 2018a, for
a review). Many simulations consider either an intermediate-mass
BH (e.g. Guillochon et al. 2014, Evans, Laguna & Eracleous 2015;
Shiokawa et al. 2015; Sa̧dowski et al. 2016) or the disruption of
a low-eccentricity (initially bound) star (e.g. Bonnerot et al. 2016;
Hayasaki, Stone & Loeb 2016). It is unclear how to extrapolate the
simulation results to realistic configurations and provide an answer
to the following questions: How long does it take for the bound
gas to form a circular accretion disc (if at all)? How much radiative
energy is released from the system? What fraction of the radiation
is emitted in the optical, UV, or X-ray bands?

The hope lies in the rapidly growing sample of TDE candidates
discovered by recent UV-optical surveys, such as GALEX (Gezari
et al. 2008, 2009), SDSS (van Velzen et al. 2011), Pan-STARRS
(Gezari et al. 2012; Chornock et al. 2014; Blanchard et al. 2017),
PTF (Arcavi et al. 2014; Blagorodnova et al. 2017; Hung et al.
2018), ASAS-SN (Holoien et al. 2014, 2016), and ZTF (van
Velzen et al. 2019a), see the open TDE catalogue http://tde.space.
These events have highly diverse properties in terms of peak
optical luminosities, light-curve shapes, emission-line profiles, and
optical/X-ray flux ratios. Still, they provide a number of important
clues for understanding the dynamics of UV-optical selected TDEs:
(1) the photospheric radius of the (thermal) optical emission is
typically ∼1014–1015 cm; (2) the typical widths of H α and/or He
II emission lines in the optical band and CI v, N V, Si IV aborption
lines in the UV band (e.g. Blagorodnova et al. 2018) are of order
∼ 104 km s−1; (3) the rise/fade time-scale is of order ∼months;1

(4) the total energy radiated in the UV-optical band is typically
� 1051 erg, which is much smaller than the energy budget of the
system (� 1053 erg even for disruption of low-mass stars).

The photospheric radius is much larger than the tidal radius
(of order ∼ 1013 cm), and the velocity inferred from line widths
is much smaller than the Keplerian/escape velocity near the tidal

1We note a few exceptions such as iPTF16fnl (Blagorodnova et al. 2017)
and ASASSN-15lh (Dong et al. 2016; Leloudas et al. 2016). We also note
that current optical surveys are biased against detecting very fast (�week)
and very long (�year) transients, so the rise/fade time-scales of detected
events may not representative for the entire TDE family.

radius. These properties are inconsistent with the wind-reprocessed
emission from a circularized accretion disc near the tidal radius
(Strubbe & Quataert 2009; Miller 2015). The low radiative effi-
ciency in the optical band is known as the ‘missing energy’ puzzle
(Piran et al. 2015; Stone & Metzger 2016; Lu & Kumar 2018),
whose solution depends on the source of the optical emission. Based
on the arguments that the photospheric radius is of the same order
as the semimajor axis of the most bound orbit and that the line
width roughly agrees with the Keplerian velocity at the same radius,
Piran et al. (2015) proposed that the optical emission is powered
by the dissipation of orbital energy by stream self-intersection. An
alternative phonomenological model proposed by Metzger & Stone
(2016) is that only a small fraction fin � 1 of the fall-back gas
actually accretes on to the BH and the rest (1 − fin) is blown away
by the gravitational energy released from the accreting gas. In this
model, if the energy efficiency of accreting gas is ηacc = 0.1ηacc, −1,
then the accretion fraction of order fin ∼ 10−2η−1

acc,−1. However,
these models do not consider the detailed dynamics of the stream
self-intersection and disc formation.

In this paper, we consider the stream kinematics in a semi-
analytical way and explore the diverse consequences of the stream
self-intersection. This approach is similar to Dai, McKinney &
Miller (2015) who studied the location and gas velocity at the self-
intersection point in a post-Newtonian way (only considering the
lowest order apsidal precession). However, we evolve the system in
full general relativity before and after the self-intersection and study
the properties of the shocked gas that are unbound, accreting, and
plunging. More importantly, instead of assuming inelastic collision
as in Dai et al. (2015), we use the realistic equation of state for
radiation-dominated gas to model the intersection, motivated by
the local simulation of colliding streams by Jiang, Guillochon &
Loeb (2016). Thus, our approach provides a more comprehensive
and self-consistent picture of the dynamics and multiwavelength
emission from TDEs.

This paper is organized as follows. In Section 2, we calculate
the location of the self-intersection point and the velocities of
the two streams before the collision. In Section 3, we perform
hydrodynamical simulation of the collision process. In Section 4,
we consider the fate of the shocked gas after the self-intersection.
Implications of TDE dynamics on the multiwavelength observations
will be considered in Section 5. We discuss a number of issues in
our modelling in Section 6. A summary is provided in Section 7.
Unless otherwise specified, we use geometrical units where the
gravitational constant and speed of light are G = c = 1.

2 SELF-I NTERSECTI ON O F THE FA LLBACK
STREAM

We consider a star of mass M∗ = m∗ M� and radius R∗ = r∗ R�
interacting with a BH of mass M = 106M6 M�. The gravitational
radius of the BH is rg ≡ M. We take the pericentre of the star’s initial
orbit to be rp = rT/β, where β is a free impact parameter describing
the depth of penetration and the rT is the Newtonian Roche tidal
radius defined as (Hills 1975)

rT

rg
≡ R∗

rg

(
M

M∗

)1/3

= 46.7 M
−2/3
6 m−1/3

∗ r∗. (1)

The lower limit of the impact parameter βmin is of order unity, but
to obtain its exact value corresponding to marginal disruption, one
must take into account relativistic tidal forces and realistic stellar
structure/rotation (these will be discussed later in Section 5.3). After
the disruption, the stellar debris attains a spread of specific orbital
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energy for the stellar debris E ∈ (−ηmaxET, +ηmaxET), where we
have defined the Newtonian tidal energy

ET ≡ rgR∗
r2

T

= 2.13 × 10−4M
1/3
6 m2/3

∗ r−1
∗ , (2)

and ηmax is a constant of order unity containing the uncertainties due
to stellar structure/rotation and the detailed relativistic disruption
process. The Newtonian orbital period of the leading edge (η =
ηmax) is Pmin 
 (41 d) η−3/2

max M
1/2
6 m−1

∗ r3/2
∗ .

The bound materials corresponding to E < 0 form an elongated
thin stream which collides with itself due to apsidal precession
(Fig. 1). Since the width of the stream is much smaller than the
pericentre radius (e.g. Kochanek 1994; Coughlin et al. 2016), a
given stream segment, characterized by its specific energy E = ηET

and pericentre radius rp = rT/β (η ≤ ηmax and β � 1 are free
parameters), moves along a certain geodesic until it collides with the
still in-falling gas. Note that we define E and rp based on Newtonian
quantities ET and rT only for convenience reason, our treatment of
the orbital kinematics is fully general relativistic (GR).

In this paper, we consider the simplest case of a non-spinning BH
(the effects of BH spin will be discussed in Section 6). In spherical
coordinates for the Schwarzschild space–time, the initial position
of the stream segment is (t = 0, r = rp, θ = 0, φ = 0) and the
proper time of the stream segment starts as τ = 0. We align the
orbital plane with the equatorial plane of the coordinate system, so
θ̇ ≡ dθ/dτ = 0. The specific angular momentum is given by


 = rp

√
(1 + E)2/μp − 1, μp ≡ 1 − 2rg/rp, (3)

where 1 + E is the total energy including rest mass. Hereafter,
the time derivative of any quantity Q with respect to the stream
segment’s proper time τ is denoted by Q̇. Measuring the proper
time in units of rg, we write the geodesic equations

ṫ = 1 + E
1 − 2rg/r

, φ̇ = 
rg/r
2,

ṙ2 = (1 + E)2 −
(

1 − 2rg

r

)(
1 + 
2

r2

)
,

r̈ = − r2
g

r2
+ 
2rg

r3

(
1 − 3rg

r

)
. (4)

We use a Leapfrog method to integrate the above geodesic equations
with time-step δτ = rg/30. Since these two colliding flows have
similar specific energies η1 ≈ η2, the radius for self-intersection rI

is approximately given by φ(rI) = π .
For a stationary observer at the intersecting point rI, we define

μI ≡ 1 − 2rg/rI, so the local differential length in the radial
direction is dr̃ = μ

−1/2
I dr and the local differential time is dt̃ =

μ
1/2
I dt = μ

−1/2
I (1 + E)dτ . In the following, we consider the stream-

intersection process in the comoving frame of a local stationary
observer at radius rI (LSO frame hereafter), in which any quantity
Q is denoted with a tilde Q̃. Then, the radial and transverse velocities
of the colliding streams in the LSO frame are

ṽr = dr̃

dt̃
= μ−1

I

dr

dt
= ṙ(rI)

1 + E ,

ṽφ = rI
dφ̃

dt̃
= rIμ

1/2
I

1 + E φ̇(rI). (5)

The intersecting half angle θ̃I in the LSO frame is given by

tan θ̃I = ṽr

ṽφ

= ṙ(rI)

μ
1/2
I rIφ̇(rI)

. (6)

Figure 2. The self-intersection radius, full angle, velocity, and efficiency
of orbital energy dissipation as a function of the BH’s mass. The red, blue,
green, and yellow curves are for stellar masses of m∗ = 0.2, 0.5, 1.0, 1.5
(shown in the legend of the first panel). For all panels, we use the same the
impact parameter β = 1.0 (rp = rT/β) and orbital energy parameter η = 1.0
(E = ηET). The solid curves are from GR calculations and the dashed curves
are the corresponding post-Newtonian results given by Dai et al. (2015). The
cut-off of each curve on the high BH mass end is due to direct capture of
the star by the BH. In the third panel, we show the radial component ṽr in
darker curves and transverse component ṽφ in lighter curves, both measured
by a local stationary observer at the intersecting point.

In Fig. 2, we compare the self-intersection radius, angle, and
velocities from our GR calculations with the corresponding lowest
order post-Newtonian results by Dai et al. (2015). We take β = 1.0
and η = 1.0 to be our fiducial parameters. We consider four different
stellar masses of m∗ = 0.2, 0.5, 1.0, 1.5, and the corresponding
zero-age main-sequence stellar radii r∗ = 0.23, 0.46, 0.89, 1.63
are taken from Tout et al. (1996) assuming solar metallicity, with
errors of a few per cent. As expected, we find that, for more
massive BHs, the self-intersection occurs closer to the event horizon
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and the intersecting velocity is larger (the interaction is more
violent).

If one assumes that two colliding flows have equal cross-sections
and that the collision is completely inelastic, then the radial 4-
velocity component ṙ(rI) gets dissipated and that the transverse
4-velocity component rIφ̇(rI) survives. In this case, we can quantify
the efficiency of orbital energy dissipation by defining

fdiss =
⎛⎝ μ

1/2
I√

1 − ṽ2
r − ṽ2

φ

− μ
1/2
I√

1 − ṽ2
φ

⎞⎠(
1 − μ

1/2
I

)−1
, (7)

which describes the change in orbital energy divided by the
gravitational binding energy at radius rI. This (maximum possible)
dissipation efficiency is shown in the fourth panel of Fig. 2. In the
low BH mass limit M6 � 1, the dissipation of orbital energy by
shocks is extremely weak and we asymptotically have fdiss ∝ M5/3

(marked as a black dashed line in the fourth panel), which agrees
with the result of Bonnerot et al. (2017a). In those cases, if
the circularization is still dominated by stream self-intersection,
then the orbit stays highly eccentric for roughly f −1

diss rounds and
hence the circularization time-scale is roughly f −1

dissPmin ∝ M−7/6

(since Pmin ∝ M1/2). Other mechanisms, e.g. the magneto-rotational
instability, may cause angular momentum exchange and drive
circularization on a shorter time-scale (Chan, Krolik & Piran 2018).
As we discuss later in Section 5.1, TDEs by low-mass BHs typically
generates long-lasting eccentric accretion discs which produce long-
duration transients. On the other hand, for high-mass BHs M6 � 1,
stream intersection causes strong dissipation of orbital energy and
hence the orbit may quickly circularize.

In the next section, we show that completely inelastic collision,
as assumed by e.g. Dai et al. (2015), is a poor description of the
stream dynamics, because the shocked gas is highly optically thick
and hence evolves in a nearly adiabatic manner (Jiang et al. 2016).

3 H Y D RO DY NA M I C A L S I M U L AT I O N S O F T H E
SELF - INTERSECTING SHOCKS

We numerically simulate the stream–stream collision in a special
inertia frame described as follows. In the LSO frame, the 4-
velocity of the outward-moving stream is (ũα) = (ũt , ũr , ũθ , ũφ) =

̃(1, ṽr , 0, ṽφ), where the Lorentz factor is 
̃ ≡ (1 − ṽ2)−1/2 and
ṽ2 = ṽ2

r + ṽ2
φ . Our simulation box is centred at the self-intersecting

point and is moving at velocity ṽφ with respect to the local stationary
observer in the φ̂ direction. Thus, in the comoving frame of the
simulation box (hereafter the SB frame), the two streams collide
head-on with each of them moving at 4-velocity ūc = 
̃ṽr and
Lorentz factor 
̄c = (1 + 
̃2ṽ2

r )1/2, which means

v̄c = 
̃ṽr√
1 + 
̃2ṽ2

r

. (8)

Hereafter, any quantity Q in the SB frame is denoted with an
overhead bar Q̄. In all possible cases, the incoming velocities of the
streams in the SB frame are sub-relativistic v̄c < 0.3c (see Fig. 2).
Due to extreme stretch and adiabatic cooling, the initial streams are
dynamically cold with sound speed much less than the bulk velocity
v̄c. Another property of the initial streams is that the transverse size
is much less than the orbital size ∼rI (Kochanek 1994; Coughlin
et al. 2016; Bonnerot et al. 2017a). These properties of the problem
enable us to use a single non-relativistic hydrodynamic simulation
in a flat space–time to capture the structure of the shocked gas,
which is self-similar within a region of size �rI.

In our simulation, we use an adiabatic ideal gas equation of state
P ∝ ρ4/3. This is motivated by: (1) the high-density shocked gas
is radiation pressure dominated, and (2) the shocked gas is highly
optically thick before most of the heat is converted back to bulk
motion via PdV work (Jiang et al. 2016). The radiative efficiency of
the shocked gas is estimated in Appendix B. Since we are concerned
with the fate of the majority of the gas with fallback time � 10Pmin,
the adiabatic assumption is a good one. For simplicity, we assume
that the two colliding streams have the same cross-section and that
there is no offset in the transverse direction. We will discuss the
validity of these assumptions and consequences of relaxing them in
Section 6.

We perform the simulation with the non-relativistic hydrodynam-
ics module of PLUTO (Mignone et al. 2007), solving the mass and
momentum conservation equations in 2D cylindrical coordinates
(R, z). The R-axis corresponds to the φ̂ direction in the BH rest
frame, and the z-axis is parallel to the r̂ direction in the BH rest
frame. The size of our simulation box is 0 ≤ R ≤ 320 and −320
≤ z ≤ 320. Two identical steady streams are injected in the form
of top-hat jets moving in opposite directions at z = −320 and z =
320 in the radius range 0 ≤ R ≤ 1. The other boundary conditions
are as follows: R = 0 axis-symmetric, R = 320 outflow, z = −320,
and z = 320 outflow (except for the inner cylinder R ≤ 1 where the
streams are injected). The resolution2 is δR = δz = 0.125 (NR =
Nz/2 = 2560), which means the initial stream is resolved by 8 cells
in the transverse direction. The initial streams have mass density 1,
pressure (4/3)−1, and velocities ±3000 (all in machine units, since
the problem is scale-free in the non-relativistic limit). Since the
adiabatic sound speed of the stream is unity, the Mach number is
3000 
 1 and hence the streams are effectively cold. The pressure of
the ambient medium matches that of the streams. The mass density
of the ambient medium is extremely small 10−8, so the shocked gas
expands as if in vacuum. We run the simulation with time-step δt

 6 × 10−6 for a sufficiently long time t = 0.8 (or 7.5 times the
domain crossing time) so that the structure of the shocked gas within
a sphere of radius 320 has relaxed to a nearly stable configuration.

The large-scale structure of the system at t = 0.8 is shown in
Fig. 3. We see that the two streams collide at z = 0 and the shocked
gas expands in a roughly spherical way to radii much larger than the
stream width (which equals to unity). In Fig. 4, we show the radial
profiles of the mass flux at different polar angles θ̄ = 30o, 45o, 60o,
and 90◦. The angular profiles of the velocity and mass flux at three
different radii r = 75, 150, and 300 are shown in Fig. 5. We can
see that, at large distances from the shocks r � 100, the velocity
profile is very flat but the mass flux is heavily concentrated near the
equatorial plane 60o � θ̄ ≤ 90o. In the following, we simplify the
velocity angular profile as isotropic

v̄(θ̄) = v̄c, (9)

and hence the density angular profile is the same as the mass flux
profile. We use a fourth-order polynomial fit to the normalized
density angular profile given by

ρ̄n =
4∑

i=0

qix
i, q0 = 1.051 × 10−2, q1 = 0.1103,

q2 = −0.2017, q3 = 0.2434, q4 = −0.08436, (10)

where x ≡ min(θ̄ , π − θ̄ ) and 2π
∫ π

0 ρ̄n sin θ̄dθ̄ = 1.

2We also ran the same simulation with lower resolution δR = δz = 0.25,
and found the results to be similar.
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Figure 3. Quasi-steady profiles of the velocity vector field (arrows) and
mass flux ρ̄v̄ (colour image and contours) time t = 0.8, which is 7.5 times
the shock-crossing time of the entire simulation domain (or 1200 times the
shock-crossing time of the initial streams). At large distances 
10 from the
shocks, velocity vectors are nearly in the radial direction in most directions.
This figure is generated with the open source visualization tool VisIt by
Childs et al. (2012).

Figure 4. Thick red curves show the radial profiles of the mass flux ρ̄v̄ at
different polar angles θ̄ ≡ arctan(R/z) = 30o, 45o, 60o, and 90o at t = 0.8.
We also overplot the radial component of the mass flux ρ̄v̄r in thin green
curves, which overlap with the red curves. This means that at sufficiently
large radii r > 3, the velocity vectors of the expanding shocked gas are
nearly in the radial direction. We can also see that the mass flux is higher
near the equatorial plane (θ̄ ∼ 90o) than that near the poles (θ̄ � 30o). The
mass flux profiles asymptotically approach the inverse-square law since v̄ ≈
const and ρ̄ ∝ r−2.

Figure 5. The angular profiles of the velocity and mass flux at three spheres
of radii r = √

R2 + z2 = 75, 150, and 300. The polar angle θ̄ is defined
as θ̄ = arctan(R/z). The velocity profiles are normalized by the speed of
the incoming stream v̄c = 3000. At all three radii, the velocity profiles
are nearly flat with v̄ ≈ v̄c at most angles, so we simplify them as an
isotropic function v̄(θ̄) = v̄c (yellow curve). The mass flux profiles shown
here are simply peak-normalized to illustrate the equatorial concentration
near 60o � θ̄ ≤ 90o. We fit the mass flux profile at r = 300 with a fourth-
order polynomial function (green curve), which is then re-normalized in
equation (10) such that 2π

∫ π

0 ρ̄n sin θ̄dθ̄ = 1.

In the following, we Lorentz transform the velocity and mass
flux angular profiles of the shocked gas from the SB frame back
to the LSO frame. For a fluid element moving with speed v̄c

in an arbitrary (θ̄ , φ̄) direction (θ̄ being the polar angle and φ̄

being the azimuthal angle), we write its four-velocity in Cartesian
components (ūα) = γ̄ (1, v̄x, v̄y , v̄z), where γ̄ = (1 − v̄2

c )−1/2, v̄x =
v̄c sin θ̄ cos φ̄, v̄y = v̄c sin θ̄ sin φ̄, and v̄z = v̄c cos θ̄ . The simulation
box is moving at velocity ṽφ and the corresponding Lorentz factor
is 
̃φ ≡ (1 − ṽ2

φ)−1/2, so the 4-velocity in the LSO frame is

ũt = 
̃φūt + 
̃φṽφūx, ũy = ūy ,

ũx = 
̃φṽφūt + 
̃φūx, ũz = ūz. (11)

Then, the specific angular momentum and specific energy of this
fluid element in the Schwarzschild space–time are


(θ̄ , φ̄) = rI

√
ũ2

x + ũ2
y, 1 + E(θ̄ , φ̄) = μ

1/2
I ũt , (12)

In the next section, we discuss what fraction of the shocked gas is
unbound, plunging, or accreting.

4 FAT E O F TH E S H O C K E D G A S A F T E R T H E
SELF-INTERSECTION

When the shocked gas expands to a distance much greater than the
stream width, the internal pressure becomes low enough that the
motion of individual fluid elements is approximately ballistic. If
the geodesic reaches infinity or inside the event horizon, we call
the fluid element ‘unbound’ or ‘plunging’, respectively. Those fluid
elements with bound but non-plunging geodesics are denoted as
‘accreting.’ The geodesic of a fluid element moving in the (θ̄ , φ̄)
direction at rI has specific angular momentum 
(θ̄ , φ̄) and specific
energy 1 + E(θ̄ , φ̄), which are given by equation (12). We note that
the marginally bound parabolic orbit for the Schwarzschild space–
time has specific angular momentum 
mb = 4rg and pericentre
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Figure 6. Fate of the shocked gas expanding in different directions (θ̄ ,
φ̄) in the simulation box frame – plunging (black), accreting (dark grey),
and unbound (light grey). Here the polar angles θ̄ = 0 and π correspond
to latitudes 90◦ N and 90◦ S, espectively. The azimuthal angles φ̄ = 0 and
π correspond to longitudes 90◦ E and 90◦ W. The mass fraction for the
three different fates (fplg, facc, funb) are shown in the map title. The upper
and lower panels are for BH masses M6 = 1.7 and 2.5, respectively. We
fix the star’s mass m∗ = 0.5, impact parameter β = 1.0 (rp = rT/β) and
orbital energy parameter η = 1.0 (E = ηET). The cyan contours are for the
specific angular momentum in units of rg projected in the direction of the
star’s initial orbital angular momentum. The specific angular momenta of
the pre-disruption star are 
∗ = rp

√
1/μp − 1 = 9.0rg and 10.2rg for BH

masses of M6 = 1.7 and 2.5, respectively. We see that the collision causes
significant angular momentum redistribution.

radius rmb = 4rg (Bardeen, Press & Teukolsky 1972), so the stream
self-intersection radius must always be greater than 4rg (see Fig. 2).

In Figs 6 and 7, we show the Mollweide projection map of fate in
terms of the polar angle θ̄ and azimuthal angle φ̄ in the simulation
box frame. Here the polar angle θ̄ = 0 and π correspond to latitudes
90◦ N and 90◦ S, respectively. The azimuthal angle φ̄ = 0 and π

correspond to longitudes 90◦ E and 90◦ W. The unbound (‘unb’),
accreting (‘acc’), and plunging (‘plg’) regions are shown in light
grey, dark grey, and black, respectively. For the four cases with
different BH masses M6 = 1.7, 2.5, 5, and 10, we fix the star’s
mass m∗ = 0.5, impact parameter β = 1.0 (rp = rT/β) and orbital
energy parameter η = 1.0 (E = ηET). The cyan contours show the
distribution of specific angular momentum (in units of rg) projected
in the direction of the star’s initial orbital angular momentum.
Note that, when determining the fate of a certain fluid element,
we take into account its total specific energy and total specific
angular momentum. Subsequently, the out-of-plane component of
the angular moment will be further damped by shocks within the

Figure 7. The same as Fig. 6, but for different BH masses M6 = 5 (upper
panel) and 10 (lower panel). The specific angular momenta of the pre-
disruption star are 
∗ = 12.7rg and 16.0rg for the two cases of BH masses
M6 = 5 and 10, respectively.

‘accreting’ gas. If cooling is efficient, then more gas is expected
to plunge into the horizon. We also note that not all fluid elements
marked as ‘plunging’ will necessarily fall directly into the horizon.
For instance, those moving in the (θ̄ ∼ 0, φ̄ ∼ π/2) direction (near
the north pole of Figs 6 and 7) will most likely run into the
‘accreting’ gas. The detailed dynamical evolution of the bound gas
is studied in a separate work (Bonnerot & Lu 2019).

In Fig. 8, we show the mass-weighted distributions of specific
angular momentum projected along the star’s initial angular mo-
mentum and specific orbital energy, for four cases with M6 =
1.5, 2.5, 5, and 10 (while keeping β = 1.0, η = 1.0, and m∗ =
0.5 fixed). Before the collision, the stream has specific angular
momentum 
0 ≈ 
∗ = rp

√
1/μp − 1 and orbital energy −ET. The

collision causes a spread of specific angular momentum by �
/
∗ ∼
a few, and the corresponding spread in the Keplerian circularization
radius is about a factor of 10. In some cases (e.g. M6 = 1.5 and 2.5), a
large fraction of shocked gas is in counter-rotating orbits (
 < 0) and
will subsequently collide with the forward-rotating gas (
 > 0) at a
wide range of radii. The spread in specific orbital energy after the
collision is very sensitive to the BH mass, with �E/ET ∼ 1 for M6 =
1.5 but �E/ET ∼ 100 for M6 = 10. For the M6 = 1.5 case, there is no
unbound gas. For BH mass M6 � 2, a large fraction of the shocked
gas is unbound (E > 0). For a highly eccentric Keplerian orbit,

the eccentricity is given by e =
√

1 − 2|E |
2/r2
g ≈ 1 − |E |
2/r2

g .

We can see that strong shocks due to self-intersection increase the
product |E |
2 by one order of magnitude or more, and hence the
accreting fraction of gas should quickly circularize.
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692 W. Lu and C. Bonnerot

Figure 8. Distributions of specific angular momentum projected along the
star’s initial angular momentum (upper panel) and specific orbital energy
(lower panel) after the stream self-intersection, for four cases with different
BH masses M6 = 1.5, 2.5, 5.0, and 10 (while keeping β = 1.0, η = 1.0,
and m∗ = 0.5 fixed). Each bin of the histograms is weighted by the gas
mass (fraction) within its indicated specific energy or angular momentum
range. The overall normalization is such that the integration over all bins
is unity. Before the collision, the stream has specific angular momentum

0 ≈ 
∗ = rp

√
1/μp − 1 and orbital energy −ET. Then, the stream collision

leads to large spreads of specific angular momentum and orbital energy
centred around the initial values. The fluid elements with 
 < 0 have counter-
rotating orbits and those with E > 0 are unbound. In the M6 = 10 case
(subplot in the lower panel), the fastest moving unbound gas has speed vmax


 0.3.

In Fig. 9, we show the mass fractions of the unbound, accreting,
and plunging gas as a function of BH mass, for four stellar masses
m∗ = 0.2, 0.5, 1.0, and 1.5 (while keeping β = 1.0 and η = 1.0 fixed).
We find that, above a critical BH mass (to be quantified shortly),
the unbound fraction quickly rises from 0 per cent to a maximum
of 50 per cent. At the same time, the accreting fraction drops from
100 per cent to 50 per cent. For higher mass BHs, the plunging
fraction3 quickly rises at the expense of the dropping accreting
fraction, while the unbound fraction stays roughly unchanged at
∼ 50 per cent. There is a maximum mass Mmax above which no
accretion is possible, because the entire star plunges into the event
horizon.

In this paper, we call the unbound fraction of the shocked
gas the ‘collision-induced outflow’ (CIO), which has important
observational consequences (see the next section). The launching
of CIO can be understood in the following Newtonian picture. If the

3Note that the plunging fraction is non-zero even for very low BH masses,
this is because the collision broadens the angular momentum distribution
such that part of the shocked gas has almost zero angular momentum (see the
upper panel of Fig. 8). The small bump (or dip) in the plunging (accreting)
fraction for the m∗ = 1.5 case near BH masses M6 ∼ 0.3 is because the
velocity before the collision has comparable r̂ and φ̂ components: vr ∼ vφ

(see the third panel of Fig. 2). We show the map of fate for m∗ = 1.5 and
M6 = 0.3 in Fig. A4 in the Appendix.

Figure 9. The mass fractions of the unbound (solid), plunging (dashed),
and accreting (dotted) gas for different stellar masses m∗ = 0.2, 0.5, 1.0,
and 1.5. In all cases, we fix the impact parameter β = 1.0 (rp = rT/β) and
orbital energy parameter η = 1.0 (E = ηET). The small bump (or dip) in the
plunging (or accreting) fraction for m∗ = 1.5 and M6 ∼ 0.3 is because the
velocity before the collision has comparable r̂ and φ̂ components: vr ∼ vφ .
See Fig. A4 for the map of fate for this case.

intersection occurs at rp � rI � ra/3 (ra being the apocentre radius),
then the two streams typically collide at a large angle 2θ I � 90◦ near

the local escape speed |vr r̂ + vφφ̂| =
√

v2
r + v2

φ 
 vesc 
 √
2rg/rI.

The radial velocity component is dissipated by shocks, and then
the shocked gas adiabatically expands at speed ∼vr in a roughly
spherical manner in the SB frame moving at velocity vφφ̂. Going
back to the LSO frame, we find the fastest moving shocked gas in
the (θ̄ = π/2, φ̄ = 0) direction with velocity (vr + vφ)φ̂ and speed

vr + vφ >

√
v2

r + v2
φ 
 vesc. We see that CIO is a generic feature of

gas streams colliding near the local escape speed of the intersection
point.4 In Fig. 10, we show the asymptotic kinetic energy and mass-
weighted mean speed of the CIO for a number of cases, assuming
the total amount of unbound mass to be funbm∗ M�.

We define the critical BH mass Mcr above which the mass
fraction of unbound gas is more than 20 per cent, i.e. funb(Mcr) =
20 per cent. After exploring an extensive grid of parameters (see
Fig. A1 in the Appendix), we find

Mcr 
 (4.6 × 106 M�) η0.4β−1.7m−1/2
∗ r3/2

∗ . (13)

This can be translated to a critical pericentre radius

rp,cr/rg 
 17 η−4/15β2/15, (14)

below which funb � 20 per cent. If we choose the critical unbound
fraction to be 30 per cent (instead of 20 per cent), the scalings in
the above equations stay the same but the normalization changes
to Mcr 
 5.3 × 106 M� (and rp, cr/rg 
 15). The precise value of
the critical unbound fraction is unimportant, because funb is very
sensitive to the BH mass near M ∼ Mcr.

4This feature was captured in the simulations of deeply penetrating TDEs
by Evans et al. (2015), Sa̧dowski et al. (2016), and Jiang et al. (2016). In
many other works, the gas streams do not collide near the local escape
speed of the collision point, either because the aspidal precession is so weak
(due to small M/M∗ ratio) that the collision occurs near the apocentre (e.g.
Shiokawa et al. 2015) or because the star is initially in a bound orbit with
too low eccentricity (e.g. Bonnerot et al. 2016; Hayasaki et al. 2016).

MNRAS 492, 686–707 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/686/5652210 by guest on 27 February 2020



TDE stream self-intersection 693

Figure 10. The asymptotic total kinetic energy (upper panel), mean specific
energy (middle panel), and mean speed (lower panel) of the CIO for a
number of cases with different stellar masses (m∗ = 0.2, 0.5, 1.0, and 1.5
as marked in the legend) and impact parameters β = 1 (solid curved) and
2 (dashed curves). In the upper panel, the dotted lines show the kinetic
energy dissipated by collisions within the CIO (see Figs 11 and 12), which
is only a small fraction of the total kinetic energy. We find that, when the
unbound fraction is high funb � 20 per cent, the total kinetic energy spans
a wide range from ∼ 1050 erg up to ∼ 1052 erg. When the (mass-weighted)
mean specific energy is greater than ET, the CIO is more powerful than the
unbound tidal debris. The (mass-weighted) mean speed varies from ∼0.01c
to ∼0.1c.

The maximum Schwarzschild BH mass for tidal disruption to
occur outside the event horizon can be estimated by requiring rp =
rT/β > rmb = 4rg (since typically |E | � 1, see equation 2),

Mmax 
 (4.0 × 107 M�) β−3/2m−1/2
∗ r3/2

∗ . (15)

Note that the maximum BH mass depends on the minimum impact
parameter βmin at which the relativistic tidal forces exceed the
star’s self-gravity. In the limit R∗ � 4rg, the local gravitational-
field gradients can be described by the relativistic tidal tensor in
Fermi normal coordinates. For the Schwarzschild space–time, the
criterion for marginal tidal disruption can be written as

rp ≈ rmb ≈ 51/3ξ∗rT, (16)

where the 51/3 factor comes from relativistic tidal stretching5 in the
radial direction (Kesden 2012) and the parameter ξ ∗ ∼ 1 accounts

5It can be shown that, for the case where the star’s initial angular momentum
is parallel to the spin of a Kerr BH, the 51/3 factor stays the same for arbitrary

for the internal structure of the star. We will discuss the choice of
ξ ∗ for different stellar masses in Section 5.3 on TDE demographics.
The marginal disruption case occurs when 
 ≈ 4rg and rp ≈ 4rg,
which gives the minimum impact parameter βmin ≈ 5−1/3ξ−1

∗ 

0.6 ξ−1

∗ and the maximum mass for non-spinning BHs associated
with TDEs Mmax,Sch ≈ (8.9 × 107 M�) ξ 3/2

∗ m−1/2
∗ r3/2

∗ . We can see
that relativistic tidal forces are slightly better at disrupting stars than
in the Newtonian approximation. In realistic situations, the precise
βmin (and hence Mmax) will depend on the stellar structure, BH’s
spin, star’s spin, and the misalignment between the star’s orbital and
the BH’s spin angular momenta, etc. Fortunately, the precise value
of βmin may not be important from the observational point of view,
because those TDEs with BH mass close to Mmax should be quite
dim due to their low accreting fraction (most gas is either unbound
or plunging, see Fig. 9).

5 O BSERVATI ONS

In previous sections, we have described a semi-analytical model for
the TDE dynamics, including the fluid properties at the stream self-
intersection point and the fate of the shocked gas moving in different
directions. In this section, we first discuss the circularization of the
fallback stream and the formation of accretion disc in Section 5.1
and then we consider the observational implications of the unbound
gas (when funb �= 0) in Section 5.2. TDE demographics will be
discussed in Section 5.3.

5.1 Circularization of the fallback mass

For main-sequence stars disrupted by low-mass BHs (M6 � 1),
the stream self-crossing occurs near the apocentre and the shocks
only dissipate a small fraction of the orbital energy (see the fourth
panel of Fig. 2, and Bonnerot et al. 2016; Chen & Shen 2018).
After exploring an extensive grid of parameters (see Fig. A2 in the
Appendix), we find the dissipation efficiency in equation (7) can be
written in the following analytical form for M6 � 1

fdiss = 1 − 1

1 + x
, where x = 0.27 η−1β3M

5/3
6 m1/3

∗ r−2
∗ . (17)

Note that in the limit x � 1 (fdiss ≈ x), if the dissipation of
orbital energy is only due to stream intersection, then the cir-
cularization time-scale can be roughly estimated by f −1

dissPmin 

(152 d) η−1/2β3M

−7/6
6 m−4/3

∗ r7/2
∗ . For an average star (m∗ � 1)

disrupted by low-mass BHs M6 � 1, this time-scale is much longer
than the durations of typical TDEs discovered in recent UV-optical
surveys. We also see that tidal disruptions of red giants (r∗ 
 1)
will likely have very long circularization time-scales as well, unless
they are in deeply penetrating orbits (β 
 1).

If MHD turbulence develops rapidly, shear due to magnetic
stresses may cause dissipation of orbital energy at a rate (per unit
mass) Ėvis ∼ α�
v

2
A (Svirski, Piran & Krolik 2017), where α ∼

0.1 is the viscous parameter (Shakura & Sunyaev 1973), �
(r) =

∗/r2 is the local orbital angular frequency, and vA =

√
B2/4πρ2

is the Alfvén speed. Due to conservation of flux along the stream,
the magnetic field strength evolves with radius as B ∝ H(r)−2,
where H(r) is the stream thickness at radius r. Right after the

spin. This is because the eigenvalues of the tidal tensor depends on the ratio
(
mb − a)/rmb ≡ 1 (Kesden 2012), where 
mb is the angular momentum of
the marginally bound parabolic orbit and −1 < a < 1 is the dimensionless
BH spin (a < 0 corresponds to retrograde orbits).
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694 W. Lu and C. Bonnerot

disruption, the marginally bound part of the stream moves as r ∝ t2/3

and the stream length stretches6 as r2, so we obtain the stream
density evolution ρ ∝ r−2H(r)−2 and hence the total viscous heating
�Evis ∼ Ėvist ∝ r3/2H (r)−2. The evolution of stream thickness H(r)
may be highly complex, depending on tidal forces, self-gravity,
magnetic fields, and recombination of hydrogen (Kochanek 1994;
Guillochon et al. 2014; Coughlin et al. 2016). In the limiting
case of equilibrium between self-gravity and gas pressure, we
have H ∝

√
P/ρ2 ∝ ρ−1/6 and hence H(r) ∝ r1/2 (Coughlin et al.

2016), where we have taken a polytropic index of 5/3 which is
appropriate before magnetic pressure overwhelms gas pressure or
the recombination7 of hydrogen. In this regime, �Evis ∝ r1/2 and
most dissipation occurs near the largest radii at which the scaling
H(r) ∝ r1/2 holds. In the other limit where tidal forces dominate over
self-gravity, we have H(r) ∝ r and �Evis ∝ r−1/2, which means that
most dissipation occurs near the smallest radii at which the scaling
H(r) ∝ r holds.

For β ∼ η ∼ 1, we provide a conservative estimate of the viscous
dissipation by assuming the scaling �Evis ∝ r1/2 up to the apocentre
radius of the most tightly bound orbit ra and obtain

�Evis,max ∼ α v2
A(rT)

√
ra

rT
. (18)

Since α
√

ra/rT ∼ α(M/M∗)1/6 ∼ 1, we obtain �Evis,max ∼ v2
A(rT),

where vA is the Alfvén speed near radius rT. The magnetic field may
be amplified in the tidal disruption process due to forced differential
rotation (Bonnerot et al. 2017b) and the total magnetic energy may
be written as fBGM2

∗/R∗, where GM2
∗/R∗ is the work done by

tidal forces and fB � 1 is the conversion efficiency. Then, we
obtain �Evis,max � fBGM∗/R∗ ∼ 2 × 10−6fB � ET, where ET is
the typical orbital energy of the stream (equation 2). Therefore, the
dissipation of orbital energy due to viscous shear is highly inefficient
over the orbital time-scale.

We also note that dissipation by the nozzle shock operating near
the pericentre may also be inefficient, because the ratio between
the velocity components perpendicular and inside the star’s orbital
plane is of order H/r � 1. However, this picture may be changed
by strong apsidal precession (which causes oblique compression) if
the pericentre is close to the horizon rp � 10rg.

Therefore, we conclude that TDEs by low-mass BHs (M6 � 1)
have circularization time-scale tcir 
 Pmin, which is much longer
than the typical duration of the current sample of TDEs discovered
by UV-optical surveys. This has important implications on TDE
demographics, which will be discussed in Section 5.3.

In the following, we focus on TDEs by relatively high-mass BHs
M6 � 1 where the dissipation of orbital kinetic energy is dominated
by stream self-intersection because fdiss ∼ 1. As shown in Fig. 8,
the distributions of specific angular momentum and orbital energy
are broadened by the collision. The eccentricity e 
 1 − |E |
2/r2

g

drops to the level of 1 − e ∼ 0.1 due to the increase of the
product |E |
2 by typically one order of magnitude. Subsequently,

6For nearly radial orbits, the Newtonian equation of motion is r(t) = r0 +∫ t

0 dt
√

2(rg/r + E), where E is the binding energy and r0 is the initial
position. In the limit E ≈ 0 (marginally bound) and r 
 r0, we have r ∝ t2/3.
Consider two fluid elements with the same initial position r0 but slightly
different binding energy �E . After expanding for time t, they are separated
by a distance �r = �E

∫ t

0 dt[2(rg/r + E)]−1/2. In the limit E ≈ 0 and r 

r0, we have �r ∝ tr1/2 ∝ r2.
7For β ∼ 1, recombination occurs at radius rrec ∼

√
T0/104 K rT ∼ 30 rT,

where T0 ∼ GM∗/kR∗ ∼ 107 K (k being the Boltzmann constant) is the gas
temperature right after tidal disruption.

the bound gas (and a small fraction of the unbound gas, see
Section 5.2) will collide violently at a wide range of radii between

∼rp and ∼rI over a time-scale �−1
K (rI) = c−1

√
r3

I /rg < Pmin, where
�K(rI) is the Keplerian angular frequency for a circular orbit at
rI. Thus, orbital circularization due to exchange of energy and
angular momentum occurs rapidly after the initial stream self-
intersection. The detailed dynamics is highly complicated due to the
interplay among gas, radiation (providing cooling), and magnetic
fields (providing viscosity). This is explored in a separate work
(Bonnerot & Lu 2019).

The most interesting situation is when a significant fraction of the
shocked gas becomes unbound in the form of CIO, which occurs
for BH masses in the range Mcr < M < Mmax. The CIO carries away
(positive) energy of E � ET (see Figs 8 and 10), and the rest of
the shocked gas is left in more tightly bound orbits. The (positive)
angular momentum carried away by the CIO is a factor of a few
greater than that before the collision, so the remaining bound gas
typically have negative angular momentum and hence rotates in
the opposite direction of the initial star. Due to subsequent shocks,
the counter-rotating gas will quickly settle into circular orbits not at
radius 2rp but with a radial spread of at least one order of magnitude
(even without viscosity).

5.2 Collision-induced Outflow (CIO)

For BH masses in the range Mcr < M < Mmax, we find a large fraction
of gas is launched in the form of a wide-angle CIO. In the following,
we first study the morphology of the CIO (Section 5.2.1), and
then discuss the observational implications of the CIO, including
reprocessing the extreme-UV (EUV) or soft X-ray disc emission
into the optical band (Section 5.2.2) and radio emission from the
shock driven into the ambient medium (Section 5.2.3).

5.2.1 Morphology of the CIO

We discretize the unbound cone uniformly into ∼200 beams and
then integrate the geodesics of each beam over longer time-scales.
We ignore the internal pressure of the CIO based on strong adiabatic
cooling during the expansion. The CIO morphologies are shown in
Figs 11 and 12. We see that, within a distance of ∼ 1014 cm, the
unbound gas expands into complex morphology and covers a large
fraction of the sky viewed from the BH. A small portion of the
unbound gas will collide with each other (all along the negative
z-axis due to BH’s gravitational focusing) and further dissipate
their kinetic energy via shocks. For the low BH mass (but M >

Mcr or funb � 20 per cent) cases, the self-intersection point is far
from the event horizon and the gas in the unbound cone is ejected
mildly above the local escape speed, so their trajectories are strongly
affected by the BH’s gravity (see Fig. 11). For the high BH mass
cases, the violent shocks at the intersection point launches unbound
gas well above the local escape speed, so their trajectories are almost
a straight line (see Fig. 12).

In the Newtonian picture (appropriate at distances 
rg), the peak
mass fallback rate of the stream can be estimated

Ṁfb,max 
 (3 M� yr−1) η3/2
maxM

−1/2
6 m2

∗r
−3/2
∗ , (19)

where we have assumed a flat mass distribution over specific energy
between −ηmaxET and ηmaxET after tidal disruption (e.g. Evans &
Kochanek 1989; Guillochon & Ramirez-Ruiz 2013). This peak
fallback rate lasts for a duration roughly given by the period of
the most bound orbit Pmin 
 (41 d) η−3/2

max M
1/2
6 m−1

∗ r3/2
∗ . During this
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Figure 11. The free-fall trajectories of ∼200 fluid elements nearly uni-
formly distributed within the unbound cone, for two cases with M6 = 1.7
(upper panel) and M6 = 2.5 (lower panel). The other parameters β = 1.0,
η = 1.0, and m∗ = 0.5 are fixed. The integration time (after the stream
intersection) for the M6 = 1.7 case is 1.9 d and for the M6 = 2.5 case
it is 2.2 d. For the M6 = 2.5 case, a small fraction of the fluid elements
collide with others within the integration time and their free-fall trajectories
after the collision (shown in red) are inaccurate. The blue curves show the
trajectories without or before collisions. The stream self-intersection point
is marked by a red star (at x = y = 0, z = rI) and the BH is marked by a
black circle (at x = y = z = 0).

time, the time-averaged mass feeding rate to the self-intersecting
point is Ṁmax 
 Ṁfb,max (from both colliding streams). We note
that this feeding rate is not constant but modulated by twice the

free-fall time-scale 2tff (rI) = 2
√

r3
I /rg/c = (3.7 d)(rI/103rg)3/2M6

in the Newtonian picture, because each segment of length ∼2rI

will collide with the next segment of the same length. From Figs 2
and 9, we see that for BH masses M � Mcr, the intersection radius
is much below the apocentre radius rI � ra, so the modulation
time-scale is much less than the orbital period 2tff(rI) � Pmin. This
discrete mass injection may modulate the optical light curve during
the early rise segment but not near the peak, because the CIO has
highly complex structure with a broad velocity distribution such that
the optical flux near the peak is contributed by multiple shells (via
photon diffusion, see Section 5.2.2). On the other hand, if the inner
accretion disc is not blocked by the large CIO column for some
viewing angles, then the X-ray light curve may be strongly affected
by the variable mass feeding rate to the accretion disc, provided
that the viscous time-scale is comparable or shorter than 2tff(rI).
We also note that hydrodynamic interaction between the fallback
stream and the accretion flow may modify the stream’s trajectory
and cause the modulation to be non-periodic.

Figure 12. The same as Fig. 11 but for M6 = 5 (upper panel), M6 = 10
(lower panel). The integration time (after the stream intersection) for the
M6 = 5 case is 2.2 d and for the M6 = 10 case it is 2.5 d. Blue curves show
the free-fall trajectories without or before collisions and red curves show
the (inaccurate) trajectories after the collisions.

In the next subsection, we show that the CIO generates the optical
emission from TDEs. We take an order-of-magnitude approach by
assuming that the mass outflowing rate from the self-intersecting
point to be steady and the unbound gas expands in a roughly spher-
ical manner at radius 
rI. We ignore the hydrodynamical effects
of the wind/radiation from the inner accretion disc. Modelling the
full radiative hydrodynamics is left for future works.

5.2.2 Optical emission from TDEs

Optically bright TDEs came as a surprise because the radiation from
the inner disc has characteristic temperature(

λEddLEdd

4πr2
TσSB

) 1
4


 2.6 × 105 K
λ

1/4
EddM

1/12
6 m1/6

∗
r

1/2
∗

, (20)

where σ SB is the Stefan–Boltzmann constant and λEdd is the
Eddington factor given by the disc bolometric luminosity over
the Eddington luminosity LEdd 
 1.5 × 1044 M6 erg s−1 (for solar
metallicity). TDEs selected as UV-optical transients have photo-
spheric radii ∼1014–1015 cm 
 rT and colour temperatures ∼a
few ×104 K much less than that given by equation (20). In the
following, we show that the CIO naturally provides the long-sought
‘reprocessing layer’ which absorbs the higher frequency radiation
from the inner disc and re-emits at lower frequencies (Loeb & Ulmer
1997; Guillochon et al. 2014; Metzger & Stone 2016).

We study the temperature structure of the CIO by assuming a
steady-state spherically symmetric structure heated from the bottom
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at radius rin ∼ a few× rI. We assume the received heating power to
be Lin, which could be in the form of hard emission or wind from
the accretion flow.8

When the CIO reaches distances 
rI, for a crude estimate, we
assume the density and velocity distributions of the outflowing gas
to be roughly uniform within a cone of solid angle �. Then, the
density profile is given by

ρ(r) 
 Ṁmaxfunb

�r2v

 1.5 × 10−12 g cm−3 K

r2
14

,

K ≡ 2π

�

funb

0.5

η3/2
maxm

2
∗

M
1/2
6 r

3/2
∗ v9

, (21)

where funb is the unbound fraction (Fig. 9), v = 109v9 cm s−1 is the
mass-weighted mean velocity (see the third panel of Fig. 10), and
K is the dimensionless ‘wind constant’ which depends on many
parameters.

The photon-trapping radius rtr, where photon diffusion time
equals to the dynamical expansion time, is given by the scattering
optical depth τ s 
 κ sρ(rtr)rtr 
 c/v, i.e.

rtr 
 1.7 × 1014Kv9 cm, (22)

where κs = 0.34 cm2 g−1 is the Thomson scattering opacity for
solar metallicity. Here, we have assumed that the Rosseland-mean
opacity roughly equals to the scattering opacity. The scattering
photospheric radius rscat = 5.1 × 1015 cm is typically not important
in determining the optical appearance of a TDE.

In the radius range rin < r < rtr, photons are advected by
the expanding wind and the radiation energy density evolves as
U(r) ∝ ρ4/3 ∝ r−8/3 (Strubbe & Quataert 2009). Above the radius
rtr, photons rapidly diffuse away from the local fluid. Since the
diffusive flux is given by Fdiff 
 Uc/τ s ∝ r−2, we have U(r) ∝ r−3

for r > rtr. The normalization for the above scalings for radiation
energy density is given by Lin = 4πr2

inU (rin)v, which means

U (r) = 8.0 × 105 erg cm−3 Lin,44r
2/3
in,14

r
8/3
14 v9

min

[
1,
( rtr

r

)1/3
]

. (23)

We assume that the radiation is well thermalized near rin, so the
radiation spectrum is nearly a blackbody (BB) up to rtr and the
radiation temperature profile is

T (r) 
 1.0 × 105 K
L

1/4
in,44r

1/6
in,14

r
2/3
14 v

1/4
9

(for r < rtr). (24)

At larger radii r > rtr, the temperature profile depends on whether
the majority of photons get thermalized due to a combination of
scattering and absorption. In the following, we describe a semi-
analytical way of capturing the effect of frequency-dependent
thermalization.

At each radius, we define a BB temperature TBB ≡ (U/a)1/4, which
is the temperature the radiation field would have if LTE is achieved.

8The evolution of the EUV and soft X-ray luminosity from the inner
accretion disc and its wind kinetic power on time-scale �1 yr is still
uncertain due to our limited understanding of multidimensional super-
Eddington accretion flow, analytically (Begelman 1979; Narayan & Yi
1994; Blandford & Begelman 2004) or numerically (McKinney et al. 2014;
Sa̧dowski et al. 2014; Jiang, Stone & Davis 2017). We remain agnostic about
the heating source’s nature and make the (highly implied) assumption that
the velocity and density profiles of the CIO are not strongly modified by the
energy injection. This assumption breaks down when the energy injection
significantly accelerates the CIO, which should be studied in future works.

Since the emissivity and absorption opacity are strongly frequency
dependent (due to bound-free edges and lines), it is difficult to
achieve an equilibrium between emission and absorption at all
frequencies. Instead, we define a rough LTE criterion (see Nakar &
Sari 2010) which is applicable at r > rtr,

η(r) ≡ U (r)c/4π∫
dν min [Bν(TBB), jν(TBB) ctdiff ]

, (25)

where Bν(TBB) is the Planck function at temperature TBB, jν(TBB)
is obtained from CLOUDY9 by assuming the gas is under a thermal
radiation bath of temperature TBB, and the diffusion time is given
by tdiff = τ sr/c. Then we dopt a critical value ηcrit = 5/4 such that
the radiation is considered to be in LTE at radii where η(r) < ηcrit

and non-LTE otherwise. This critical value means that equilibrium
between emission and absorption is achieved at about 80 per cent
of the frequencies near the peak of the overall spectrum. Thus, the
frequency-averaged thermalization radius rth is given by

η(rth) = ηcrit. (26)

Then, the two characteristic radii rtr and rth determine the radial
profile of the radiation temperature T(r), which has three power-law
segments: T ∝ r−2/3 (rin < r < rtr), T ∝ r−3/4 (rtr < r < rth, assuming
rth < rscat), and T = const (r > max(rtr, rth)). Note that in the case
where rtr > rth, the middle segment does not exist. The mean photon
energy the observer sees is given by 2.7kBT[max(rtr, rth)]. With the
radiation temperature T(r), energy density U(r), and density ρ(r)
at each radius (for a logarithmic radial grid), we use CLOUDY to
compute the degree of ionization for each chemical species and
their energy-level population, under Solar abundance.

We make use of the volumetric emissivity jν(r) (for a logarithmic
frequency grid) output from CLOUDY. At radius r > rtr, the energy
of photon are still significantly modified by electron scattering.
This is because the local intensity distribution is anisotropic with
an outwards diffusive flux. This intensity anisotropy means that,
at a given radius, an electron scatters more outward-going photons
than inward-going ones, and hence photons overall exert a force
on this electron. Since the electron is moving outwards at velocity
v, this force due to photon scattering is doing work to accelerate
the electron (of course, this electron is dynamically coupled with
a proton such that the actual acceleration is small). The net effect
of the photon–electron momentum transfer is that, photons lose a
fraction ∼v/(cτ ) of energy over each scattering (see Appendix C).
Since it takes τ 2 scatterings for each photon to escape, the total
amount of energy loss is ∼τv/c. We are interested in the region at
r > rtr or τ < c/v, so photons lose energy by less than a factor
of 2 (and hence overall adiabatic cooling is not important) but
this energy shift is important for the transport of line photons by
effectively broadening the lines (Pinto & Eastman 2000; Roth et al.
2016). We take a broadening factor of

σ = max(τv/c, v/
√

2c), (27)

and perform a Gaussian kernel smoothing over the CLOUDY output
of jν(r) at each radius.

Now we have all the ingredients to calculate the specific lumi-
nosity of the escaping photons from the wind. For each frequency ν,
the thermalization radius rth, ν is given by the equilibrium between
emission and absorption, i.e.

jν(rth,ν)ctdiff = Bν(TBB(rth,ν)), (28)

9Version 17.01 of the code last described (Ferland et al. 2017).
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TDE stream self-intersection 697

Figure 13. Two possible TDE cases with parameters (K, v9, rin, 14, Lin, 44) = (1, 1, 1, 1) (left-hand panels) and (3, 1, 1, 3) (right-hand panels). Upper Panels:
Frequency-dependent thermalization radius given by equation (28). Note that for the highest frequencies � 20 eV (left) and � 10 eV (right), the opacity (due to
He II/H I Ly α and their bound-free transition) is so high that rth, ν is beyond our radial grid, so our results are unreliable. The trapping radius (equation 22) and
thermalization radius (equation 26) are shown as dotted and dashed lines. Middle Panels: Spectrum of the escaping photons. We mark the three observational
windows: UV (1700–2900 Å), Optical (3000–7000 Å), and NIR (0.8–2.5μm). The shallower behaviour νLν ∝ ν1.5 (left-hand panel) or ∝ ν1.8 (right-hand
panel) in the NIR is caused by the increasing rth, ν towards lower frequencies (due to free–free opacity, see equation 31), which is a robust prediction of our
model. For comparison, we show two BB spectra at temperature T(rth) (black dashed) and T(rtr) (orange dashed). Data points are the SEDs for two TDEs
ASASSN-14li (cyan, left-hand panel, Holoien et al. 2016) and PS1-10jh (red, right-hand panel, Gezari et al. 2012) near peak luminosity. Lower Panels: The
(artificially broadened) emissivity at different radii, from rtr (uppermost) to 30rtr (lowermost).

which is equivalent to the effective absorption optical depth τ∗,ν 
√
τa,ν(τa,ν + τs) 
 1 (Rybicki & Lightman 1979). Then, the specific

luminosity is roughly given by

Lν 
 4πr3
th,ν4πjν(rth,ν) 
 4πr2

th,ν

4πBν(TBB(rth,ν))

τs(rth,ν)
, (29)

where τ s(rth, ν) = κ sρ(rth, ν)rth, ν . As shown in Fig. 13, our model can
reproduce the optical and UV spectral-energy distributions (SEDs)
of typical TDE candidates such as ASASSN-14li and PS1-10jh.
One robust prediction of our wind reprocessing model is that the
SED in the NIR band is softer than that in the optical-UV, typically
Lν ∝ ν∼0.5. This can be explained as follows.

The absorption opacity in the NIR continuum is dominated
by free–free transitions (ignoring the Gaunt factor, Rybicki &
Lightman 1979)

κlow ν 
 (1.1 × 1017 cm2 g−1) ρT −3/2(hν/eV)−2, (30)

where the density ρ and temperature T are in units of g cm−3 and K,
respectively. In the limit κlow ν � κs, the effective opacity is given
by κ∗,ν 
 √

κlow νκs (Rybicki & Lightman 1979), so the frequency-
dependent thermalization radius is given by κ∗, νρrth, ν 
 1, i.e.

rth,ν 
 (3.9 × 1014 cm) (hν/eV)−1/2K3/4T
−3/8

4.5 , (31)

where T = 104.5T4.5 K is the electron temperature at the thermaliza-
tion radius (the final results depend very weakly on T). The above
equation agrees reasonably well with Fig. 13.

At frequencies with rth, ν < rtr, thermalization occurs below the
trapping radius, and the escaping specific luminosity is given by
Lν = 4πr2

tr(4π )Bν(T (rtr))/τs(rtr), which has a BB shape at temper-
ature T(rtr). However, at frequencies with rth, ν > rtr, thermalization
occurs above the trapping radius, and equation (29) gives

νLν 
 (2.4 × 1041 erg s−1) (hν/eV)3/2K5/4T
−1/8

4.5 , (32)

which applies for at low frequencies (such that rth, ν > rtr)

hν < (5.2 eV) K−1/2T
−3/4

4.5 v−2
9 . (33)

This behaviour Lν ∝ ν0.5 should be observable in the NIR (see
figs 4 and 5 of Roth et al. 2016). This effect is analogous to the
radio/infrared free–free absorption in the wind of Wolf–Rayet stars
(Wright & Barlow 1975; Crowther 2007). The weak dependence on
the electron temperature T−1/8 means that equation (32) can be used
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698 W. Lu and C. Bonnerot

to measure the ‘wind parameter’ K ∝ Ṁ/v for individual TDEs,
similar to measuring the mass-loss rate from Wolf–Rayet stars.10

5.2.3 Other pieces of information – lines and X-rays

The observed H α and He II emission lines have complex and
sometimes double-peaked or boxy structures (e.g. Arcavi et al.
2014; Holoien et al. 2016, 2018a; Blagorodnova et al. 2018). They
have been modelled with the reprocessed emission from an elliptical
disc (Liu et al. 2017; Holoien et al. 2018a). However, these elliptical
discs may be highly unstable on time-scales ∼months because each
annulus undergoes apsidal precession at a different rate. In our
picture, the emission-line profiles are mainly controlled by the bulk
motion of the line formation region of the CIO (at a few times the
trapping radius rtr), which can either be blueshifted or redshifted
depending on the observer’s line of sight. We also note that, if
the line formation region has large scattering optical depth, the
line profile may be further modified by Comptonization (Roth &
Kasen 2018). The N III and O III emission lines in some TDEs, e.g.
AT2018dyb (Leloudas et al. 2019), are probably due to Bowen
fluorescence, which requires a large flux of (unseen) EUV photons.

The partial sky coverage of the CIO provides a unification of
the diverse X-ray properties of optically selected TDEs. When
the line of sight to the inner accretion disc is not blocked by
the CIO, the observer should see optical emission as well as the
EUV or soft X-ray emission from the inner accretion disc or its
wind (Strubbe & Quataert 2009; Dai et al. 2018; Curd & Narayan
2019). When the line of sight is only blocked by the region of the
CIO with modest optical depth, the observer may see blueshifted
absorption lines from high-ionization species (Blagorodnova et al.
2018; Brown et al. 2018). When the line of sight is blocked by the
highly optically thick region of CIO, the observer only sees optical
emission initially. Then, as the CIO’s mass outflowing rate drops
with time, the trapping radius shrinks and hence the EUV and soft
X-ray photons from the inner disc suffer less adiabatic loss. As a
result, the soft X-ray flux (on the Wien tail) should gradually rise
and the spectrum hardens on time-scales of ∼ 1 yr (Gezari, Cenko &
Arcavi 2017; Margutti et al. 2017; Holoien et al. 2018b).

5.2.4 Radio emission from non-jetted TDEs

In this subsection, we discuss the radio emission from the adiabatic
shock driven by the CIO into the circum-nuclear medium (CNM).
As shown in Fig. 10, the CIO has kinetic energies from Ek ∼
1050 erg up to ∼ 1052 erg and mean speed between v0 ∼ 0.01c and
∼0.1c. In the following, we simplify the complex CIO structure as
a thin shell covering a solid angle � within which the density and
velocity distributions are uniform. We assume that the ambient
medium has a power-law density profile in the radial direction
n = npcr

−k
pc (k < 3), where rpc = r/pc. We also ignore sideway

expansion of the shocked region since � ∼ 2π , so the system is
one-dimensional.

When the CIO reaches a radius r, the total number of shocked
electrons from the CNM is given by

N (r) =
∫ r

�r2n(r)dr = �

3 − k
Npcr

3−k
pc , (34)

10The CIO is likely clumpy (due to e.g. episodic mass ejection), so a further
correction for the volume filling factor fV < 1 is needed (Osterbrock &
Flather 1959).

where Npc ≡ npc × (1 pc)3 is a reference number of electrons. We
ignore the acceleration of particles by the reverse shock (driven
into the ejecta) because it is much weaker than the forward shock
(driven into the CNM). The deceleration radius rdec is given by
Ek = (1/2)N (rdec)mpv

2
0 (mp being proton mass), which means

r3−k
dec,pc = 3 − k

�

2Ek

Npcmpv
2
0

. (35)

We smoothly connect the free-expansion phase with the Sedov–
Taylor phase by using the following velocity profile:

v(r) = v0 min
[
1, (r/rdec)(k−3)/2

]
, (36)

and hence the shock reaches radius r at time

t(r) = rdec

v0
min

[
r

rdec
,

2

5 − k

(
r

rdec

) 5−k
2

+ 3 − k

5 − k

]
. (37)

The electron number density in the shocked region is 4n(r) and
the mean energy per proton is (1/2)mpv(r)2, so the thermal energy
density is 2n(r)mpv(r)2. We assume that a fraction εB � 1 of the
thermal energy is shared by magnetic fields, so the magnetic field
strength is

B(r) = [
16π εBn(r)mpv(r)2

]1/2
. (38)

We assume that electrons share a fraction εe � 1 of the thermal
energy and that they are accelerated to a power-law momentum
distribution with index p. We expect particle acceleration from
non-relativistic shocks to give 2 < p < 3, both theoretically
(Bell 1978; Blandford & Eichler 1987; Malkov & Drury 2001;
Caprioli & Spitkovsky 2014; Park, Caprioli & Spitkovsky 2015) and
observationally (Chevalier 1998; Green 2014; Zanardo et al. 2014).
For fast shocks where the mean energy per electron εempv

2/2 

mec2 (me being electron mass), the majority of the particle number
and kinetic energy are both concentrated near a relativistic minimum
momentum 
mec. For slow shocks where εempv

2/2 � mec2, most
particles have non-relativistic momenta but the majority of kinetic
energy is in mildly relativistic particles with Lorentz factor γ ∼ 2.
We are interested in the number density of ultrarelativistic electrons.
These two regimes above can be smoothly connected by assuming
a power-law Lorentz factor distribution dN/dγ ∝ γ −p above the
minimum Lorentz factor (Granot et al. 2006; Sironi & Giannios
2013)

γm = max

[
2,

p − 2

p − 1

εempv(r)2

2mec2

]
. (39)

Then the normalization is given by the total energy of these
relativistic electrons being εeN(r)mpv(r)2/2, i.e.

dN/dγ = εempv(r)2

2mec2

(p − 2)N (r)

γ 2
m

(γ /γm)−p. (40)

An electron of Lorentz factor γ 
 1 has characteristic syn-
chrotron frequency

ν(γ ) = 3

4π

γ 2eB

mec
, (41)

where e is the electron charge. Since the peak specific power is
Pν,max 
 e3B/mec

2, the specific luminosity at frequency ν in the
optically thin regime is given by

Lν 
 γ
dN

dγ

e3B

mec2
. (42)

The synchrotron self-absorption frequency νa and the corresponding
Lorentz factor γ a are defined where the optical depth ανa�
r ∼ 1
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(�
r being the radial thickness of the emitting region). The volumet-
ric emissivity at νa is given by jνa = ανa 2kT ν2

a /c
2 (in the Rayleigh–

Jeans limit hνa � kT), where kT 
 γ amec2 is the temperature of
electrons responsible for absorption. Assuming γ a > γ m (which
will later be shown to be true for non-relativistic shocks), we can
write the specific luminosity as 4πjνa�r2�
r, and hence

Lνa = Lν |νa

 4π�r2 2kT ν2

a

c2
. (43)

Combining equations (42) and (43), we see that the Lorentz factor
γ a corresponding to the self-absorption frequency is determined by

dN

dγ

∣∣∣∣
γa


 9�r2B

2πe
γ 4

a , (44)

which gives

γ 4+p
a 
 2π (p − 2)

9(3 − k)

eNpc

B

εempv(r)2

2mec2
r1−k

pc γ p−2
m , (45)

where we have defined a reference column density Npc = npc ×
1 pc. If ν(γ m) � νa and synchrotron/inverse-Compton cooling are
negligible, the synchrotron spectrum when the shock is at radius r
is given by (Granot & Sari 2002)

Lν 

{

Lνa (ν/νa)5/2, for ν(γm) < ν < νa,

Lνa (ν/νa)(1−p)/2, for ν > νa.
(46)

In Fig. 14, we show the radio emission from CIO colliding with
the CNM for a number of cases. We denote the average velocity
v0 in units of c and the kinetic energy (with unit erg) in log-scale.
The three cases with (v0, Ek) = (0.01, 50), (0.03, 51), (0.1, 52) are
motivated by the mean velocities and kinetic energies in Fig. 10.
The case with (v0, Ek) = (0.2, 52) is for comparison with that
with (v0, Ek) = (0.1, 52), and we see that an outflow with higher
velocity generates brighter and earlier-peaked radio emission. The
cases with (v0, Ek) = (0.1, 49) and (0.1, 50) are motivated by the
fact that the CIO velocity profile is non-uniform with a fraction of
the mass moving faster than the mean velocity. We find that the
faster portion of the ejecta generates bright radio emission at early
time. For each combination of (v0, Ek), we take two different CNM
density normalizations npc = 100 and 3 cm−3. As expected, we find
that, for higher CNM densities, the radio emission is brighter and
peaks earlier.

We also show the data from several TDEs for comparison but
do not intend to search for the best-fittng parameters for individual
cases. The upper limits for iPTF16fnl (Blagorodnova et al. 2017)
reported at 15 GHz have been scaled by a factor of (5/15)(1 − p)/2

(assuming νa > 5 GHz). The upper limits for the X-ray selected
TDEs reported at 3 GHz by Bower et al. (2013) are not scaled.

Even though we keep the following parameters fixed k = 1.5,
p = 2.4, εe = 0.1, εB=0.01, and � = 2π , the radio luminosity and
duration are extremely diverse. Generally, we expect TDEs with
CIO to have some radio emission at the level of ASASSN-14li
lasting for years up to centuries. We also note that radio emission
from the jetted TDE Swift J1644+57 (Bloom et al. 2011; Burrows
et al. 2011; Zauderer et al. 2011) is much brighter (and peaks
earlier) than that from the CIO, because this source was powered
by a relativistic jet pointing towards the observer. For off-axis jetted
TDEs, the radio emission due to the CIO may be mistaken as a
signature of jets (a possible way of distinguishing between them is
to resolve the motion of the radio emitting region by long-baseline
interferometry).

Another possible source of wide-angle outflow is the wind
expected from super-Eddington accretion in TDEs with BH masses

Figure 14. Radio emission from the CIO interacting with the CNM for the
case of k = 1.5, p = 2.4, εe = 0.1, εB=0.01, and � = 2π . The solid and
dotted curves are for npc = 100 and 3 cm−3. Upper panel: The evolution
of the synchrotron self-absorption frequency νa as a function of time for
different cases with initial velocities v0/c = 0.01, 0.03, 0.1, 0.2 and kinetic
energies log Ek/erg = 49, 50, 51, 52. The fainter curves show ν(γ m)
which is always much smaller than νa (and in some cases always below
106 Hz). Middle panel: The evolution of the peak specific luminosity (in
erg s−1 Hz−1) with time for the cases indicated in the upper panel. Lower
panel: The light curve at 5 GHz for the cases indicated in the upper panel.
We also show the measured fluxes or upper limits at 5 GHz for several
TDEs in the lower panel, including ASASSN-14li (blue circles, Alexander
et al. 2016), Swift J1644+57 (gold circles, Zauderer et al. 2013; Eftekhari
et al. 2018), Arp299 (green circles, Mattila et al. 2018), IGR1258 (light blue
circles, Irwin et al. 2015; Perlman et al. 2017), iPTF16fnl (red upper limits,
Blagorodnova et al. 2017), other optical selected TDEs (black upper limits,
van Velzen et al. 2013), X-ray selected TDEs (light blue circles and grey
upper limits, Bower et al. 2013).

M � 107 M� (Strubbe & Quataert 2009; Sa̧dowski et al. 2014;
Jiang et al. 2017). In fact, the super-Eddington wind may be more
powerful than the CIO, because the energy efficiency of the CIO
is only ∼rg/rI ∼ 0.001 to 0.01. Thus, we expect TDEs with strong
super-Eddington wind to generate radio emission comparable to or
even brighter than that in our (v0, Ek) = (0.2, 52) case. Late-time
radio observations can potentially test whether super-Eddington
accretion flows generate jets or winds. We note that the unbound
tidal debris typically has very small solid angle (Guillochon et al.
2014), so its radio emission (and reprocessing of the high-energy
photons from the disc) is much weaker than that of the CIO. It is
less likely that the radio emission from ASASSN-14li is caused by
the unbound tidal debris (Krolik et al. 2016), unless the star was in
a very deeply penetrating β 
 1 orbit (Yalinewich et al. 2019).
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700 W. Lu and C. Bonnerot

Finally, we note that the CIO may interact with a pre-existing
accretion disc (or the broad-line region), if the BH was active
before the TDE. If the accretion disc gas is sufficiently dense,
the shocks become radiative and bright optical emission like in
PS16dtm (Blanchard et al. 2017) may be generated.

5.3 TDE demographics

TDE demographics, in terms of the total TDE rate as a function of
BH mass and properties of the disrupted star, have been considered
by Stone & Metzger (2016) and Kochanek (2016). In this section,
we focus on the rate of optically bright TDEs only, based on the
picture that the CIO reprocesses the disc emission from the EUV
into the optical band.

We differentiate the TDE rate with three parameters, stellar
mass m∗ = M∗/ M�, impact parameter β, and BH mass M, in the
following way

dṅ

dm∗ dβ dlogM
= RMα

6 m−1/12
∗ r1/4

∗
dn∗
dm∗

dP

dβ

dnBH

dlogM
, (47)

where R is the normalization rate per BH in units of yr−1, the
normalized stellar mass function satisfies

∫
(dn∗/dm∗)dm∗ = 1,

the probability distribution of the impact parameter has also been
normalized

∫
(dP/dβ)dβ = 1, and the BH mass function (BHMF)

dnBH/dlogM has unit [Mpc−3 dex−1]. The factor m−1/12
∗ r1/4

∗ is
because stars with a larger tidal radius are slightly preferred roughly
by a factor of r

1/4
T (MacLeod, Guillochon & Ramirez-Ruiz 2012).

The power-law dependence on the BH mass Mα depends, in
a non-trivial way, on the stellar density and velocity profiles
near the centre of individual galaxies. The index α is empirically
derived by combining the surface brightness profiles of a sample
of galaxies with BH masses inferred from galaxy scaling relations
(e.g. Magorrian & Tremaine 1999; Wang & Merritt 2004; Stone &
Metzger 2016). There is a core–cusp bimodal distribution of central
surface brightness profiles of early-type galaxies used for TDE rate
calculations (Lauer et al. 2007). The most recent work by Stone &
Metzger (2016) gives α 
 −0.25 for samples of only11 cusp or
core galaxies. For comparison, we also show the results for α 

−0.5 which do not affect our conclusions qualitatively. We caution
that the above studies typically assume a spherically symmetric and
time-independent galactic potential, nearly isotropic stellar velocity
distribution (except for the loss cone), and the refilling of the loss
cone by two-body relaxation only. Other factors, such as massive
perturbers, aspherical potential, binary BHs, resonant relaxation,
may strongly affect the estimated TDE rate (e.g. Merritt 2013;
Vasiliev & Merritt 2013). Therefore, we leave the normalization
factor R as a free parameter, which roughly means the (per-BH)
rate of TDEs for M-dwarf stars disrupted by ∼ 106 M� BHs.

In loss-cone dynamics, the probability distribution for the impact
parameter dP/dβ has two regimes. In the ‘pinhole’ regime (far from
the BH), the change in stars’ angular momentum per orbit �
 is
much larger than the size of the loss-cone 
lc 
 √

2rgrT, so dP/dβ

simply depends on the ‘area’ of the loss cone per unit change in β,
i.e. dP/dβ ∝ β−2. In the ‘diffusive’ regime (near the BH), �
 �

lc and hence stars are always disrupted near the boundary of the
loss-cone with minimum penetration depth, i.e. dP/dβ is nearly a
δ-function. The fraction of TDEs in the pinhole regime fpin depends

11The TDE rates for cusp galaxies are typically ∼10 times higher than that
for core galaxies of the same BH mass.

on the detailed stellar density profile near the BH and has large
uncertainty at each BH mass. Following Kochanek (2016), we take

fpin 

(

1 + M
1/2
7

)−1
, (48)

which is very similar to the fitting result by Stone & Metzger
(2016) in the range of BH masses of interest. Then the probability
distribution of β is given by

dP

dβ



{
fpinβ

−2βmin, for β > βmin

(1 − fpin) δ(β − βmin), for β ≈ βmin.
(49)

According to equation (16), the minimum impact parameter is
βmin 
 0.6 ξ−1

∗ , which includes relativistic tidal forces for the
Schwarzschild space–time (Kesden 2012) and ξ ∗ depends on the
star’s internal structure. We note that ξ ∗ is not well measured in
general relativity even for polytropic stars. Hydrodynamic simula-
tions of disruptions with polytropic or realistic stellar structures in
the Newtonian limit (rg � rp, Guillochon & Ramirez-Ruiz 2013;
Mainetti et al. 2017; Goicovic et al. 2019) show that the star loses
about half of the mass when ξ ∗ 
 0.5 (for polytropic index 4/3) or
ξ ∗ 
 1.0 (for polytropic index 5/3). The former is appropriate for
radiative stars with m∗ > 1.2 and the latter is good for convective
stars with m∗ < 0.3 (see a similar treatment by Phinney 1989). For
stars in between 0.3 < m∗ < 1.2, we take a linear interpolation in
log m∗ space. Thus,

βmin 


⎧⎪⎨⎪⎩
0.6, if m∗ < 0.3,

0.6 + log (m∗/0.3), if 0.3 < m∗ < 1.2,

1.2, if m∗ > 1.2.

(50)

We also note that the maximum impact parameter is taken to be
infinity, because a star’s orbit can have arbitrarily low angular
momentum. The effect of stars being swallowed by the event horizon
will be taken into account later when integrating over the BHMF.

We take the Kroupa initial mass function (IMF; Kroupa 2001)
truncated at m∗, max (related to the age of the stellar population)

dn∗
dm∗

=

⎧⎪⎨⎪⎩
a1m

−1.3
∗ , if m∗,min < m∗ < 0.5,

a2m
−2.3
∗ , if 0.5 < m∗ < m∗,max,

0, otherwise.

(51)

The two constants a1 and a2 are given by the continuity at m∗ = 0.5
and normalization

∫
(dn∗/dm∗)dm∗ = 1. We ignore compact stellar

remnants since they are fewer in number and are typically swallowed
as a whole for M � 2 × 105 M�. We also ignore red giants, because
they have long fallback time Pmin ∼ 11 yr M

1/2
7 m−1

∗ (r∗/10)3/2 (and
even longer circularization time) and do not have an optically thick
layer of gas to reprocess the hard disc emission into the optical band
(see Section 5.2.2). The rate of TDEs contributed by binary stars is
lower than that from single stars by a factor of ∼fbifpin(R∗/a)3/4 � 1,
where fbi is the binary fraction near the Galactic Centre and a is the
semimajor axis of the binary orbit. Tidal breakup of the binary has a
larger Roche radius rT, b 
 (a/R∗)rT and hence occurs at a higher rate
than that for single stars by a factor of ∼(a/R∗)1/4 (MacLeod et al.
2012). However, stellar disruption is only possible at high impact
parameter β � a/R∗ in pinhole regime, which means the disruption
rate is a factor of fpinR∗/a smaller than the tidal breakup rate.

The Kroupa IMF extends down to m∗ = 0.08 and then becomes
shallower dn∗/dm∗ ∝ m0.3

∗ for lower mass brown dwarfs. However,
TDEs of such low-mass objects likely do not generate much optical
emission, the reason being as follows. The mass of the reprocessing
CIO can be estimated by MCIO ∼ ρA�t (Lu & Kumar 2018), where
ρ 
 (κrph)−1 is the gas density, A 
 Lopt/σSBT 4 
 �r2

ph is the
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surface area of the optical photosphere, κ is the effective absorption
opacity, rph is the photospheric radius, Lopt and T are the optical
luminosity and BB temperature, and �t is the peak duration. Since
half of the star’s mass is in unbound tidal debris and only half of
the bound mass may be ejected as CIO, we obtain a lower limit for
the star’s mass M∗ � 4MCIO. Putting in conservative numbers, we
obtain

M∗ � (0.18 M�)
L

1/2
opt,43v9

T 2
4.5κ−2

√
�

2π

�t

10 d
. (52)

Fast transients with �t � 10 d and Lopt � 1043 erg s−1 are increas-
ingly likely to have been missed by current surveys. In the following,
we take the conservative minimum stellar mass of m∗, min = 0.1.
Larger m∗, min will lead to lower rates of optically bright TDEs.

We plug equations (49), (51), and a given BHMF into equa-
tion (47) and calculate the integrated volumetric TDE rate

ṅ = R
∫ m∗,max

m∗,min

dm∗
r1/4
∗

m
1/12
∗

dn∗
dm∗

∫ ∞

βmin

dβ
dP

dβ

×
∫ Mmax

Mcr

dlogM Mα dnBH

dlogM
, (53)

where the minimum BH mass for CIO launching Mcr is given by
equation (13) and the BH mass above which the entire star gets
swallowed is given by equation (15).

The BHMF for M � 106.5 M� is highly uncertain even in the
local Universe. Evolutionary models are constructed by inferring
BH growth by the ‘observed’ bolometric luminosity function of
active galactic nuclei (AGN). Various treatments of bolometric
corrections, radiative efficiency of the accretion discs, and AGN
duty cycles may give different results. In this paper, we take two
different BHMFs for the local Universe by Merloni & Heinz (2008,
MH08) and Shankar, Weinberg & Miralda-Escudé (2009, SWM09),
as shown in Fig. A3 in the Appendix. The main difference between
the two lies in the low-mass end: the MH08 mass function is
nearly flat while the SWM09 mass function rapidly diverges12 as
dnBH/dlogM ∝ M−0.6. Figs 15 and 16 shows the TDE demographics
for these two BHMFs, respectively. The BHMF can also be
directly calculated by applying correlations between BH mass,
bulge luminosity, and stellar velocity distribution for galaxies in
the local Universe, as done13 by Marconi et al. (2004). We also
tried using their BHMF and found that it gives similar results as the
MH08 mass function, as shown in Fig. A5 in the Appendix.

On the low BH-mass side, the predicted rate of optically bright
TDEs is nearly flat with respect to the BH mass. This is because
those TDEs with M < Mcr have been filtered out due to insufficient
amount of CIO being launched. Our results roughly agree with the
rate given by van Velzen (2018), which was based on the ‘V/Vmax’
method and the BH masses are inferred from galaxy scaling relations
with updated stellar velocity dispersion by Wevers et al. (2017).
We also show the total TDE rate without requiring M > Mcr (red
curves), which rises more rapidly towards the low-mass end. This
is because TDEs favour smaller BHs by the factor Mα (we have
taken α = −0.25 or −0.5) and the BHMF model of Shankar et al.

12We see that TDE demographics provide a valuable, direct probe of the
BHMF on the low-mass end.
13The two methods of obtaining the BHMF are not independent. Typically,
the radiative efficiency of AGN is calibrated by the total BH mass density
in the local Universe inferred from galaxy scaling relations (Soltan 1982;
Marconi et al. 2004).

Figure 15. The rate of optically bright TDEs as a function of BH mass is
shown in thick blue curve, based on the BHMF of Merloni & Heinz (2008).
The upper and lower panels are for α = −0.25 and −0.5, respectively. The
other parameters are fixed: R = 6 × 10−4 yr−1, η = 1, m∗, max = 6.4. The
total TDE rate without requiring M > Mcr (or the launching of CIO) is shown
in red curve. We decompose the TDE rates into six (logarithmic) stellar mass
bins as shown in thinner curves: m∗ ∈ (0.1, 0.2), (0.2, 0.4), (0.4, 0.8), (0.8,
1.6), (1.6, 3.2), and (3.2, 6.4). Including up to the (1.6, 3.2) or (3.2, 6.4) bin
means we are considering a stellar population of relatively young age ∼ 500
or ∼ 100 Myr, respectively. If we take away these two high-mass bins, then
the stellar population has age ∼ 3 Gyr. The observationally inferred rates
by van Velzen (2018, V18) are shown for comparison. The grey point near
logM ∼ 8.3 only contains the TDE candidate ASASSN-15lh.

(2009) diverges towards the low-mass end (the MH08 model has
a shallower behaviour). Unfortunately, the current small-number
statistics are not able to discriminate between the two scenarios
(shown in blue and red curves) at a significant confidence level.

Thus, our picture predicts that the majority of TDEs by BHs with
M � 106 M� are not optically bright and will hence be missed by
current optical transient surveys. The rate of optically bright TDEs
is a factor of ∼10 or more14 lower than the total TDE rate. Some of
these missing TDEs should be observable by wide field-of-view soft
X-ray surveys like eROSITA (Cappelluti et al. 2011) and Einstein

14In Figs 15 and 16, if we take away the m∗ ∈ (0.1, 0.2) bin due to insufficient
mass for the reprocessing layer, the rate of optically bright TDEs will be
lower by a factor of ∼2 (but the overall shape of the rate as a function of
BH mass stays nearly the same). We also note that there could be a large
population of TDEs hidden from optical view by dust extinction (Wang et al.
2018).
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Figure 16. The rate of optically bright TDEs as a function of BH mass,
for the BHMF by Shankar et al. (2009). The rate normalization constant is
R = 3 × 10−4 yr−1. All other parameters are the same as in Fig. 15.

Probe (Yuan et al. 2015). Our picture can be tested by comparing the
detection rates of TDEs in the X-ray and optical bands, although
one should keep in mind that low BH-mass TDEs may have a
long circularization time-scale due to weak apsidal precession (see
Section 5.1).

On the high BH-mass end, the optically bright TDE rate is
strongly suppressed due to stars being swallowed by the event
horizon, which has been used as a supportive evidence for the
existence of BH event horizon (Lu, Kumar & Narayan 2017) and
that the observed candidates are actually TDEs (van Velzen 2018).
We note that the grey data point near logM ∼ 8.3 only contains the
TDE candidate ASASSN-15lh, whose nature is still being debated
(Dong et al. 2016; Leloudas et al. 2016; Krühler et al. 2018). In our
picture, it can be explained by disruption of a relatively massive star
m∗ ∼ 5 by a non-spinning BH. Disruption of a Sun-like star by a
rapidly spinning BH is also possible, because βmin can be smaller
than 0.6 ξ−1

∗ for a prograde orbit (Kesden 2012; Leloudas et al.
2016).

Finally, we note that rare post-starburst galaxies are overrep-
resented in the current sample of TDE host galaxies by a factor
of ∼20 to ∼100 (Arcavi et al. 2014; French, Arcavi & Zabludoff
2016; Law-Smith et al. 2017; Graur et al. 2018), which may be
due to higher stellar density concentration near the galactic centres
(e.g. Law-Smith et al. 2017; Stone et al. 2018b). Our method also
applies to the group of post-starburst galaxies (with a higher rate
normalization constant R), as long as their BHMF is similar to

that of the entire galaxy population. An important difference is that
the age of the stellar population near the centres of post-starburst
galaxies may be significantly younger than that for the other normal
galaxies, ranging from 100 Myr to 1 Gyr. This will affect the TDE
rate on the high BH-mass end. Another potential difference is that
the pinhole fraction fpin may be lower for more cuspy (steeper)
stellar density distribution in post-starburst galaxies (Stone et al.
2018b).

6 D ISCUSSION

In this section, we discuss a number of issues that require further
thoughts in future works.

(1) The stream self-intersection may be delayed due to Lense–
Thirring (LT) precession, if the BH’s spin is misaligned with the
angular momentum of the stellar orbit (e.g. Kochanek 1994; Dai,
Escala & Coppi 2013; Guillochon & Ramirez-Ruiz 2015; Hayasaki
et al. 2016). For highly eccentric orbits, the angle by which the
orbital angular momentum vector precesses over one period is
(�ω)LT ≈ 4πa(rg/2rp)3/2 sin i (to leading post-Newtonian order),
where a is the dimensionless spin of the BH and i is the inclination
angle (i = 0 for spin–orbit alignment). For a given orbit, we express
the maximum ratio of the stream width over the distance to the BH as
(H/r)max = fHβR∗/rT, where fH describes possible broadening of the
stream due to apsidal/LT precession,15 hydrogen recombination, and
magnetic fields. Then, intersection may be avoided for a particular
orbit when (�ω)LT � (H/r)max, i.e.

M
4/3
6 m1/6

∗ r−3/2
∗ � 1 fH a−1β−1/2. (54)

We can see that TDEs by slowly spinning a � 1 low-mass M6 �
1 BHs are expected to have prompt intersection between the first
and second orbits (as shown in Fig. 1). For rapidly spinning high-
mass BHs, intersection may be avoided promptly (if fH ∼ 1) but
will eventually occur with a delay. From the point of view of an
observer who defines t = 0 as the moment of stream intersection,
the delay itself is not important, since the mass flux of the stream
stays unchanged. On the other hand, as long as the intersection
occurs between two adjacent orbits (the nth and the n + 1th, as
found by Guillochon & Ramirez-Ruiz 2015), the intersection radius
(rI, LT) under LT precession is roughly the same as that without LT
precession (rI). This is because for most TDEs the apsidal precession
angle (3πrg/rp) is much larger than the LT precession angle. Thus,
the intersection radius rI, angle θ̃I, and velocity ṽI calculated in the
Schwarzschild space–time are similar to those for spinning BHs.
Therefore, our model for the hydrodynamical collision process,
including redistribution of angular momentum/specific energy and
the possibility of launching the CIO, should be largely applicable.

(2) TDE demographics on the high BH-mass end depends on
the spin distribution. In the case where the star’s initial angular
momentum is parallel to the BH’s spin angular momentum, the
pericentre radius of the marginally bound parabolic orbit is rmb =
(1 + √

1 − a)2rg (Bardeen et al. 1972), where −1 < a < 1 is the

15Without LT precession, the ratio between the velocity perpendicular to
the orbital plane v⊥ and the velocity within the orbital plane v� is of order
v⊥/v� ∼ (M∗/M)1/3 � 1. However, for strong LT precession (�ω)LT �
v⊥/v�, a fraction of the v� component is aligned with the direction of
vertical compression, so the stream width after the bounce may be broader
than in the case without LT precession. Strong apsidal precession can also
cause the tidal compression in the orbital plane to be oblique and hence part
of the orbital velocity may be dissipated near the pericentre.
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spin parameter of the BH (a < 0 for retrograde orbits). The marginal
disruption case corresponds to rp ≈ rmb ≈ 51/3ξ ∗rT, which gives the
maximum mass for Kerr BHs hosting TDEs

Mmax,Kerr = (8.9 × 107 M�)

(
2

1 + √
1 − a

)3
ξ 3/2
∗ r3/2

∗
m

1/2
∗

. (55)

We can see that the Mmax, Kerr is strongly affected by the BH spin
only when a � 0.5. The maximum BH mass is also affected by the
age of the stellar population (m∗, max, stellar interior structure ξ ∗,
and the number of evolved subgiants). It may be difficult to extract
the information on the BH spin distribution from TDE rate on the
high BH-mass end. We also note that the critical mass Mcr (above
which significant amount of CIO is launched) is mainly affected by
the spin-independent de Sitter term of the apsidal precession, so the
TDE demographics on the low BH-mass end should be insensitive
to the BH spin distribution.

(3) We have assumed that the two colliding streams have the same
cross-section and that there is no offset in the transverse direction.
This is reasonable provided that (i) all processes occurring when
the fallback stream passes near the pericentre r ∼ rp before the
collision are largely reversible16 and that (ii) the angular stream
widths H/r are larger than than the amount of LT precession per orbit.
However, there could be many irreversible processes occurring near
the pericentre, including: (i) apsidal and LT precession causing the
tidal compression to be oblique (instead of perpendicular to the
orbital velocity); (ii) mass-loss along with the bounce following
the tidal compression; (ii) viscosity causing exchange of angular
momentum between adjacent shear layers. The GR evolution of the
fallback stream over multiple orbits is still an open question, mainly
because the extremely large aspect ratio makes it a challenging task
for numerical simulations. If these irreversible processes are indeed
important and equation (54) is satisfied, our current model needs
two additional parameters: the ratio of the cross-sections of the
two colliding streams and the fractional offset in the transverse
direction. The hydrodynamics of the stream–stream collision and
the subsequent expansion of the shocked gas may be largely
modified. This is out of the scope of the current work and should
be studied in the future.

(4) The energy radiated in the UV-optical band is typically
� 1051 erg, which is much smaller than the energy budget of the
system, even assuming radiatively inefficient accretion (Piran et al.
2015; Lu & Kumar 2018). In our picture, this ‘missing energy’
puzzle may be explained in two possible scenarios. The first is that
the disc bolometric emission is capped near the Eddington level for
an extended amount of time17 (
Pmin) but the CIO reprocesses the
disc emission in to the UV-optical band only for a time-scale of
order Pmin (then the reprocessed emission moves into the EUV and
soft X-ray as the trapping radius shrinks). Since the observed peak
UV-optical luminosity is also near the Eddington limit (e.g. Wevers
et al. 2017), the efficiency for reprocessing, defined as the observed
UV-optical luminosity divided by the intrinsic disc luminosity, is
required to be of order unity in this case. The second scenario is that

16This means that, if we denote the two colliding ends as C1 and C2 (in
chronological order) and reverse the velocity at C2, the stream will evolve
back to the conditions at C1 (except for the velocity being in the opposite
direction).
17The late-time (5–10 yr) UV-optical emission from a number of TDEs
reported by van Velzen et al. (2019b) supports this scenario, but the it is also
possible that the late-time excess is due to dust scattering echo (which has
been seen in many supernovae).

the disc bolometric emission significantly exceeds the Eddington
limit (as in the simulations by Jiang et al. 2017), but the reprocessing
efficiency is much less than unity. The reason for a low reprocessing
efficiency could be that, if rtr 
 rin, photons are trapped in the
expanding CIO and hence their energy is adiabatically lost in
the form of PdV work. However, detailed radiation-hydrodynamic
simulations are needed to distinguish between these two scenarios.

7 SU M M A RY

We have described a semi-analytical model for the dynamics of
TDEs, including the properties of the fallback stream before the self-
intersection and the fate of the shocked gas after the intersection.
We circumvent the computational challenge faced by previous TDE
simulation works by assuming that the post-disruption bound stream
follows the geodesics in the Schwarzschild space–time until the self-
intersection. Then we numerically simulate the (non-relativistic)
hydrodynamical collision process in a local box at the intersection
point. Since the cross-sections of the two colliding streams are much
smaller than the size of the orbit and the streams are pressureless (or
cold) before the collision, the collision process and the expanding
structure of the shocked gas are self-similar. This allows us to
explore a wide range of TDE parameter space in terms of the stellar
mass, BH mass, and impact parameter. Our method provides a way
for global simulations of the disc formation process by injecting
gas at the intersection point according to the velocity and density
profiles (equations 9 and 10) shown in this paper.

The most important observational implication is that a large
fraction of the fallback gas can be launched in the form of a CIO
when the BH mass is above a critical value Mcr (equation 13). We
propose that the CIO is responsible for reprocessing the accretion
disc emission from the EUV or soft X-ray to the optical band. This
picture can naturally explain the large photospheric radius of ∼1014–
1015 cm (or low BB temperature of a few×104 K), and the typical
widths of the H and/or He emission lines. We predict the CIO-
reprocessed spectrum in the infrared to be Lν ∝ ν∼0.5, shallower
than a BB. A BB fit to the optical SED, as commonly done in
the literature, may underestimate the true colour temperature. Our
picture is different from that of Piran et al. (2015) in that the radiation
energy ultimately comes from the accretion flow rather than the
stream collision (which is shown to be nearly adiabatic, Jiang et al.
2016). Our model is also different from that of Metzger & Stone
(2016) in that we identify the physical origin of the ‘reprocessing
layer’ and that this layer is aspherical.

The partial sky coverage of the CIO provides a natural unification
of the diverse X-ray behaviours of the optically selected TDEs.
Depending on the observer’s line of sight, an optically bright
TDE may show strong X-ray emission (when the inner disc is not
veiled) or weak/no X-ray emission (when the inner disc is veiled),
which agrees with the large range of X-ray to optical peak flux
ratios: ∼10−4 for iPTF16fnl (Blagorodnova et al. 2017), ∼10−2

for AT2018zr (van Velzen et al. 2019a), and ∼1 for ASASSN-14li
(Holoien et al. 2016). As the CIO’s mass outflowing rate drops with
time, the X-ray fluxes for veiled TDEs may gradually rise with time,
as observed in ASASSN-15oi and -15lh (Gezari et al. 2017; Margutti
et al. 2017; Holoien et al. 2018b). Our picture is different from those
of Dai et al. (2018) and Curd & Narayan (2019) which describe that
the X-ray to optical flux ratio is controlled by the observer’s viewing
angle with respect to rotational axis of the accretion disc (instead
of the CIO’s outflowing direction).

In cases where the CIO is launched (BH mass M > Mcr), the
rest of the fallback gas is left in more tightly bound orbits with
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higher (sometimes negative) specific angular momentum than the
original star, and hence the circularization process is expected to
occur on time-scale of order ∼Pmin after the onset of intersection. If
this is confirmed by future simulations, then it explains the rise/fade
time-scale (∼months) of optically bright TDEs. We note that the
circularization radius of the accreting gas may be different from 2rp

(as generally assumed in the literature, e.g. Rees 1988; Strubbe &
Quataert 2009; Shen & Matzner 2014). Another unexpected predic-
tion is that, in some cases, the accretion disc rotates in the opposite
direction as that of the initial star.

The total kinetic energy of the CIO spans a wide range from
∼1050 up to a few×1052 erg (in rare cases). The mass-weighted
mean speed varies from ∼0.01c to ∼0.1c. The shocks driven into
the ambient medium by this outflow can produce radio emission
with highly diverse time-scales and peak luminosities, depending
on the density profile of the ambient medium, CIO’s velocity and
energy, and microphysics of particle acceleration/magnetic field
amplification by the shocks. The radio emission from ASASSN-
14li and a few other TDE candidates may be from the afterglow of
the CIO (instead of the unbound tidal debris, which typically has a
much narrower solid angle).

We also find that the volumetric rate of optically bright TDEs is
nearly flat with respect to the BH mass in the range M � 107 M�.
This is because TDEs with M < Mcr have been filtered out due
to lack of significant amount of CIO. Our results roughly agree
with the BHMF of optically selected TDEs obtained by van Velzen
(2018). This filtering leads to an optical TDE rate that is a factor of
∼10 or more lower than the total TDE rate (without requiring M <

Mcr). For TDEs by BHs with M < Mcr, the stream self-intersection
becomes less and less efficient at dissipating the orbital energy and
other mechanisms such as MHD turbulence may be responsible
for driving the formation of a circular disc. The circularization
time-scale of these TDEs may be much longer than Pmin. Some of
them should be observable by wide field-of-view X-ray surveys like
eROSITA (Cappelluti et al. 2011) and Einstein Probe (Yuan et al.
2015). Our model can be tested by comparing the rates of TDEs in
the X-ray and optical bands.
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Shen R.-F., Matzner C. D., 2014, ApJ, 784, 87
Shiokawa H., Krolik J. H., Cheng R. M., Piran T., Noble S. C., 2015, ApJ,

804, 85
Sironi L., Giannios D., 2013, ApJ, 778, 107
Soltan A., 1982, MNRAS, 200, 115
Steinberg E., Coughlin E. R., Stone N. C., Metzger B. D., 2019, MNRAS

Letters, 485, L145

Stone N., Sari R., Loeb A., 2013, MNRAS, 435, 1809
Stone N. C., Metzger B. D., 2016, MNRAS, 455, 859
Stone N. C., Kesden M., Cheng R. M., van Velzen S., 2018a, General Gravity

and Gravitation, 51, 30
Stone N. C., Generozov A., Vasiliev E., Metzger B. D., 2018b, MNRAS,

480, 5060
Strubbe L. E., Quataert E., 2009, MNRAS, 400, 2070
Svirski G., Piran T., Krolik J., 2017, MNRAS, 467, 1426
Sa̧dowski A., Narayan R., McKinney J. C., Tchekhovskoy A., 2014,

MNRAS, 439, 503
Sa̧dowski A., Tejeda E., Gafton E., Rosswog S., Abarca D., 2016, MNRAS,

458, 4250
Tejeda E., Gafton E., Rosswog S., Miller J. C., 2017, MNRAS, 469,

4483
Tout C. A., Pols O. R., Eggleton P. P., Han Z., 1996, MNRAS, 281, 257
van Velzen S., 2018, ApJ, 852, 72
van Velzen S. et al., 2011, ApJ, 741, 73
van Velzen S., Frail D. A., Körding E., Falcke H., 2013, A&A, 552, A5
van Velzen S. et al., 2019a, ApJ, 872, 198
van Velzen S., Stone N. C., Metzger B. D., Gezari S., Brown T. M., Fruchter

A. S., 2019b, ApJ, 878, 82
Vasiliev E., Merritt D., 2013, ApJ, 774, 87
Wang J., Merritt D., 2004, ApJ, 600, 149
Wang T., Yan L., Dou L., Jiang N., Sheng Z., Yang C., 2018, MNRAS, 477,

2943
Wevers T., van Velzen S., Jonker P. G., Stone N. C., Hung T., Onori F.,

Gezari S., Blagorodnova N., 2017, MNRAS, 471, 1694
Wright A. E., Barlow M. J., 1975, MNRAS, 170, 41
Yalinewich A., Steinberg E., Piran T., Krolik J. H., 2019, MNRAS, 487,

4083
Yuan W. et al., 2015, preprint (arXiv:1506.07735)
Zanardo G. et al., 2014, ApJ, 796, 82
Zauderer B. A. et al., 2011, Nature, 476, 425
Zauderer B. A., Berger E., Margutti R., Pooley G. G., Sari R., Soderberg A.

M., Brunthaler A., Bietenholz M. F., 2013, ApJ, 767, 152

APPENDI X A : SUPPLEMENTA L FI GURE S

In the Appendix, we provide a number of figures to support the
main content. Their descriptions are in the captions.

Figure A1. The critical mass above which the unbound fraction exceeds
20 per cent, for a number of cases with parameters indicated in the legend.
The red curves from numerical calculations almost overlap with the blue
curves given by equation (13).
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Figure A2. The efficiency of orbital energy dissipation fdiss as defined in
equation (7), for M6 = 0.03 (red), 0.1 (blue), 0.3 (yellow), and 1 (cyan
curves). For each BH mass, we consider three cases with (β, η) = (0.6, 1)
[solid], (1, 1) [dashed], and (1, 0.5) [dotted curves]. These thick coloured
curves from numerical calculations overlap with the black thin curves, which
are from the analytical expression in equation (17).

Figure A3. The BHMFs from Marconi et al. (2004, M+04), Merloni &
Heinz (2008, MH08), and Shankar et al. (2009, SWM09) used in this
paper are shown in red (dashed), green (dotted), and blue (solid) curves,
respectively.

Figure A4. The map of fate for the shocked gas expanding in different
directions for two cases with stellar masses m∗ = 1.0 (upper panel) and 1.5
(lower panel). The other conditions are the same: BH mass M6 = 0.3, impact
parameter β = 1.0, and orbital energy parameter η = 1.0. In these two cases,
the plunging regions are far from the poles (θ̄ ∼ 0 or π ), because the velocity
before the collision has comparable r̂ and φ̂ components: ṽφ ∼ ṽr (see the
third panel of Fig. 2). The specific angular momenta of the pre-disruption
star are 
0 ≈ 6.5rg (upper panel) and 8.0rg (lower panel).
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Figure A5. The rate of optically bright TDEs as a function of BH mass,
for the BHMF by Marconi et al. (2004). The rate normalization constant is
R = 4 × 10−4 yr−1. All other parameters are the same as in Fig. 15.

APPEN D IX B: LOW RADIATIVE EFFICIENCY
O F S E L F - I N T E R S E C T I O N SH O C K S

We justify the usage of adiabatic equation of state for our hydrody-
namic simulation in Section 3. At the collision point, the Thomson
scattering optical depth of the stream in the transverse direction is
given by τ st 
 2κ sρH, where H is the radius of the stream (assuming
cylindrical shape), ρ is the gas density, and κs = 0.34 cm2 s−1

is the scattering opacity. The mass flowing rate of the stream is
Ṁfb 
 πH 2ρv, and hence

τst 
 2κsṀ

πHv
∼ 6 × 103 Ṁfb

M� yr−1

10 R�
H

0.1c

v
, (B1)

where we have used conservative values for the flow velocity v,
transverse radius H, and mass flowing rate (see equation 19). After
the collision, the pressure of the shocked gas is dominated by
radiation, and adiabatic expansion converts internal energy back
into (roughly spherical) bulk motion over a radius of r ∼ a few×
H. Beyond this radius, the gas expands with nearly constant velocity
v and the density drops with radius as ρ ∝ r−2 (see Fig. 4).
Radiation is advected by the expanding shocked gas until the photon
trapping radius rtr 
 κsṀ/(4πc). The radiative efficiency, i.e. the
ratio between the emergent luminosity and the total kinetic power,

is roughly given by(
H

rtr

)2/3

∼ 5 × 10−2

(
Ṁfb

M� yr−1

)−2/3 (
H

10 R�

)2/3

. (B2)

We see that the stream self-intersection is radiatively inefficient.

APPENDI X C : PHOTO N D OWN-SCATTERING
I N D I F F U S I O N R E G I O N

Consider photons diffusing through a scattering slab in the x̂ direc-
tion. For a general form of angular dependence for the intensity

I (x, μ) =
∞∑

n=0

In(x)Pn(μ), μ ≡ cos θ ∈ [−1, 1], (C1)

where I = ∫
dνIν , Pn(μ) are the Legendre polynomials (only the

first three terms are important here) P0 = 1, P1 = μ, P2 = (3μ2 −
1)/2, and the orthonormality gives

∫
PmPndμ = 2δmn/(2n + 1) (δmn

being the Kronecker delta). The energy density, flux, and pressure
of the radiation field are given by the different moments of intensity
U = (2π/c)

∫
I (μ)dμ = 4πI0/c, F = 2π

∫
I (μ)μdμ = 4πI1/3,

and P = (2π/c)
∫

I (μ)μ2dμ = (4π/3c)(2I2/5 + I0). Now take an
electron moving at velocity βc and Lorentz factor γ in the x̂
direction. We Lorentz transform the radiation field from the lab
frame to the comoving frame of the electron, where quantities are
denoted with a prime (

′
). In the comoving frame, the electron gains

momentum �p
′
over time �t

′
due to scattering

�p′

�t ′ = 2πσT

c

∫
dμ′μ′

∫
dν ′I ′

ν′ (μ′)

= 2πγ 2σT

c

∫
dμI (μ)(μ − β)(1 − βμ), (C2)

where σ T is the Thomson cross-section. Making use of the orthonor-
mality relations, the integral above can be expressed in terms of I0,
I1, and I2 and hence U, F, and P. Going back to the lab frame, the
electron gains energy at a rate given by

�E

�t
= βc

�p′

�t ′ = γ 2βσTc

[
(1 + β2)

F

c
− β(U + P )

]
, (C3)

which is at the expense of radiation energy. Therefore, the fractional
energy loss of a photon under each scattering (over a time-scale
λmfp/c) is given by

δν

ν
= −�E

�t

λmfp

c

ne

U
= −γ 2β

[
(1 + β2)

F

Uc
− β

(
1 + P

U

)]
,

(C4)

where the mean-free path is λmfp = (neσ T)−1. In the limit of isotropic
radiation field F = 0 and P/U = 1/3, the result δν/ν = 4γ 2β2/3 agrees
with Rybicki & Lightman (1979, equation 7.16a). In the diffusion
region of the (non-relativistic) CIO, rtr < r < rscat, the diffusive flux
is given by F 
 Uc/τ s 
 β (τ s being the scattering optical depth),
so the fractional energy shift per scattering is

δν/ν 
 βF/(Uc) = β/τ. (C5)

Since a typical photon undergoes ∼τ 2 scatterings before escaping,
the cumulative fractional energy shift is τ 2δν/ν ∼ βτ . This justifies
equation (27).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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