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FOUR-TERM PROGRESSION FREE SETS WITH

THREE-TERM PROGRESSIONS IN ALL LARGE SUBSETS

COSMIN POHOATA AND OLIVER ROCHE-NEWTON

Abstract. This paper is mainly concerned with sets which do not contain
four-term arithmetic progressions, but are still very rich in three term arith-
metic progressions, in the sense that all sufficiently large subsets contain at
least one such progression. We prove that there exists a positive constant
c and a set A ⊂ F

n
q which does not contain a four-term arithmetic progres-

sion, with the property that for every subset A′ ⊂ A with |A′| ≥ |A|1−c,
A′ contains a nontrivial three term arithmetic progression. We derive this
from a more general quantitative Roth-type theorem in random subsets of
F
n
q , which improves a result of Kohayakawa-Luczak-Rödl/Tao-Vu.
We also discuss a similar phenomenon over the integers, where we show

that for all ǫ > 0, and all sufficiently large N ∈ N, there exists a four-term
progression-free set A of size N with the property that for every subset
A′ ⊂ A with |A′| ≫ 1

(logN)1−ǫ
·N contains a nontrivial three term arithmetic

progression.
Finally, we include another application of our methods, showing that for

sets in F
n
q or Z the property of “having nontrivial three-term progressions

in all large subsets” is almost entirely uncorrelated with the property of
“having large additive energy”.

1. Introduction

A k-term arithmetic progression in an additive group is a set of the form
{x, x + d, . . . , x + (k − 1)d}. If d 6= 0 then we say that the progression is
non-trivial. The shorthand k-AP is used for a k-term arithmetic progression.
If a set A does not contain any non-trivial k-APs we say that A is k-AP free.

We define fk(A) to be size of the largest k-AP free subset of A. In the case
when A = {1, . . . , N} ⊂ Z, the study of the behaviour of fk(A) has been a
central topic in additive combinatorics. Following the standard notation, we
will write

rk(N) := fk({1, . . . , N}).
The seminal result on this topic is Szemerédi’s Theorem [24], which states
that sets of integers with positive density contain arbitrarily long arithmetic
progressions, or using the notation above rk(N) = o(N). Szemerédi’s Theorem
generalized Roth’s Theorem [20], which had earlier established the case when
k = 3. There has since been a great deal of research aimed at finding the
correct asymptotic behaviour of rk(N), particularly in the case when k = 3.
The current state-of-the-art is that

log1/4 N

22
√
2
√
logN

·N ≪ r3(N) ≪ (log logN)4

logN
·N. (1.1)
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The upper bound in (1.1) is due to Bloom [6], while the lower bound comes
from Elkin [10], who improved upon the celebrated construction of Behrend
[5]. For more background and history on the behaviour of r3(N), see [6] and
the references within.

Similar problems have been studied in other settings, and of particular rel-
evance to this work is the setting of Fn

q . A recent breakthrough of Croot, Lev
and Pach [8] and Ellenberg and Gijswijt [11] gave spectacular quantitative
progress over Fn

q , resulting in the bound

f3(F
n
q ) ≪ qn(1−cq) (1.2)

where cq > 0 can be calculated explicitly (and satisfies cq = Θ((log q)−1) as q
grows large); see the forthcoming Section 3 for more details). Note that this
bound is much better than what one could hope to prove for the corresponding
problem over the integers, which highlights that this change of setting leads
to a rather different problem.

In this paper, we consider a problem in this direction but with a slightly
different flavour. Let k ≥ 3 be an integer and suppose that we have a set A
in a group G which does not contain any (k + 1)-APs. Is it always possible
to find a large subset of A which does not contain any k-APs? Or using the
notation we have established, is it always the case that fk(A) is large when A
is (k + 1)-AP free?

Perhaps a first intuitive guess is that the answer should be “yes”, and that
all k-APs can be destroyed by deleting a relatively small number of elements
of A. Focusing on the situation when k = 3 and G is Z or Fn

q , the results of
this paper give quantitative answers to this question in the negative direction.
Our main result is perhaps the following.

Theorem 1.1. For all β > 0, there exists n0 = n0(β) such that the following
statement holds for all n ≥ n0 and for any prime power q. There exists a
four-term progression free set A ⊂ F

n
q such that

f3(A) ≤ |A|1−
1

2(Cq−2)
+β

.

That is, we show the existence of a set A ⊂ F
n
q which does not contain a

non-trivial 4-AP but for which every large subset A′ ⊂ A contains a non-trivial
3-AP. The positive constant Cq depends on the aforementioned constant cq via

Cq = 1 +
1

cq
.

For a concrete example, one can calculate that C5 ≈ 15.12589, meaning that
every set A′ ⊂ A larger than |A|0.962 contains a 3-AP.

Our proof relies on an iterated application of the so-called hypergraph con-
tainer theorem, which we will describe in the next section, and which takes as
input a supersaturated version of the subexponential Ellenberg-Gijswijt upper
bound for 3-AP free subsets of Fn

q from (1.2). In fact, we will derive Theorem
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1.1 from a more general result about random subsets of Fn
q , in the spirit of

Kohayakawa-Luczak-Rődl [18] and Conlon-Gowers [7].

Theorem 1.2. Let β > 0, t < cq(1 − 2β) and let p be a positive real number
satisfying

q
n
(

− 1
2
+

t(Cq−1)

2

)

≤ p ≤ 1.

Let B be a random subset of Fn
q with the events x ∈ B being independent with

probability P(x ∈ B) = p. Then, with probability 1− on→∞(1) we have that

f3(B) ≪ pqn(1−t+2β).

In particular, for all ǫ > 0, there exists δ(ǫ, q) := δ > 0 such that if B is defined

as above with p = qn(−
1
2
+ǫ), then with probability 1− on→∞(1),

f3(B) ≪ |B|1−δ.

This allows us to detect three-term arithmetic progressions in subsets of Fn
q

of size as small as qn(
1
2
+ǫ), which is beyond the reach of the Ellenberg-Gijswijt

bound (1.2), provided that those subsets have large relative density compared
to a random set. This improves a result of Tao and Vu from [25, Theorem
10.18]. It is also worth pointing out that the range for p in Theorem 1.2
is optimal. Indeed, if p = q−n/2/2 then the expected number of three-term
progressions in a random subset B of Fn

q (where each element in B chosen

independently with probability p) is less than qn/2/8, while the expected num-
ber of elements in B is qn/2/2. Therefore, one can almost always remove an
element from each progression and still be left with at least half the elements
of B.

We also consider the analogue of Theorem 1.1 in the integer setting, where
we obtain the following result.

Theorem 1.3. For all α > 0 and for all N ∈ N sufficiently large (depending
on α), there exists a set of integers A with |A| = N which does not contain
any nontrivial four-term arithmetic progression, and for which

f3(A) ≪
1

(logN)1−α
·N. (1.3)

It is important to mention that in the integer setting, if merely a sublinear
upper bound on f3(A) would be the goal, one could could pretty easily explic-
itly describe a set of integers A with no four-term progressions for which the
powerful density Hales-Jewett theorem ensures that all of its relatively dense
subsets share the same property; consider, for instance, the subset of the first
N integers with only digits 0, 1 or 2 in base 6. This is a 4-AP-free sets A for
which indeed f3(A) = o(|A|) but the asymptotic notation doesn’t hide good
bounds. In the (non-quantitative) direction, a much more general statement
was also recently established by Balogh, Liu and Sharifzadeh in [1, Theorem
1.7], who show that for all k ≥ 3, there exists a set S of primes such that
S is (k + 1)-AP free, and fk(S) = o(|S|). Theorem 1.3 should perhaps be
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thought of as follows: there exist sets of N integers without non-trivial four-
term progressions for which the size of the largest 3-AP free subset is smaller
than roughly the best upper bound known for r3(N).

After discussing the required ingredients in Sections 2 and 3, we prove Theo-
rems 1.1 and 1.3 in Sections 4 and 5, respectively. In Section 6, we will discuss
another application of our methods, showing that for sets (in F

n
q or Z) the

property of “having nontrivial three-term progressions in all large subsets” is
almost entirely uncorrelated with the property of “having large additive en-
ergy”. In particular, we prove the existence of sets A with minimal additive
energy and small f3(A).

Asymptotic Notation. Throughout the paper, the standard notation ≪,≫
and respectively O and Ω is applied to positive quantities in the usual way.
That is, X ≫ Y , Y ≪ X, X = Ω(Y ) and Y = O(X) all mean that X ≥ cY ,
for some absolute constant c > 0. If both X ≪ Y and Y ≪ X hold we write
X ≈ Y , or equivalently X = Θ(Y ). If the constant c depends on a quantity
k, we write X ≫k Y , Y = Ωk(Y ), and so on.

Funding and acknowledgments. ORN was partially supported by the Aus-
trian Science Fund FWF Project P 30405-N32. We are grateful to Tom Bloom,
Christoph Koutschan, Fernando Shao, Maryam Sharifzadeh and Adam Zsolt-
Wagner for helpful conversations and advice.

2. The Container Theorem

A critical tool in this paper comes from the theory of hypergraph contain-
ers. The statement that we use is rather technical, but it can be roughly
summarised as follows: if a hypergraph H = (V,E) has a good edge distri-
bution (in the sense that no vertices have unusually large degree, and more
generally the elements of any set of vertices do not share too many common
edges) then we obtain strong information about the independent sets of the
hypergraph. This strong information is that there is a family C of subsets of
V such that

• For every independent set X ⊂ V , there is some A ∈ C such that
X ⊂ A,

• C is not too large,
• Each A ∈ C does not have too many edges.

The theory of hypergraph containers was developed independently by Balogh,
Morris and Samotij [2] and Saxton and Thomasson [22]. For a recent survey
on this topic, see [3]. This method has led to several significant breakthroughs
in combinatorics in recent years, most notably in the field of extremal graph
theory. However, this purely combinatorial tool has also led to new results in
additive combinatorics. For example, it was proven by Balogh, Liu and Shar-
ifzadeh [1] that, for infinitely many N ∈ N there are at most 2O(rk(N)) subsets of
[N ] which do not contain a k-AP. Note that this is almost best possible, since
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any subset of a k-AP free set is k-AP free, and so the subsets of the largest
k-AP free set give at least 2rk(N) sets which are k-AP free. Another application
of containers closely related to (and which inspired) this paper can be found
in Balogh and Solymosi [4], where it was proven that there exists a set P of
N points in the plane such that P does not contain any collinear quadruples,
but any subset of P of size larger than N5/6+o(1) contains a collinear triple.

In order to state the required hypergraph container result formally, we need
to introduce some more notation. LetH = (V,E) be an r-uniform hypergraph.
Write e(H) = |E|. For any S ⊂ V , the subhypergraph induced by S is denoted
H [S]. The co-degree of S is the quantity

d(S) := |{e ∈ E : S ⊆ e}|.
In the case when S = {v} is a singleton, we simply write d(v). The average
degree of a vertex in H is denoted by d, that is,

d =
1

|V |
∑

v∈V
d(v) =

r|E|
|V | .

For each 2 ≤ j ≤ r, denote

∆j(H) := max
S⊂V :|S|=j

d(S).

For 0 < τ < 1, define the function

∆(H, τ) = 2(
r
2)−1

r
∑

j=2

∆j(H)

2(
j−1
2 )dτ j−1

.

This function gives a measure of how well-distributed the edges of H are. In
this paper, we will only consider 3-uniform hypergraphs, in which case the
function can be expressed more straightforwardly:

∆(H, τ) =
4∆2(H)

dτ
+

2∆3(H)

dτ 2
.

The exact result that we will use is Corollary 3.6 in [22].

Theorem 2.1. Let H = (V,E) be and r-uniform hypergraph with |V | = N .
Let 0 < ǫ, τ < 1/2 satisfy the conditions that

• τ < 1/(200 · r · r!2),
• ∆(H, τ) ≤ ǫ

12r!
.

Then there exists c = c(r) ≤ 1000 · r · r!3 and a collection C of subsets of V (H)
such that

• If X ⊆ V is an independent set then there is some A ∈ C such that
X ⊆ A,

• for every A ∈ C, e(H [A]) ≤ ǫe(H),
• log |C| ≤ cNτ · log(1/ǫ) · log(1/τ).
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3. Supersaturation Results

In most applications of the container method, a crucial ingredient is a so-
called Supersaturation Lemma. Extremal results in combinatorics often state
that sufficiently large subsets of a given set contain at least one copy of some
special structure. A supersaturation result goes further, and says that suffi-
ciently dense subsets of a given set contain many copies of certain structures.

In our particular setting we can be more concrete. We need to prove that
sufficiently large subsets of Fn

q and [N ] contain many 3-APs. The results and
techniques in these two different settings differ significantly, particularly in
light of recent developments concerning the size of the largest 3AP-free set in
F
n
q in [8] and [11].

3.1. Supersaturation in F
n
q . We begin by finally defining the previously

mentioned constant cq by

q1−cq = inf
0<y<1

1 + y + · · ·+ yq−1

y(q−1)/3
.

Also, recall that Cq := 1 + 1
cq
. For a fixed q, these constants cq and Cq can be

calculated explicitly.

Define a triangle in F
n
q to be a triple (x, y, z) ∈ F

n
q × F

n
q × F

n
q such that

x + y + z = 0. To obtain a supersaturation result for arithmetic progressions
in F

n
q , we will make use of the following result of Fox and Lovász [13].

Theorem 3.1. Let 0 < ǫ < 1 and δ = (ǫ/3)Cq . If X, Y, Z ⊂ F
n
q with less than

δq2n triangles in X×Y ×Z, then we can remove ǫqn elements from X ∪Y ∪Z
so that no triangle remains.

This implies the following corollary.

Corollary 3.2. Let A ⊂ F
n
q with |A| = qn(1−s), 0 ≤ s < cq and suppose that

n is sufficiently large. Then A contains Ωq(q
n(2−sCq)) non-trivial three term

arithmetic progressions.

Proof. Applying the bound (1.2), we know that for some constant k, every
subset of A with size greater than kqn(1−cq) contains a three term arithmetic
progression. Let ǫ = 1

2qns . It therefore follows that, for n sufficiently large,

|A| − ǫqn =
qn(1−s)

2
≥ kqn(1−cq).

In particular, any subset of A of size |A| − ǫqn contains a non-trivial 3-AP. To
put it another way, if we remove ǫqn elements from A, the resulting set still
contains a 3-AP.

Now we can apply Theorem 3.1 in its contrapositive form with X = Y = A
and Z = −2A, so that the property of being triangle free is the same as that
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of being 3-AP free. It follows that A×A× (−2A) contains at least

δq2n =

(

1

6qns

)Cq

q2n = k′(q)qn(2−sCq)

triangles. Some of these triangles may correspond to trivial arithmetic pro-
gression, but the number of such progressions in negligible and the proof is
complete. �

3.2. Supersaturation in the integers. A supersaturation lemma for three
term arithmetic progressions in [N ] is already standard, in the form of Varna-
vides’ Theorem. We will use the following formulation, which can be derived
from Lemma 3.1 in [9].

Theorem 3.3. Suppose that for all N ∈ N we have r3(N) ≤ N
h(N)

for some

invertible function h : R
+ → R

+. Then for all A ⊂ [N ] with cardinality
|A| = ηN , such that

1 ≤
⌊

h−1

(

4

η

)⌋

≤ N

A contains at least
(

η

2(h−1( 4
η
))4

)

N2,

non-trivial three term arithmetic progressions.

4. Proof of Theorem 1.1 via Theorem 1.2

The proof of Theorem 1.2 begins by iteratively applying the container theo-
rem to subsets of Fn

q in order to establish the existence of a convenient family
of sets C which contain all 3-AP free subsets of Fn

q . This results in the following
container lemma.

Lemma 4.1. For all β > 0 and for all 0 ≤ t ≤ cq(1 − 3β) there exists a
constant c = c(q, β) such that there exists a family C of subsets of Fn

q with the
following properties:

• |C| ≤ 2n
2c(q,β)q

n

(

1
2+β+

t(Cq−3)
2

)

,
• for all A ∈ C, |A| ≤ qn(1−t),
• If X ⊂ F

n
q is 3-AP free then there exists A ∈ C such that X ⊆ A.

Proof. At the outset, this problem is converted into a graph theoretic situation
in order to setup an application of Theorem 2.1. Given A ⊂ F

n
q , define a 3-

uniform H(A) = (V,E) hypergraph with vertex set V = A. Three distinct
vertices form an edge in H if and only if they form a three term arithmetic
progression.
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The aim is to find a good set of containers for the hypergraph H(Fn
q ). We

will eventually obtain a family C of subsets of Fn
q such that

• |C| ≤ 2n
2c(q,β)q

n

(

1
2+β+

t(Cq−3)
2

)

,
• for all A ∈ C, |A| ≤ qn(1−t),
• if X is an independent set in the hypergraph H(Fn

q ), then there is some
A ∈ C such that X ⊆ A.

Once the existence of such a family C has been established, the proof of
Lemma 4.1 will be complete.

We will iteratively apply the container theorem to subsets of Fn
q . We begin

by applying Theorem 2.1 to the graph H(Fn
q ). As a result, we obtain a set C1

of containers. We iterate by considering each A ∈ C1. If A is not small enough,
then we apply Theorem 2.1 to the graph H(A) to get a family of containers
CA. If A is sufficiently small then we put this A into a final set C of containers
(or to put it another way, we write CA = A).

Repeating this for all A ∈ C1 we obtain a new set of containers

C2 =
⋃

A∈C1

CA.

Note that C2 is a container set for H(Fn
q ). Indeed, suppose that X is an

independent set in H(Fn
q ). Then there is some A ∈ C1 such that X ⊂ A. Also,

X is an independent set in the hypergraph H(A), which implies that X ⊂ A′

for some A′ ∈ CA ⊂ C2.
We then repeat this process, defining

Ci =
⋃

A∈Ci−1

CA.

By choosing the values of τ and ǫ appropriately, we can ensure that after
relatively few steps we have all of the elements of Ck sufficiently small. We
then declare C = Ck. It turns out that, because of k being reasonably small,
|C| is also fairly small.

Now we give more precise details of how to run this argument. Let A ∈ Cj ,
with j ≤ k, and write |A| = qn(1−s). If s ≤ t, then apply the container theorem
to H(A) with

ǫ = q−βn, τ = q
n
2
(2β−1+s(Cq−1)).

In order to apply the container theorem, we need to check that the conditions
τ < 1/(200 · 3 · 3!2) = 1/21600, and ∆(H, τ) ≤ ǫ

72
hold. The first of these con-

ditions will hold if we take n sufficiently large. This follows from the condition
that s ≤ t ≤ cq(1− 3β).

For the second condition, we need to verify that

4∆2

dτ
+

2∆3

dτ 2
≤ ǫ

72
. (4.1)

Observe that, for any subset A ⊂ F
n
q , ∆2(H(A)) ≤ 3, since for any two distinct

elements a1, a2 ∈ A, there are at most three possible choices of a third element
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a3 ∈ A such that {a1, a2, a3} forms an arithmetic progression. We also have
∆3(H(A)) ≤ 1.

To bound the average vertex degree d, we use Theorem 3.2. The set A has
cardinality qn(1−s), implying that it contains Ωq(q

n(2−sCq)) non-trivial three-
term arithmetic progressions. Therefore,

d =
3|E(H(A))|

|A| ≫q
qn(2−sCq)

qn(1−s)
= qn(1−s(Cq−1)).

Therefore, it follows that, for some constant c0 depending on q,

4∆2

dτ
+

2∆3

dτ 2
≤ 12

dτ
+

2

dτ 2
≤ 14

dτ 2
<

c0
q2βn

≤ ǫ

72
,

where the last inequality holds for all n sufficiently large. This verifies the
condition (4.1), and so we can apply Theorem 2.1 and obtain a set of containers
CA with

|CA| ≤ 2cq
n(1−s)τ ·log(1/ǫ)·log(1/τ) ≤ 2c(n log q)2q

n
2 (1+s(Cq−3)+2β)

.

Since s ≤ t, it follows that we have the bound

|CA| ≤ 2c(n log q)2q
n
2 (1+t(Cq−3)+2β)

.

We also know that, for each B ∈ CA,
e(H(B)) ≤ ǫe(H(A)) = q−βne(H(A)).

Therefore, at the ith level of this iterative procedure, a container B ∈ Ci
satisfies

e(H(B)) ≤ qn(2−iβ).

This is good, because after c(β) steps we can ensure that e(H(B)) is sufficiently
small so that we can apply Theorem 3.2 and deduce that |B| ≤ qn(1−t). In
particular, if we take

k :=

⌈

tCq

β
+ 1

⌉

then Theorem 2.1 tells us that for each B ∈ Ck, |B| ≤ qn(1−t)

So, the process terminates after at most k steps. This implies that the final
set of containers C = Ck has cardinality

|C| ≤ 2c(n log q)2kq
n
2 (1+t(Cq−3)+2β)

= 2n
2c(q,β)q

n
2 (1+t(Cq−3)+2β)

,

as claimed.

�

The set of containers established in Lemma 4.1 can now be used to deduce
Theorem 1.2, which we recall for the reader’s convenience.

Theorem 1.2. Let β > 0, t ≤ cq(1− 3β) and let p be a positive real number
satisfying

q
n
(

− 1
2
+

t(Cq−1)

2
−β

2

)

≤ p ≤ 1.
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Let B be a random subset of Fn
q with the events x ∈ B being independent

with probability P(x ∈ B) = p. Then, with probability 1 − on→∞(1) we have
that

f3(B) ≪ pqn(1−t+2β).

In particular, for all ǫ > 0, there exists δ(ǫ, q) := δ > 0 such that if B is defined

as above with p = qn(−
1
2
+ǫ), then with probability 1− on→∞(1),

f3(B) ≪ |B|1−δ.

Proof of Theorem 1.2. For convenience, define m = pqn(1−t+2β), and let C be
the container set guaranteed by Lemma 4.1. We first note that the probability
that B contains a three-term progression-free subset of size at least m is upper
bounded by

|C|
(

qn(1−t)

m

)

pm. (4.2)

This is because a 3-AP free set of size m must be contained in some A ∈ C,
and each subset of size m belongs to the random subset B with probability
pm. Every A ∈ C has size

|A| ≤ qn(1−t),

and so the number of possible candidates for a 3-AP free set of size m is at
most

|C|
(

qn(1−t)

m

)

.

An application of the union bound then gives (4.2). Using the bound

|C| ≤ 2n
2c(q,β)q

n

(

1
2+

t(Cq−3)
2 +β

)

,

and the standard binomial coefficient estimate
(

s
t

)

≤
(

es
t

)t
gives

|C|
(

qn(1−t)

m

)

pm ≤ 2n
2c(q,β)q

n

(

1
2+

t(Cq−3)
2 +β

)

(

epqn(1−t)

m

)m

= 2n
2c(q,β)q

n

(

1
2+

t(Cq−3)
2 +β

)

(

e

q2βn

)m

≤
(

2e

q2βn

)m

. (4.3)

In the last inequality above, we have used the fact that for n sufficiently large,

m = pqn(1−t+2β) ≥ q
n
(

1
2
+

t(Cq−3)

2
+ 3

2
β
)

≥ n2c(q, β)q
n
(

1
2
+

t(Cq−3)

2
+β

)

.

The lower bound on p in the statement of the theorem was used here. The
quantity in (4.3) tends to zero as n goes to infinity, which completes the proof
of the first part of the statement.

The second statement follows from the first by taking

t =
2ǫ

Cq − 1
, β = t/4.
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Indeed, for suitably chosen constants c, C > 0, the statement

cpqn ≤ |B| ≤ Cpqn = Cqn(
1
2
+ǫ)

is true with probability 1−on→∞(1). Therefore, with probability 1−on→∞(1),
we have

f3(B) ≪ pqn(1−
t
2
) ≪ |B|qn(− t

2
) ≪ǫ |B|1−δ(ǫ).

�

We finally use Theorem 1.2 to deduce Theorem 1.1.

Proof of Theorem 1.1. Construct a subset P ⊂ F
n
q by choosing elements in-

dependently at random with probability p = 1
100

q−n/3. The expected number

of elements in P is pqn = 1
100

q2n/3, while the expected number of nontrivial

four-term progressions is at most p4q2n = 10−8q2n/3. Indeed, the latter follows
from the fact that F

n
q contains less than q2n non-trivial 4-APs and each one

survives the random process with probability p4. In particular, the expected
number of elements of P is considerably larger than the expected number of
4-APs. Therefore, with high probability both

|P | ≥ 1

1000
q2n/3

and

|{all non-trivial 4-APs in P}| ≤ 1

2000
q2n/3

hold. We can then delete one element from each 4-AP and obtain a set P ′

with size Ω(q2n/3) which has no nontrivial four-term progressions.

On the other hand, we can apply Theorem 1.2 with t = 1
3(Cq−1)

and the

above choice of p, as these values satisfy the required conditions provided that
n is sufficiently large. Therefore, with probability tending to 1 as n goes to
infinity, the randomly constructed set P satisfies

f3(P ) ≤ pq
n
(

1− 1
3(Cq−1)

+2β
)

≪ q
n
(

2
3
− 1

3(Cq−2)
+2β

)

.

Now, for every positive integer m, P ′ contains a three-term progression-free
set of size m only if P also does. That is, f3(P

′) ≤ f3(P ). Therefore,

f3(P
′) ≤ f3(P ) ≪ q

n
(

2
3
− 1

3(Cq−2)
+2β

)

≪ |P ′|1−
1

2(Cq−2)
+3β

.

This completes the proof. �

5. Proof of Theorem 1.3

We will prove the following more general result which involves the parameter
r3(N).

Proposition 5.1. Suppose that for all sufficiently large N ∈ N we have
r3(N) ≤ N

h(N)
for some monotone increasing and invertible function h : [1,∞) →

[1,∞). Suppose also that h satisfies the following technical conditions:
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• For all x ∈ [1,∞), h(x) ≤ x.
• There exists an absolute constant γ such that for all N sufficiently large

h

(

N1/5

1000

)

≥ 4h(Nγ) (5.1)

N1/10 ≥ [h(Nγ)]3/2[h−1(4h(Nγ))]2. (5.2)

Then for all α > 0 and for all n sufficiently large (depending on α), there
exists a four-term progression-free set A ⊂ N with cardinality n such that

f3(A) ≪
n

[h(n
3
2
γ)]1−α

.

Note that the rather complicated looking statement of Proposition 5.1 does
imply the upper bound from Theorem 1.3. Indeed, because of Bloom’s upper
bound on r3(N) in (1.1), we can carelessly bound r3(N) by

r3(N) ≤ C
N

(logN)1−α

for any α > 0 and for some positive absolute constant C. We can then apply
Proposition 5.1 with h(x) = 1

C
(log x)1−α. It is a tedious calculation to check

that h does indeed satisfy the conditions of Theorem 5.1, with room to spare,
if we take γ = 1

24·4
1

1−α
, which gives the required bound.

Proof of Proposition 5.1. The proof is similar to that of Theorem 1.1, although
the calculations are more taxing. On the other hand, this proof is a little
more straightforward, since we make just a single application of the container
theorem. We remark that this approach with a single application was also
possible in the proof of Theorem 1.1, but the iterative approach gave a better
quantitative result. However, the quantitative gains of the iterative approach
seem to be negligible in the integer case.

Once again, we define a 3-uniform hypergraph which encodes three term
arithmetic progressions. This hypergraph H has vertex set [N ], and three
distinct elements of [N ] form an edge if they form an arithmetic progression.

Note that the average degree d of this hypergraph is at least N/9, since
there are at least N2/9 edges. Indeed, if we take any two distinct integers
a, b ∈ [1, N/2] with a < b, there exists a third integer c = 2b− a ∈ [1, N ] such
that {a, b, c} forms an arithmetic progression. This shows the existence of at
least

(⌊N
2
⌋

2

)

>
N2

9
,

non-trivial 3-APs, where the latter inequality holds provided that N is suf-
ficiently large. Also, as in the proof of Theorem 1.1, we have ∆2 ≤ 3 and
∆3 = 1.

Fix

η :=
1

h(Nγ)
,
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where γ is the constant in the statement of Proposition 5.1. Define

ǫ :=
η

(

h−1( 4
η
)
)4 , τ :=

100

(Nǫ)1/2
.

We would like to apply the Theorem 2.1 with these parameters. In order to
do this, we need to check that the conditions

τ < 1/(200 · 3 · 3!2) = 1/21600 (5.3)

and
∆(H, τ) ≤ ǫ

72
(5.4)

hold.

For (5.3) to hold, it would be enough to verify that

Nǫ ≥ 1012. (5.5)

That is,
η

(

h−1( 4
η
)
)4 ≥ 1012

N
. (5.6)

Because of the assumption that h(x) ≤ x for all x ∈ R
+, it follows that that

h−1(x) ≥ x and in particular

1

x
≥ 1

h−1(x)
. (5.7)

Applying (5.7) with x = 4
η
, it follows that

η
(

h−1( 4
η
)
)4 = 4

η
4

(

h−1( 4
η
)
)4 ≥ 4

1
(

h−1( 4
η
)
)5 ,

so that (5.6) would hold as long as

1
(

h−1( 4
η
)
)5 ≥ 1012

N
.

Since h is monotone increasing, this can be rearranged to give

η ≥ 4

h
(

N1/5

1012/5

) .

The latter inequality holds for our choice of η. Here we have used the condition
(5.1) in the statement of the theorem. This implies that (5.6) holds, and
therefore so does (5.3).

For (5.4) to hold, we need to verify that

4 · 9 · 3
Nτ

+
2 · 9
Nτ 2

≤ ǫ

72
. (5.8)

Since τ < 1, it will be sufficient to check that 126
Nτ2

≤ ǫ
72
. By the earlier choice

of τ , this is equivalent to (100)2 ≥ 72 · 126, which is indeed true.
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Theorem 2.1 then gives a collection C of subsets of [N ] such that

• |C| ≤ 2cτN log( 1
τ
) log( 1

ǫ
) ,

• for all A ∈ C, e(H [A]) ≤ ǫe(H),
• if X ⊆ [N ] is an independent set in H , then there is some A ∈ C such
that X ⊆ A.

It follows from the second fact above and Theorem 3.3 that |A| ≤ ηN for
all A ∈ C. Note here that the condition of Theorem 3.3 follows from condition
(5.2).

Observe that, for N sufficiently large

1

τ
,
1

ǫ
≤ N.

The first of these inequalities follows from the fact that ǫ < 1
2
, while the second

is a consequence of (5.5). Using these two inequalities and the definition of τ ,
gives the bound

|C| ≤ 2c
′(logN)2(N

ǫ )
1/2

. (5.9)

Construct a subset P ⊂ [N ] by choosing elements independently at random
with probability p. The expected number of elements in P is pN . The expected
number of four-term arithmetic progressions is at most p4N2. Therefore, if we
choose p = 1

100
N−1/3 then with high probability the number of elements will

be much larger than the number of four-term arithmetic progressions. We can
then delete one element from each 4-AP and obtain a set P ′ with size Θ(N2/3)
which has no 4-APs. Just as was the case in the proof of Theorem 1.1, note
here that f3(P

′) ≤ f3(P ).

Now, we claim that it is unlikely that H(P ) contains an independent set of
cardinality m = N2/3η1−α. Indeed, note that

P[H(P ′) contains an independent set of size m] ≤ |C|
(

Nη

m

)

pm,

whereas, by using the bound on |C| from (5.9) together with standard binomial
coefficient estimates, we also have that

|C|
(

Nη

m

)

pm ≤ 2c
′(logN)2(N

ǫ )
1/2
(

eNη

mN1/3

)m

= 2c
′(logN)2(N

ǫ )
1/2

(eηα)m.

With the choices we have made for η and m, it follows that the bound

c′(logN)2
(

N

ǫ

)1/2

≤ m

holds for N sufficiently large. At this is the point, we have used the technical
condition (5.2) in the statement of Proposition 5.1. Therefore, the probability
that H(P ′) contains an independent set of size m is less than (2eηα)m, which
becomes arbitrarily small as N gets arbitrarily large.

It follows that there exists a 4-AP free set P ′ of size Θ(N2/3) with the
property that all of its subsets of size at least N2/3η1−α contain a 3-AP. That
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is,

f(|P ′|) ≪ |P ′|η1−α ≈ |P ′|
(

h(|P ′| 32γ)
)1−α .

This completes the proof of Proposition 5.1. �

6. Sets with small energy but rich in progressions

In this section, we discuss another application of Theorem 1.2, in connection
with a different type of generalization of Roth’s theorem, first observed by
Sanders [21].

Theorem 6.1. Let δ > 0 and suppose that A ⊂ Z has at least δ|A|3 additive
quadruples. Then, there exist absolute constants c, C > 0 such that A contains
at least exp(−Cδ−c) · |A|2 three-term arithmetic progressions.

Here an additive quadruple means a solution to a+b = c+d with all a, b, c, d
in A. The number of such quadruples is usually denoted by E(A) and called the
additive energy of A. Theorem 6.1 says that sets with large energy have many
three-term arithmetic progressions. This follows from the Balog-Szemerédi-
Gowers theorem (see [14] or [25]) and the fact that sets with small sumsets
have many three-term arithmetic progressions, a consequence of Roth’s theo-
rem. Results like the latter hold in general abelian groups G and quantitative
versions were also studied by Henriot in [17]. For our purposes, the groups of
interest are G = Z and G = F

n
q , so we begin by recording an improvement

(and generalisation) of a theorem of Henriot [17, Theorem 6], which may be of
independent interest, and which is meant to illustrate a phenomenon similar
to the one described by Theorem 6.1 (with better quantitative bounds).

Theorem 6.2. Let A ⊂ F
n
q be such that |A + A| ≤ K|A| for some K > 0.

Then, A contains at least (qK4)2−Cq · |A|2 three-term arithmetic progressions.

Proof. For the reader’s convenience, we recall that for any two commutative
groups G1, G2 two sets S ⊂ G1 and T ⊂ G2 are said to be Freiman s-
isomorphic if there exists a one to one map φ : S → T such that for every
x1, . . . , xs, y1, . . . , ys in S (not necessarily distinct) the equation

x1 + . . .+ xs = y1 + . . .+ ys

holds if and only if

φ(x1) + . . .+ φ(xs) = φ(y1) + . . .+ φ(ys).

Let K = |A + A|/|A|. By a finite field version of the so-called Freiman-
Ruzsa modelling lemma (see for instance [23, Lemma 5.6] for more details), A
is Freiman 2-isomorphic to a subset of G = F

m
q , where |G| ≤ q · K4|A|. We

identity this subset with A since the Freiman 2-isomorphisms preserves three-
term progressions. By Corollary 3.2 applied inside G, it follows that A contains
at least |A|2(qK4)2−Cq three-term arithmetic progressions, as claimed. �
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Theorem 6.2, combined with the Balog-Szemerédi-Gowers theorem, shows
that subsets A ⊂ F

n
q must have many three-term progressions even if E(A) ≫

|A|3−ǫ for some ǫ > 0 (which depends on q). A natural question now seems
to be: if A has large additive energy, does it also mean that A must have
nontrivial three-term progressions in all large subsets? A naive view is that
Theorem 6.1 and Theorem 6.2 suggest that the answer could be yes. However,
a simple counterexample already points towards the contrary: consider a set
of A where half of the elements form an additively structured set (like an
arithmetic progression), while the other half consists of random elements. It
is easy to check that E(A) ≫ |A|3 because the additively structured part has
large energy, while there is no reason why the random part should contain any
non-trivial three-term progressions.

We will push this observation one step further and show next that for sets
in F

n
q or Z the property of “having nontrivial three-term progressions in all

large subsets” is in fact entirely uncorrelated with the property of “having
large additive energy”.

Theorem 6.3. For all ǫ > 0 and any prime power q there exists δ(ǫ, q) := δ >
0 and n0 = n0(ǫ, q) such the following statement holds. For all n ≥ n0 there
exists a set A ⊂ F

n
q with

E(A) ≤ |A|2+ǫ

and
f3(A) ≪ |A|1−δ.

In other words, not only that sets with large additive energy may have large
subsets with no proper three-term progressions, but there also exist sets with
low energy with the property that all their large subsets contain nontrivial
three-term progressions. The proof uses again Theorem 1.2 and is similar to
the proof of Theorem 1.1.

Proof. Construct a subset P ⊂ F
n
q by choosing elements independently at

random with probability p = qn(−
1
2
+ ǫ

4−2ǫ). The expected number of elements

in P is pqn = qn(
1
2
+ ǫ

4−2ǫ).

The expected size of E(P ) is p4q3n = qn(1+
4ǫ

4−2ǫ). Indeed, this follows from
the fact that there are q3n solutions to the equation

a+ b = c+ d, a, b, c, d ∈ F
n
q

and each solution survives the random process with probability p4. Therefore,
with high probability both

|P | ≥ 1

100
qn(

1
2
+ ǫ

4−2ǫ)

and
E(P ) ≤ 100qn(1+

4ǫ
4−2ǫ)

hold. In particular, with high probability,

E(P ) ≪ |P |2+ǫ.
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On the other hand, we can apply Theorem 1.2 with

t =
2ǫ

(4− 2ǫ)(Cq − 1)
, β =

t

4

The above choice of p is admissible for these choices of t and β. Therefore,
with probability tending to 1 as n goes to infinity, the randomly constructed
set P satisfies

f3(P ) ≪ pqn(1−t+2β) = pqn(1−
t
2
) = q

n( 1
2
− ǫ

(4−2ǫ)(Cq−1)
) ≪ |P |1−δ,

where

δ =
ǫCq

2(Cq − 1)
.

This completes the proof.

�

A similar statement can be established in the integer case, which we state
without proof as follows.

Theorem 6.4. For all α, ǫ > 0 there exists a set A ⊂ N such that

E(A) ≪ |A|2+ǫ

and

f3(A) ≪ǫ
|A|

(log |A|)1−α
.

We end this section with an epilogue on the optimality of Theorem 6.4. For
this purpose, we recall a theorem of Komlós, Sulyok and Szemerédi [19].

Theorem 6.5. There is an absolute constant c > 0 such that for any suffi-
ciently large set A ⊂ Z,

f3(A) ≥ c · f3({1, . . . , |A|}) = c · r3(|A|).

Essentially, Theorem 6.5 tells us that f3(A) is minimal as a function of |A|
when A is an interval.1 Combining this with Elkin’s theorem

r3(N) ≫ log1/4 N

22
√
2
√
logN

·N,

it follows that every sufficiently large set A ⊂ Z contains a three-term pro-
gression free subset of cardinality at least

Ω

(

log1/4 |A|
22

√
2
√

log |A|
· |A|

)

. (6.1)

So Theorem 6.4 is as close to optimal as the upper bound for r3(N) in (1.1)
is close to optimal. Note however that in this observation we have not used
the additional hypothesis that A has low additive energy. The next natural

1In fact, [19] gives much more general information about systems of linear equations, but
the version stated as Theorem 6.5 corresponds to the case we are interested in in this paper.
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question therefore seems to be: is it possible to get a significantly better bound
than

f3(A) ≫
log1/4 |A|
22

√
2
√

log |A|
· |A| (6.2)

for all sets A ⊂ Z satisfying E(A) ≪ |A|2+ǫ for some (or even all) 0 < ǫ < 1?
This time, the answer turns out to be (a modest) yes.

Theorem 6.6. Let 0 < ǫ < 1 and let A ⊂ Z be such that E(A) ≪ |A|2+ǫ.
Then,

f3(A) ≫
log1/4 |A|

22
√

(1+ǫ) logN
·N.

In particular, all sets with E(A) ≪ |A|2+ǫ for all ǫ > 0 have slightly larger
3AP-free sets than we know {1, . . . , N} must have. Our argument follows
closely the alternative proof of Elkin’s bound due to Green and Wolf from
[15], which can be easily modified to start with a general set of N integers
instead of the interval {1, . . . , N}. The main observation is that for a set A
with E(A) ≪ |A|2+ǫ for some 0 < ǫ < 1, we have a power saving on the total
number T (A) of three-term progressions with elements in A. Indeed, for each
element s ∈ A+A, let rA+A(s) denote the number of pairs (x, y) ∈ A×A such
that x + y = s. For each b ∈ A, note that rA+A(2b) represents the number of
three-term progressions centered at b. By Cauchy-Schwarz,

T (A)2 =

(

∑

b∈A
rA+A(2b)

)2

≤ |A|
(

∑

b∈A
r2A+A(2b)

)

.

Since
∑

b∈A
r2A+A(2b) ≤

∑

s∈A+A

r2A+A(s) = E(A),

it follows that T (A)2 ≤ |A| · E(A) ≪ |A|3+ǫ, i.e. T (A) ≪ |A|(3+ǫ)/2. Theorem
6.6 will then follow from the following more general result.

Proposition 6.7. Let A ⊂ Z be a set of size N such that the number of three-
term progressions satisfies T (A) = N2/t(A). Then A contains a three-term
progression free subset A′ such that

|A′| ≫ N ·

[

log
(

N
t(A)

)]1/4

2
2
√

2 log2( N
t(A))

.

Proof. Let N be a sufficiently large positive integer and let A be some
four-term progression free set of size N . Let d be a positive integer to be
precisely determined later (but which we shall think of as sufficiently large for
the time being), and let Td = R

d/Zd denote the d-dimensional torus. For each
θ, α ∈ T

d, let Ψθ,α : A → T
d be the map defined by

n 7→ θn+ α mod 1. (6.3)
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For a fixed n integer, as we let θ, α vary uniformly and independently over Td,
the image Ψθ,α is uniformly distributed on the d-dimensional torus. Moreover,
it is also true that the pair of points

(Ψθ,α(n),Ψθ,α(n
′)) is uniformly distributed on T

d × T
d (6.4)

as θ, α vary uniformly and independently over T
d, provided that integers n

and n′ are distinct. Indeed,
∫

e2πi(k·(θn+α)+k′·(θn′+α))dθdα = 0

unless k + k′ = kn + k′n′ = 0, which is however impossible if n and n′ are
distinct. Since the exponentials e2πi(kx+k′x′) are dense in L2(Td × T

d), the
claim checks out.

Fix δ to be a positive constant which we will declare later. We identify
the d-dimensional torus Td with [0, 1)d, and for each r ≤ 1

2

√
d, we define the

annulus

S(r) :=
{

x ∈ [0, 1/2]d : r − δ ≤ ‖x‖2 ≤ r
}

.

Like in Lemma 2.2 from [15], out of all of the possible values of r, we choose
the one for which S := S(r) satisfies

vol(S(r)) ≥ cδ2−d, (6.5)

for some absolute constant c.

Finally, for each θ, α chosen uniformly and independently at random on T
d,

we let Aθ,α be the subset of A defined by

Aθ,α := {n ∈ A : Ψθ,α(n) ∈ S} ,
where Ψθ,α is the map from (6.3). By (6.4), the expected size of Aθ,α satisfies

Eθ,α|Aθ,α| = N · vol(S), (6.6)

while the expected number T (Aθ,α) of three term progressions in Aθ,α is

Eθ,αT (Aθ,α) = T (A) · vol(Υ). (6.7)

Here Υ represents the set points (x, y) ∈ T
d × T

d so that x − y, x and x + y
all lie in S.

We can upper bound the volume of Υ as follows. By the parallelogram law

2‖x‖2 + 2‖y‖22 = ‖x+ y‖22 + ‖x− y‖22,
so

‖y‖2 ≤
√

r2 − (r − δ)2 ≤
√
2δr.

If Vd denotes the volume of the unit ball in R
d, then this implies

vol(Υ) ≤ vol(S) · (
√
2δr)dVd.

On the other hand, we have the estimate

Vd ≪ 10dd−d/2;
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therefore

vol(Υ) ≤ vol(S) · (
√
2δr)d10dd−d/2 ≤ vol(S) · 10d

(

δ√
d

)d/2

.

By (6.7), this estimate implies

Eθ,αT (Aθ,α) = T (A) · vol(Υ) ≤ C
N2

t(A)
· vol(S) · 10d

(

δ√
d

)d/2

,

for an absolute constant C > 0. Now, if we choose δ and d so that

10d
(

δ√
d

)d/2

≤ 1

3C
· t(A)

N
(6.8)

then by (6.6)

Eθ,αT (Aθ,α) = T (A) · vol(Υ) ≤ 1

3
·N · vol(S) = 1

3
· Eθ,α|Aθ,α|.

Consequently, by deleting one element from each progression appearing in
Aθ,α, the remaining subset A′

θ,α ⊂ Aθ,α ⊂ A is three-term progression-free.
Moreover, A′

θ,α has expected size

Eθ,α|A′
θ,α| ≥

2

3
· Eθ,α|Aθ,α| ≥

2

3
·N · vol(S) ≫ Nδ2−d,

where the last inequality follows from (6.5). In particular, there exists a specific
choice of θ, α ∈ T

d so that A′ := A′
θ,α is a three-term progression free subset

of A for which

|A′| ≫ Nδ2−d.

Finally, take

δ := C ′√d ·
(

t(A)

N

)2/d

for some absolute constant C ′ > 0 so that (6.8) is achieved. For this choice,
we have

|A′| ≫ Nδ2−d ≫
√
d · t(A)2/dN1−2/d · 2−d.

Set

d =

⌈
√

2 log2

(

N

t(A)

)

⌉

.

It then follows that

|A′| ≫ N ·

[

log2

(

N
t(A)

)]1/4

2
2
√

2 log2( N
t(A))

.

This concludes the proof of Proposition 6.7 and thus that of Theorem 6.6 (one
can check that taking t(A) = Θ(N (1−ǫ)/2) in Proposition 6.7 yields the bound
from Theorem 6.6, as claimed).
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7. Concluding remarks

In this last section, we would like to end with a few more words on the
upper bound from Theorem 1.3. In light of Theorem 6.5, this is as good in
some sense as the upper bound for r3(N) from (1.1) but, like in the second
part of Section 6, one can then similarly ask whether it is possible to improve
on

f3(A) ≫
log1/4 |A|
22

√
2
√

log |A|
· |A| (7.1)

for sets A without nontrivial four-term progressions. In Theorem 1.3, the
4-AP-free set A we constructed with

f3(A) ≪
1

(logN)1−ǫ
·N

also happened to satisfy the property that T (A) = Θ(|A|3/2), so by Proposition
6.7 it also has larger three-term progression free sets than we know {1, . . . , N}
must have, namely

f3(A) ≫
log1/4N

22
√
logN

·N.

In [16], Gyarmati and Ruzsa also improved on (7.1) when A = {1, 22, . . . , N2}
by more number theoretic means that are quite specific to perfect squares.
However, is it possible to get a bound better bound than (7.1) for all 4-AP free
sets A? A construction of Fox from [12] shows that four-term progression free

sets of sizeN may sometimes contain≫ N2/23(logN)1/3 three-term progressions,
so our Proposition 6.7 doesn’t yield any asymptotic gain over the Elkin lower
bound in general. It would be interesting if other methods would be able to
provide such a result.
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