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Gravitational-wave (GW) observations of binary black holes offer the best probes of the relativistic,
strong-field regime of gravity. Gravitational radiation in the leading order is quadrupolar. However,
nonquadrupole (higher order) modes make appreciable contribution to the radiation from binary black
holes with large mass ratios and misaligned spins. The multipolar structure of the radiation is fully
determined by the intrinsic parameters (masses and spin angular momenta of the companion black holes) of
a binary in quasicircular orbit. Following our previous work [S. Dhanpal, A. Ghosh, A. K. Mehta, P. Ajith,
and B. S. Sathyaprakash, Phys. Rev. D 99, 104056 (2019).], we develop multiple ways of testing the
consistency of the observed GW signal with the expected multipolar structure of radiation from binary
black holes in general relativity. We call this a no-hair test of binary black holes as this is similar to testing
the no-hair theorem for isolated black holes through mutual consistency of the quasinormal mode spectrum.
We use Bayesian inference on simulated GW signals that are consistent/inconsistent with binary black
holes in general relativity to demonstrate the power of the proposed tests. We also make estimate systematic
errors arising as a result of neglecting companion spins.

DOI: 10.1103/PhysRevD.101.024032

I. INTRODUCTION

Recent gravitational-wave (GW) observations of coa-
lescing compact binaries by LIGO and Virgo have provided
a unique test bed for gravity [1–5]. Because of their high
compactness, black holes and neutron stars in coalescing
binaries are able to approach each other in close separations
(comparable to their gravitational radii) [6]. They also move
with speeds close to the speedof light before theymerge.As a
result the final orbits of their inspiral and the subsequent
merger probe the relativistic strong-field regime. The sub-
sequent formation of a nascent black hole also offers
interesting tests of the nature of the black hole through the
study of its perturbations [7]. In addition, the GW observa-
tions allowus to study various possible propagation effects of
GWs [8], including dispersion [9] and damping, and to
constrain the presence of additional polarization modes that
are absent in general relativity (GR) [10]. In addition,
multimessenger observations of a compact binary merger

allow us to measure the speed of GWs as well as to constrain
violations of equivalence principle, Lorentz invariance vio-
lations, and the presence of extra dimensions [4,5,11,12].
One of the powerful probes of the nature of black holes

that can be performed using GW observations is to test the
no-hair theorem in GR—the prediction that a stationary
black hole in GR can be fully described solely by its mass,
spin angular momentum, and electric charge [13–15]. As a
consequence of this, the frequencies of the quasinormal
modes [16–18] of the gravitational radiation from a
perturbed black hole are fully determined by these param-
eters. If we are able to measure three quasinormal mode
frequencies, this allows, in principle, the determination of
the mass, spin, and charge of the black hole. Since
astrophysical black holes are unlikely to possess significant
electric charge, a black hole’s mass and spin can be
determined from the measurement of just two quasinormal
mode frequencies. If we are able to measure more than two
quasinormal modes, the black hole mass and spin estimated
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from multiple modes have to consistent with each other;
otherwise it points to a violation of the no-hair theo-
rem [19].
In a similar fashion we expect the dynamics and

gravitational radiation from a binary black hole system
in a quasicircular orbit to be uniquely determined by a small
number of parameters (masses and spins of the black
holes). Hence different multipoles (spherical harmonic
modes) of the radiation have to be consistent with the
same values of the black holes’masses and spins. Thus, the
consistency between different modes of the observed signal
is a powerful test that the radiation is produced by a binary
black hole system. Inconsistency between different modes
of the radiation points to either a departure from GR, or the
nonblack hole nature of the compact objects. The larger
signal-to-noise ratio (SNR) obtained from analyzing the
full inspiral-merger-ringdown signal gives us an advantage
over the consistency test of different quasinormal modes.1

Such a no-hair test for binary black holes was presented
in [20].2 The main idea of this test is to test the consistency
of the source parameters estimated from the quadrupole
(leading order) modes and higher order modes separately.
In spirit, this idea is similar to checking the consistency of
cosmological parameters estimated from the low and high
multipoles of the cosmic microwave background radiation
(see, e.g., [23]). In this paper we present different for-
mulations of such a test, demonstrate their application
using simulated data, and present a first investigation of the
systematic errors that need to be controlled before the test is
applied to real GW observations.
Indeed, this test requires the higher order modes of the

radiation to be detected with sufficient SNR. This entails
the observation of binaries with large mass ratios and/or
highly misaligned spins with high inclination angles (angle
between the orbital angular momentum and the line of
sight). Since GWs are primarily radiated in a direction
parallel/antiparallel to the orbital angular momentum, GW
observations have a selection bias towards binaries with
small inclination angles, and hence the contribution from
higher modes is likely to be small for most observed
systems. Properties of the GW signals detected during the
first two observing runs of Advanced LIGO and Virgo are
consistent with this expectation [24]. However, considering
Advanced LIGO and Virgo are expected to detect hundreds
of binary black hole mergers in the next few years, we are
likely to detect a small number of high-mass ratio binaries

in inclined orbits, which enables this test to be performed
[20]. There is already preliminary evidence of higher
modes in one of the binary black hole events detected
by LIGO and Virgo during their second observing run [25].
Still, none of the events from the first two observing runs
show sufficiently significant detection of higher modes to
carry out the tests proposed in this paper.
The rest of the paper is organized as follows: Section II

presents two different formulations of the test along with
the Bayesian implementation. Section III presents results
from this test applied to simulated GW observations of
binary black holes in GR, while Sec. IV presents results
from simulated observations containing deviations from
binary black holes in GR. Section V presents a first
investigation of systematic errors due to neglecting the
effect of black hole spins in the GR waveforms. Finally,
Sec. VI presents a summary and concluding remarks.

II. TESTING THE CONSISTENCY OF DIFFERENT
MULTIPOLES OF THE RADIATION

A. Multipolar gravitational waveforms
from binary black holes

Gravitational radiation from the coalescence of a binary
black hole in GR can be written as a superposition of −2
spin-weighted spherical harmonics [26],

hðt;n; λÞ ≔ hþðt;n; λÞ − ih×ðt;n; λÞ ð2:1Þ

¼
X∞
l¼2

Xl
m¼−l

Y−2
lmðnÞhlmðt; λÞ; ð2:2Þ

where hþ and h× are the two independent polarizations of
gravitational radiation, Y−2

lm spherical harmonics of weight
−2, and n ≔ fι;φ0g the direction of radiation in the source
frame. The spherical harmonic modes can be computed
from the full radiation as

hlmðt; λÞ ≔
Z

2π

0

dφ0

Z
π

0

hðt;n; λÞY−2
lm

⋆ðnÞ sin ιdι; ð2:3Þ

where the integration is over the full sphere.3 In GR, the
leading order mode is the quadrupolar (l ¼ 2, m ¼ �2)
modes. The relative contribution of the higher modes to the
signal hðt;n; λÞ depends on the total massM, mass ratio q,
spin angular momenta S1;2, and orientation of the binary n.

1Admittedly, the test proposed in this paper is not a direct
probe of the violation of the no-hair nature of isolated black holes.
However, we anticipate such a violation to show up as a departure
from the expected multipole structure of the binary black hole
waveform.

2Another test of the multipolar structure involving a para-
metrized phasing formula for the inspiral part of the gravitational
radiation from compact binary coalescences was suggested in
[21,22].

3Note that while we are able to theoretically compute the
spherical harmonic modes of the radiation from a binary, it is not
possible to estimate the modes from the observed signal, since the
observed signal hðt;n; λÞ is a particular linear combination of the
modes. This is very different, for example, from the observation
of cosmic microwave background radiation where the radiation is
measured over the entire sphere and hence the radiation multi-
poles can be computed using a decomposition similar to
Eq. (2.3).
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The spherical harmonic modes, hlmðt; λÞ, are uniquely
determined by the intrinsic parameters λ of the system, i.e.,
the masses and spins of the two black holes (for a
quasicircular binary). Thus, by comparing these theoretical
waveforms with data (see, e.g., Sec. II C), one can estimate
these parameters. In this work, we model the gravitational
radiation from nonspinning binary black holes using the
phenomenological inspiral-merger-ringdown waveform
family introduced in [27]. This waveform model includes
the (l ¼ 2, m ¼ �1), (l ¼ 3, m ¼ �3), and (l ¼ 4,
m ¼ �4) modes of the radiation over and above the
dominant (l ¼ 2, m ¼ �2) mode. The other spherical
harmonic modes neglected in this waveform model only
introduce an inaccuracy (mismatch) of less than 1% in the
waveforms [27].

B. Formulation of the test

In [20], we presented a new test of the no-hair nature of
binary black holes in GR based on the consistency of
different multipoles (spherical harmonic modes) of the
radiation. In spirit, this involves estimating the intrinsic
parameters of the binary from different multipoles of the
radiation and checking their consistency. If the parameters
estimated from two different modes are inconsistent with
each other, this would imply that the multipolar structure of
the radiation is inconsistent with what is expected from a
binary black hole system in GR. In practice, we are unable
to extract the different multipoles of the radiation from the
observed GW signal. Hence we introduce extra parameters
in the signal model that allow discrepancies between
different modes and estimate those parameters along with
the standard set of parameters that describe the GW signal.
If the signal is consistent with that produced by a binary
black hole system in GR, the additional parameters are
consistent with 0.
Formulation A: Following [20], we generalize the GR

waveform model Eq. (2.2) by allowing inconsistencies
between the intrinsic parameters estimated from the dom-
inant mode and the higher order modes by introducing a set
of deviation parameters Δλ ≔ fΔMc;Δqg in the higher
modes,

hðt;n; λ;ΔλÞ ¼
X
m¼�2

Y−2
2mðnÞh2mðt; λÞ

þ
X
H:O:M

Y−2
lmðnÞhlmðt; λþ ΔλÞ; ð2:4Þ

where H.O.M. indicates a sum over higher order modes (all
modes other than l ¼ 2,m ¼ �2). We then simultaneously
estimate the posterior distributions of λ and Δλ along with
other extrinsic parameters that describe the location and
orientation of the binary (see Sec. II C).
Formulation B: In this paper, we also investigate

modifications made to the amplitude of the gravitational
radiation by introducing deviations to the amplitude of
nonquadrupole modes, and rewriting Eq. (2.2) as

hðt;n; λ; clmÞ ¼
X
m¼�2

Y−2
2mðnÞh2mðt; λÞ

þ
X
H:O:M

ð1þ clmÞY−2
lmðnÞhlmðt; λÞ; ð2:5Þ

where clm is a set of deviation parameters that could be
different for different higher order modes. Here we simul-
taneously estimate the posterior distributions of λ and clm
along with other extrinsic parameters that describe the
location and orientation of the binary. We consider different
combinations of clm (details in Sec. III B).

C. Bayesian analysis

Each interferometric GW detector I detects a linear
combination of the two polarizations hþ and h×, given by

hIðtÞ ¼ 1

dL
½FIþðα; δ;ψÞhþðt − t0;n; λÞ ð2:6Þ

þ FI
×ðα; δ;ψÞh×ðt − t0;n; λÞ�; ð2:7Þ

where dL is the luminosity distance to the source, FIþ and
FI
× are the antenna pattern functions of the detector I, t0 is

the time of arrival of the signal at the detector, and ðα; δÞ;ψ
define the sky position and polarization angle of the GW
source, respectively. Above, we have neglected the time
dependence of the antenna pattern functions, which is a
good assumption for the case of the transient signals that
we consider in this work.
The noise nðtÞ in a GW detector can be safely described,

over sufficiently short time intervals, as a stationary and
Gaussian random process with zero mean and a power
spectral density (PSD), SnðfÞ. In the presence of a GW
signal hðt; θÞ from a binary black hole merger described by
a parameter set θ (which include the intrinsic and extrinsic
parameters of the binary as well as the set of parameters
describing deviations from GR), we assume that the
detector data dðtÞ is the sum of the noise and the signal, i.e.,

dðtÞ ¼ nðtÞ þ hðt; θÞ: ð2:8Þ

A (quasicircular) nonspinning binary black hole coales-
cence can be completely described by a nine-dimensional
parameter set θ ¼ fλ; ξg in GR, where λ ¼ fMc; qg is the
set of intrinsic parameters consisting of the chirp mass Mc
and the asymmetric mass ratio q ¼ m2=m1 (with the
convention m2 ≤ m1), and ξ ¼ fdL; α; δ; ι;ψ ; t0;ϕ0g, is
the set of extrinsic parameters consisting of the luminosity
distance dL, the sky position fα; δg and orientation fψ ; ιg
of the binary, and the time and phase at coalescence
ft0;ϕ0g, respectively.
We use the Bayesian framework to obtain the posterior

probability distribution PðθjdÞ of the parameter set θ,
through the Bayes theorem,
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PðθjdÞ ¼ PðθÞPðdjθÞ
PðdÞ ; ð2:9Þ

where PðθÞ denotes the prior probability distribution of the
parameters, and PðdjθÞ is the likelihood function, the
probability of observing data dðtÞ given the model param-
eters θ. PðdÞ is a normalization constant, called the
marginal likelihood: PðdÞ ¼ R

pðdjθÞpðθÞdθ. Under the
assumption of the data mentioned above, the likelihood
function PðdjθÞ can be written as

PðdjθÞ ∝ exp

�
−
1

2
hd − hðθÞ; d − hðθÞi

�
; ð2:10Þ

where ha; bi describes the noise-weighted inner product
defined as

ha; bi ≔ 4ℜ
Z

fhigh

flow

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð2:11Þ

where ãðfÞ denotes the Fourier transforms of aðtÞ, and the
integration limits are defined by the sensitivity bandwidth
of the detector, flow and fhigh.
In this work, we consider a global three-detector network

of the two Advanced LIGO detectors at Hanford (H) and
Livingston (L) and the Advanced Virgo detector (V) at
Cascina, Italy. The Advanced LIGO detectors are assumed
to be at a sensitivity described by their “high-power, zero-
detuning” configuration [28], whereas the Advanced Virgo
detector PSD is assumed to be the one described in LIGO
document LIGO-P1200087-v18. Assuming that the noise
between any two detectors is uncorrelated, the joint like-
lihood across the three detectors is written as a product of
the likelihoods in each detector,

PðdjθÞ ¼
Y

IϵH;L;V

PðdIjθÞ: ð2:12Þ

In this Bayesian framework, we proceed to estimate the
posterior probability distribution of θ by stochastically
sampling over the parameter space, using a python-
based affine-invariant ensemble sampler EMCEE [29,30].
Subsequently, we marginalize over the nuisance parameters
to obtain the posterior distributions on the non-GR param-
eter set, Δλ or clm. If the data are consistent with a binary
black hole signal in GR, PðΔλjdÞ (or PðΔclmjdÞ) is
expected to be consistent with 0.
We assume uniform prior probability distributions on the

chirp mass and mass ratio in the intervalMc ∈ ½1; 200� M⊙
and q ∈ ½0.05; 1.0�. The prior on the location of the source
is assumed to be isotropic on the sphere of the sky, with
PðdLÞ ∝ d2L where dL ∈ ½1; 10000� Mpc. We use an iso-
tropic prior on the orientation of the binary: Pðι;φ0;ψÞ ∝
sin ι with ι ∈ ½0; πÞ, φ0 ∈ ½0; 2πÞ and ψ ∈ ½0; πÞ. For all

other parameters in θ, we use uniform priors: α ∈ ½0; 2πÞ,
δ ∈ ½0; 2πÞ and t0 ∈ ½−15; 15�.

III. SIMULATIONS OF BINARY
BLACK HOLES IN GR

We use simulations of binary black hole events (as
described in GR) to elaborate the two formulations of the
tests presented in Sec. II, i.e., by introducing extra
parameters to describe the higher harmonics, and try to
estimate and constrain them from the data, using a Bayesian
framework. We use the phenomenological inspiral-merger-
ringdown waveform family introduced in [27] as templates
for carrying out the analyses. The simulated observations
(“injections”) are generated either using the same analytical

FIG. 1. Middle panel: the thick (thin) contours show the 50%
(90%) credible regions in the joint posteriors of two parameters
ΔMc and Δq that describe deviations in the estimated parameters
using the quadrupole and nonquadrupole modes, estimated from
a simulated GR signal [see Eq. (2.4) for the formulation]. Side
panels: Black histograms show the one-dimensional posteriors in
one deviation parameter (say, ΔMc) estimated from the joint
posteriors, which is marginalized over the other (say, Δq). The
cyan histograms show the one-dimensional posteriors in ΔMc
andΔq estimated from the data by introducing only one deviation
parameter (say, ΔMc) at a time, keeping the other fixed (say,
Δq ¼ 0). The posteriors are fully consistent with the GR
prediction of ΔMc ¼ Δq ¼ 0 (shown by a “+” sign in the center
panel and by thin black lines in side panels). The dotted lines
mark the 90% credible regions. The simulated GR signal
corresponds to a binary with total mass M ¼ 80 M⊙, mass ratio
q ¼ 1=9, and an inclination angle ι ¼ 60° observed by the
Advanced LIGO-Virgo detectors network with an optimal
SNR of 25. SNR splits in individual detectors are 15 in
LIGO-Hanford, 18.9 in LIGO-Livingston, and 6.7 in Advanced
Virgo.
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waveform family or using numerical-relativity simulations
from the waveform catalog of the SXS collaboration [31].

A. Formulation A

The first test we consider is the formulation proposed
in Eq. (2.4). This follows the outline presented in [20]
to check for the consistency of intrinsic parameters λ ≔
fMc; qg estimated from the dominant mode and the higher
order modes. While [20] focuses on one performing this
test with only one Advanced LIGO detector, we study the
performance of this test in the case of the three detector
Advanced LIGO-Virgo network.
We consider two different ways to perform the test. First,

we introduce one deviation parameter at a time. That is,
Δλ ¼ ΔMc or Δλ ¼ Δq. We then consider introducing a
concurrent deviation in two parameters Δλ ¼ fΔMc;Δqg.
In Fig. 1, we show the results of the tests performed with
GR waveform by varying either one parameter or two
parameters, for a binary with total massM ¼ 80 M⊙, mass
ratio q ¼ 1=9, and inclination angle ι ¼ 60° producing a
network SNR of 25 (SNR in higher modes is∼10). SNRs in
individual detectors are 15 in Advanced LIGO-Hanford,
18.9 in Advanced LIGO-Livingston, and 6.7 in Virgo. The
posterior probability density for both the parameters Δq
and ΔMc is consistent with 0 as one expect in GR.
Furthermore, the deviation parameters are found to be
better constrained when only one deviation parameter is
allowed to vary at a time (either ΔMc or Δq). This suggests
that a consistency test with only one deviation parameter in
the higher modes would provide tighter constraints on
deviations. In the subsequent analysis, we therefore focus
on varying only one deviation parameter at a time.

FIG. 2. Comparison of the posteriors on the deviation param-
eters ΔMc and Δq estimated from a three detector observation
(solid black contours; same as Fig. 1) with the same obtained
using a using a single Advanced LIGO detector (dashed contours)
with SNR of 25. All injection parameters are the same as the ones
in Fig. 1. It can be seen that, as expected, posteriors from the three
detector observation are tighter.

FIG. 3. The figure shows the width of the 90% credible regions
of the deviation parameters ΔMc and Δq for binaries with
different total mass (horizontal axis) and inclination angles ι
(legends). All binaries have an asymmetric mass ratio q ¼ 1=9.

FIG. 4. Same as Fig. 3, except that the horizontal axis reports
the mass ratio q. All binaries correspond to a total mass 40 M⊙.
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In Fig. 2 we show that, as expected, the width of the
posteriors of the deviation parameters become smaller (i.e.,
improved precision) when we perform the test with a
network of three Advanced LIGO-Virgo detectors instead
of using only one Advanced LIGO detector (for the same
SNR). However, for a fixed SNR, the improvements in the
precision is small (factor of ∼2–3), due to the fact that the
improved information (e.g., sky localization) is not highly
correlated with the intrinsic parameters Mc, q or the
deviation parameters ΔMc, q.
Figures 3 and 4 show the 90% credible intervals of the

posteriors of the deviation parameters for binaries with
varying masses, mass ratios, and inclination angles, esti-
mated using the three detector network. In all cases, we set
the network SNR to be 25. Note that only one deviation
parameter (ΔMc or Δq) is varied at a time. We find
that binaries with large mass ratios (q < 1=2) and inclina-
tion angles (ι > 60°) allow precision tests of the GR
predictions, reaching statistical uncertainties of <10−3

for Δq and <10−2 for the dimensionless deviation param-
eter ΔMc=Mc. Our results are found to be consistent with
the one detector analysis done in [20]. We, however, notice
that the 90% interval for both the deviation parameters, in
three detector analysis, decreases slightly (i.e., precision
improved) as compared to the one detector case.

B. Formulation B

Now we consider the formulation proposed in Eq. (2.5),
which involves introducing generic possible deviation
parameters clm in the amplitudes of the higher order
modes. Indeed, the most general form of this test would
treat all the clm as free parameters. However, because of the
correlation among these parameters and with some of the
other parameters of the binary (such as the luminosity
distance and inclination angle), this is likely to result in

poor constraints on these parameters. Hence we consider
different flavors of this test.
(1) We set c ≔ c21 ¼ c33 ¼ c44 and estimate the pos-

teriors of c along with all other binary parameters
present in the GR waveform.

(2) We allow c21 and c3344 ≔ c33 ¼ c44 to vary and
estimate the posteriors of c21 and c3344 along with
all other binary parameters present in the GR
waveform.

(3) We fix c21 ¼ 0 and vary c33 and c44, thus estimating
the posteriors of c33 and c44.

In Fig. 5, we show example posteriors of the deviation
parameters obtained from a simulated binary black hole

FIG. 5. Left: The posterior probability distribution of the deviation parameter c estimated from the same simulated GR observation in
Fig. 1 (version 1 of the test described in Sec. III B). Thin black lines shows the expected value in GR. The dotted lines mark the 90%
credible regions. Middle: Posteriors on c21 and c3344 from the same simulated observation (version 2 of the test). Right: Posteriors on c33
and c44 from the same simulated observation (version 3 of the test).

FIG. 6. The figure shows the posterior probability distribution
of the absolute value jcj and argument ϕc complex deviation
parameter c̃ estimated from the simulated GR event. Details are
the same as in 1.
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system (in GR) with a total mass M ¼ 80 M⊙, mass ratio
q ¼ 1=9, and inclination angle ι ¼ 60°, producing a SNR
of 25 in the Advanced LIGO-Virgo network. The left plot
shows the posterior of the deviation parameter c (version 1
of the test), while the middle plot show the posteriors of c21
and c3344 (version 2 of the test) and the right panel shows

the posteriors on c33 and c44 (version 3 of the test). We see
that all the posterior distributions are consistent with 0.
A more general version of these tests with amplitude

correction in the higher modes would assume that the
deviation parameters are complex in nature; i.e., they have a
magnitude as well as a phase component. To demonstrate
such a test, we replace the real amplitude correction c
(version 1 of the test) with a complex correction c̃ ¼ jc̃jeϕc .
Figure 6 shows the posterior probability distribution of both
the magnitude and phase of the deviation parameter c̃ from
the same simulated GR event described in Fig. 5. We find
that though the absolute value of complex correction is
well constrained, the phase remains uninformative. Hence
for all the future tests we restrict to real valued deviation
parameters.
Figure 7 shows the width of the 90% credible regions in

the posterior of c (version 1 of the test) as a function of the
total mass and mass ratio of the binary (producing network
SNR of 25 in all cases). Figure 8 shows the width of the
90% credible regions in the posteriors of c21 and c3344
(version 2 of the test) while Fig. 9 shows the same for c33
and c44 (version 3 of the test).
We observe that the constraints on the deviation param-

eters become narrower for binaries with larger mass ratios
and inclination angles. We find that c is, in general, better
constrained than fc21; c3344g and fc33; c44g. However, the
statistical uncertainties in c, fc21; c3344g and fc33; c44g are
modest, reaching only ∼1 (as opposed to the parameters
discussed in Sec. III A, which can be constrained to a
precision of ∼10−2). The statistical precision of these tests
largely depends on the signal-to-noise distribution in the
higher modes. These constraints could be significantly
improved with third-generation ground based detectors or
space based detectors as they detect hundreds of signals

FIG. 7. The width of 90% credible regions of the posteriors of c
for binaries with different total mass M (upper panel), mass ratio
q (lower panel), and inclination angle ι (legends). All binaries
considered in the upper panel have a mass ratio q ¼ 1=9. Binaries
considered in the lower panel have total mass of 40 M⊙. All the
simulated observations produce a network SNR of 25 in
Advanced LIGO-Virgo network.

FIG. 8. Same as Fig. 7 except that the posteriors are of the deviation parameters c21 (left plots) and c3344 (right plots).
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with good SNR and, in turn, enhance the precision of
parameter estimation. The low SNR in the higher modes
has resulted in posteriors wider than the priors for
fc21; c3344g and fc33; c44g for ι ¼ 30°, 45°. Hence these
results are not presented.

IV. SIMULATIONS WITH DEVIATIONS FROM
BINARY BLACK HOLES IN GR

In this section we demonstrate that if the multipole
structure of the radiation is sufficiently different from that
of a binary black hole system in GR (either when the
underlying theory is different from GR or when the binary
contains compact objects other than black holes), then this
test should be able to identity this. Note, however, that this
requires the higher order modes to be observed with
sufficient SNR, which typically happens for the case of
massive binaries with large mass ratio observed with large
inclination angles. Thus, this test is unlikely to distinguish
black hole-neutron star binaries from binary black holes as
the total mass of the system is unlikely to be greater than
∼50 M⊙ (going by the mass distribution of the black holes
observed by LIGO and Virgo so far). Hence we rescale
the gravitational waveform produced by the numerical-
relativity simulation of a nonspinning black hole-neutron
star binary to a larger total mass so that the higher modes
are observed with sufficient SNR. We use the black hole-
neutron star waveform with mass ratio 1=6 from the
numerical-relativity waveform catalog of the SXS col-
laboration [31] (SXS:BHNS:0001; with component masses
8.4 M⊙ and 1.4 M⊙). We rescale this waveform to a total
mass of M ¼ 120 M⊙ and use it as a proxy for a
gravitational waveform from a binary consisting of at least
one nonblack hole compact object. Note that the rescaled
signal does not correspond to a black hole-neutron star
binary, as m2 ≃ 17 M⊙ is much larger than the maximum

mass of a neutron star. Figure 10 compares the amplitude
jhlmjðtÞ and instantaneous frequency dϕlmðtÞ=dt of this
waveform, along with a similar waveform from a non-
spinning binary black hole system with the same mass
ratio. The multipole structure of these waveforms can be
seen to be slightly different. We hope that the test is able to

FIG. 9. Same as Fig. 7 except that the posteriors are of the deviation parameters c33 (left plots) and c44 (right plots).

FIG. 10. Colored traces show the time domain amplitude
Alm ≔ jhlmj (top panel) and instantaneous angular frequency
ωlm ≔ dϕlm=dt of different modes (shown in the legend) of a
nonspinning binary black hole waveform with mass ratio
q ¼ 1=6. The black traces show the same for a rescaled
numerical-relativity waveform from a neutron star-black hole
simulation. The small oscillations here are numerical artifacts in
the simulated waveform.

TOUSIF ISLAM et al. PHYS. REV. D 101, 024032 (2020)

024032-8



identify these differences provided higher modes are
observed with sufficient SNR.
Figure 11 shows the posteriors of the deviation param-

eters ΔMc and Δq estimated from a simulated observation
containing this signal (darker contours), which are incon-
sistent with the GR prediction of binary black holes
(ΔMc ¼ Δq ¼ 0). The figure also shows the results of
the test applied on a numerical-relativity waveform from a
binary black hole system with same parameters (lighter
contours), which shows consistency with ΔMc ¼ Δq ¼ 0.
The simulated signals correspond to binaries with inclina-
tion angle ι ¼ 90°, producing SNR of 50 in the three
detector Advanced LIGO-Virgo network.

V. WAVEFORM SYSTEMATICS

In all the simulations presented in the previous section,
we have assumed that binary black holes have negligible
spin angular momenta. While most of the binary black hole
events detected by LIGO and Virgo do not appear to have
significant spins [24], black holes in binaries, in general,
could be spinning. When nonspinning waveform templates
are employed to perform the consistency test on GW
observations of spinning binaries, the incomplete modeling
of the templates can manifest as a deviation from the
predicted behavior of a binary black hole signal in GR.
Here we make a first estimate of the effect of neglecting
black hole spins in this test by performing the same analysis
on simulated spinning binary black hole observations. We
simulate spinning binary black hole observations making

FIG. 11. Posterior distributions of ΔMc and Δq estimated from
simulated GW observation of a nonbinary black hole system
(black contours) with M ¼ 120 M⊙, q ¼ 6 (obtained by rescal-
ing the NS-BH waveform SXS:BHNS:0001 from the SXS
catalog) and a black hole system with the same parameters
(yellow contours). The black+sign in the middle panel, the black
vertical line in the top panel, and the black horizontal line in the
right panel indicate the expected value of ΔMc ¼ 0, Δq ¼ 0 for a
binary black hole system in GR.

FIG. 12. Posteriors of the deviation parameters ΔMc and Δq for binary black hole injections with different values of component spins
χ1 and χ2 (shown in legends). The left plot corresponds to low spins and the right to high spins. The results from nonspinning injections
are also shown, for comparison (left). We see that width of the posteriors from the highly spinning injections is much larger as compared
to that from nonspinning or low-spin injections (note the different axis ranges in the left and right plots).
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use of the numerical-relativity surrogate waveform family
developed in [32] and perform the consistency test using
the same nonspinning waveform family [27] as the base GR
waveform over which modifications are applied. We focus
on formulation A (see Sec. II B) as this formulation yields
the tightest constraints on deviations from the predicted
behavior and hence is most prone to systematic errors.
Figure 12 shows the posteriors in the deviation param-

eters ΔMc and Δq introduced in Eq. (2.4) estimated from
simulated binary black hole events with different values of
spin (dimensionless spins χ1;2 shown in legends). The left
plot corresponds to simulations with low spins, while the
right plot corresponds to high spins. For high spin injec-
tions, though the posteriors of ΔMc=Mc and Δq broadly
are consistent with GR value (0, 0) at the 90% level, the
peaks of the posteriors show a bias from the injected value.
Additionally, the widths of the deviation parameters
increase significantly for high spins of the primary black
hole. This suggests that one should use an accurate
spinning waveform model if one wants to perform such
tests on highly spinning signals.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we have proposed a set of tests of the no-
hair nature of binary black holes in GR based on a
consistency test of the multipolar structure of the gravita-
tional radiation. These tests are analogous to the tests of no-
hair theorem for stationary black holes based on the
consistency of different quasinormal modes of a perturbed
black hole [19]. We proposed two formulations of this test
that introduce extra deviation parameters that govern the
amplitude and phase evolution of different spherical har-
monic modes of the radiation, as well as ones affecting the
amplitudes of different modes. Posterior distributions of
these deviation parameters can be estimated using a
Bayesian framework.
The first formulation is inspired by the fact that different

modes of radiation from the binary black holes should be
uniquely described only by the same values of intrinsic
parameters (chirp mass and mass ratio), and hence these
parameters estimated from different modes should be
consistent to each other. We first revisited this formulation,
originally presented in [20]. We presented the results
expected from three detector observations of binary black
holes using the Advanced LIGO-Virgo detectors. Results
from our simulations suggest that upcoming observations
using Advanced LIGO and Virgo will be able to put precise
constraints on the deviation parameters. Indeed, this test
requires appreciable SNR in the higher order modes of the
observed GW signal, which is expected only for a small
fraction (a few percent [20]) of detectable binary black hole
events. However, given that LIGO-Virgo will observe

hundreds of binary black hole mergers in coming years,
we expect a reasonable number of such events to be
observed. We also demonstrate that, if the observed signal
is not produced by a binary black hole system in GR, the
test is able to identify this, provided that the SNR is high
enough.
In the second formulation, we check for the consistency

between the amplitudes of different modes. In order to do
so, we introduce a set of extra deviation parameters in the
amplitudes for the higher modes. We see that these
deviation parameters can be constrained only with modest
precision in Advanced LIGO-Virgo. However, the preci-
sion of such a test is expected to increase manifold with the
next generation of detectors (e.g., with Einstein Telescope
or LISA).
We also presented a preliminary investigation of the

effect of neglecting the effect of black hole spin in the
analysis and find that if the binary has significant effective
spin, neglecting spin effects can produce a bias in the
estimated posteriors. This can mimic a deviation from the
no-hair nature of binary black holes. Thus, applying this
test to real GW data requires the use of accurate waveform
templates that include nonquadrupole modes and spin
effects, which are starting to become available now [33,34].
Note that all of the binary black hole detections during

the first two observing runs of the Advanced LIGO-Virgo
network have been consistent with equal or almost equal-
mass systems with inclinations that are close to face-on/
face-off. Thus, they are not expected to have sufficient
contribution from higher modes to perform the test pro-
posed in this paper. However, with increasing sensitivity of
the current generation of detectors in the coming years, we
expect to detect GW signals from binary black holes that
are highly asymmetric and/or highly inclined. From them
we expect this test to give significant constraints on
deviations from the predicted multipolar structure.
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Hannam, S. Husa, X. Jiménez-Forteza, C. Kalaghatgi, F.
Ohme, and F. Pannarale, Phys. Rev. Lett. 120, 161102
(2018).

[34] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder,
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