A Caltech Library Service

Hornblende as a tool for assessing mineral-melt equilibrium and recognition of crystal accumulation

Werts, Kevin and Barnes, Calvin G. and Memeti, Valbone and Ratschbacher, Barbara and Williams, Dustin and Paterson, Scott R. (2020) Hornblende as a tool for assessing mineral-melt equilibrium and recognition of crystal accumulation. American Mineralogist, 105 (1). pp. 77-91. ISSN 0003-004X.

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item:


Bulk-rock compositions are commonly used as proxies for melt compositions, particularly in silicic plutonic systems. However, crystal accumulation and/or melt loss may play an important role in bulk-rock compositional variability (McCarthy and Hasty 1976; McCarthy and Groves 1979; Wiebe 1993; Wiebe et al. 2002; Collins et al. 2006; Deering and Bachmann 2010; Miller et al. 2011; Vernon and Collins 2011; Lee and Morton 2015; Lee et al. 2015; Barnes et al. 2016a; Schaen et al. 2018). Recognizing and quantifying the effects of crystal accumulation and melt loss in these silicic systems is challenging. Hornblende-melt Fe/Mg partitioning relationships and hornblende (Hbl) chemometry are used here to test for equilibrium with encompassing bulk-rock and/or glass compositions from several plutonic and volcanic systems. Furthermore, we assess the extent to which these tests can be appropriately applied to Hbl from plutonic systems by investigating whether Hbl from the long-lived (~10 Ma) Tuolumne Intrusive Complex preserves magmatic crystallization histories. On the basis of regular zoning patterns, co-variation of both fast- and slow-diffusing trace elements, Hbl thermometry, and compositional overlap with volcanic Hbl we conclude that Hbl from plutons largely preserve records supporting the preservation of a magmatic crystallization history, although many compositional analyses yield calculated temperatures <750 °C, which is unusual in volcanic Hbl. Hornblende is only rarely in equilibrium with host plutonic bulk-rock compositions over a wide range of SiO2 contents (42–78 wt%). Hornblende chemometry indicates that the majority of Hbl from the plutonic systems investigated here is in equilibrium with melts that are typically more silicic (dacitic to rhyolitic in composition) than bulk-rock compositions. These results are consistent with crystal accumulation and/or loss of silicic melts within middle- to upper-crustal plutons. Although the processes by which melts are removed from these plutonic systems is uncertain, it is evident that these melts are either redistributed in the crust (e.g., leucogranite dikes, plutonic roofs, etc.) or are instead erupted. In contrast, Hbl from volcanic rocks is more commonly in equilibrium with bulk-rock and glass compositions. In most cases, where Hbl is out of equilibrium with its host glass, the glasses are more evolved than the calculated melts indicating crystallization from a less fractionated melt and/or mixed crystal populations. Where Hbl is not in equilibrium with volcanic bulk-rocks, the bulk-rock compositions are typically more mafic than the calculated melts. In some intermediate volcanic samples, the occurrence of wide-ranges of calculated melt compositions is indicative of magma mixing. The general absence of Hbl with temperatures <750 °C from volcanic systems suggests that magmatic mushes below this temperature are unlikely to erupt. Our results indicate that bulk-rock compositions of granitic plutonic rocks only rarely approximate melt compositions and that the possibility of crystal accumulation and/or melt loss cannot be ignored. We suggest that detailed assessments of crystal accumulation and melt loss processes in magmatic systems are crucial to evaluating magma differentiation processes and discerning petrogenetic links between plutonic and volcanic systems.

Item Type:Article
Related URLs:
URLURL TypeDescription
Ratschbacher, Barbara0000-0002-2112-7225
Additional Information:© 2020 Mineralogical Society of America. Manuscript received January 23, 2019; Manuscript accepted August 30, 2019; Manuscript handled by Jade Star Lacke. We thank George Morgan, Melanie Barnes, and Jake Sullivan for their assistance in the laboratory. The manuscript was greatly improved by reviews from Phil Piccoli, Charlotte Allen, and an anonymous reviewer and editorial comments from Jade Star Lackey. This work was supported by NSF EAR grants awarded to Barnes (EAR 155509), Memeti (EAR 1550935), and Paterson (EAR 1250219 and EAR 1624847).
Funding AgencyGrant Number
Subject Keywords:Hornblende, crystal accumulation, granite, rhyolite, volcano–plutonic connection
Issue or Number:1
Record Number:CaltechAUTHORS:20200103-132643366
Persistent URL:
Official Citation:Kevin Werts, Calvin G. Barnes, Valbone Memeti, Barbara Ratschbacher, Dustin Williams, Scott R. Paterson; Hornblende as a tool for assessing mineral-melt equilibrium and recognition of crystal accumulation. American Mineralogist ; 105 (1): 77–91. doi:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:100507
Deposited By: Tony Diaz
Deposited On:04 Jan 2020 23:59
Last Modified:06 Jan 2020 22:58

Repository Staff Only: item control page