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Abstract 

 Current influenza vaccines do not elicit broadly protective immune responses against 

multiple strains. New strategies to focus the humoral immune response to conserved regions on 

influenza antigens are therefore required for recognition by broadly neutralizing antibodies. It 

has been suggested that B-cells with receptors that recognize conserved epitopes would be 

preferentially stimulated through avidity effects by mosaic particles presenting multiple forms of 

a variable antigen. We adapted SpyCatcher-based platforms, AP205 virus-like particles (VLPs) 

and mi3 nanoparticles (NPs), to covalently co-display SpyTagged hemagglutinin (HA) trimers 

from group 1 and group 2 influenza A strains. Here we show successful homotypic and 

heterotypic conjugation of up to 8 different HA trimers to both VLPs and NPs. We characterized 

the HA-VLPs and HA-NPs by cryo-electron tomography to derive the average number of 

conjugated HAs and their separation distances on particles, and compared immunizations of 

mosaic and homotypic particles in wild-type mice. Both types of HA particles elicited strong 

antibody responses, but the mosaic particles did not consistently elicit broader immune 

responses than mixtures of homotypic particles. We conclude that covalent attachment of HAs 

from currently-circulating influenza strains represents a viable alternative to current annual 

influenza vaccine strategies, but in the absence of further modifications, is unlikely to represent 

a method for making a universal influenza vaccine.  
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Introduction 

 Each year, influenza virus infections affect 5-30% of the global population, resulting in 

millions of severe infections and hundreds of thousands of deaths [1]. Yearly epidemics are 

typically caused by the influenza type A, with a smaller number of infections resulting from type 

B. Vaccines can minimize the incidence of severe infections; however, they do not offer 

complete protection and have to be re-administered annually [1, 2]. The lack of complete 

efficacy of current vaccines can be attributed to several reasons. Mainly, the virus undergoes 

antigenic drift in which mutations accumulate over time that can allow the virus to evade the 

humoral immune response [1]. This requires that the vaccine formulation be renewed yearly so 

that the vaccine strains match the circulating strains as closely as possible. Influenza virus also 

features high antigenic diversity resulting in predominantly strain-specific antibody responses 

and making it difficult to recognize conserved regions on the viral antigens [2, 3]. Furthermore, 

through the mechanism of antigenic shift, the RNA segments from strains of different origins can 

reassort, resulting in new strains that are typically the cause of global pandemics that can 

rapidly circulate within an antigenically-naïve population [1]. Altogether, these necessitate the 

need for a universal flu vaccine that could confer protection against a broad swath of 

antigenically-distinct strains, thereby eliminating the need for yearly vaccines and offering 

protection against emergent pandemics.  

 

The antibody response to influenza is primarily directed against the hemagglutinin (HA) and 

neuraminidase glycoproteins, which appear as a dense array of spikes on the surface of the 

viral particles [3, 4]. The majority of the neutralizing antibody response is against HA, the most 

abundant viral surface glycoprotein and the sialic acid-binding receptor that mediates fusion 

between the viral and host membranes. Influenza HA is a trimer of HA1 and HA2 heterodimers, 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 15, 2020. . https://doi.org/10.1101/2020.01.18.911388doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

which can be subdivided into head and stalk domains [3, 4]. The HA head is composed of the 

middle portion of the HA1 sequence, contains the sialic acid binding site responsible for host 

cell recognition, and features high variability between different strains/subtypes. The HA2 

subunit along with N- and C-terminal regions of HA1 encodes for the more conserved stalk 

domain, which contains the fusion peptide involved in viral/host cell membrane fusion [3, 4]. 

Antibodies against the immunodominant HA head can be strongly neutralizing, but are also 

strain specific, with the exception of antibodies that recognize the receptor binding site [3, 5, 6]. 

In contrast, the HA stem is immunosubdominant; however, stem antibodies are often broader, 

although generally less potent than anti-head antibodies, and can induce antibody-dependent 

cellular cytotoxicity (ADCC) responses [3, 7-9]. Within the past 10 years, broadly neutralizing 

antibodies (bNAbs) against influenza that target conserved HA stem epitopes have been 

discovered, but these antibodies have thus far been difficult to elicit [10]. It is generally believed 

that a broadly protective or “universal” vaccine would require the induction of anti-HA stem 

antibodies. As a result, there have been numerous attempts to refocus the immune response to 

these conserved epitopes [11-16].  

 

One strategy to redirect the antibody response towards invariant epitopes was co-displaying 

influenza HAs from different strains on nanoparticles [16]. The rationale was to display HAs from 

several strains on a multimerized platform, such that any two adjacent HAs have a low 

probability of being identical, thereby giving a competitive advantage to B-cells with B-cell 

receptors (BCRs) that use avidity effects to recognize conserved epitopes shared between 

different strains. By contrast, BCRs that recognize strain-specific epitopes could not use avidity 

effects to bind adjacent HAs, thus would be less likely to be activated [16]. In this study, 

monomeric HA receptor binding domain (RBD) sequences were fused to an engineered ferritin 

subunit to create self-assembling particles displaying up to eight different RBD sequences 

derived from H1N1 strains at 24 total positions [16]. The elicited humoral immune response in 
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injected mice featured high breadth and potency against a panel of diverse H1N1 strains, which 

was most apparent the larger the number of HAs that were co-displayed, such that the 

simultaneous display of 8 different HAs elicited the greatest breadth in comparison with 

immunization of a cocktail of 8 different homotypic HA nanoparticles. Sorting and isolation of 

memory B-cells that were positive for HAs from two different strains further supported the use of 

this strategy for inducing cross-reactive B-cells. A logical follow up to this study would be to co-

display HA ectodomain trimers including the stalk and head regions instead of RBD head 

domain monomers, with the hope of eliciting antibody lineages with increased breadth.  

 

We reasoned that co-display of multiple HA trimers on a nanoparticle would be facilitated by a 

system in which soluble HA trimers could be covalently attached to a protein nanoparticle, 

thereby avoiding potential folding problems created by genetically fusing protomers from a 

trimer to a nanoparticle subunit. Numerous NP platforms and coupling strategies have been 

explored for vaccine design [17]. The “plug and display” strategy involves the use of virus-like 

particles (VLPs) or nanoparticles (NPs) fused to a SpyCatcher protein that is covalently 

conjugated to a purified antigen tagged with a short (13-residue) SpyTag [18, 19]. The 

conjugation involves the formation of an isopeptide bond between a lysine from the SpyCatcher 

protein and an aspartate from the SpyTag [20]. An advantage of the SpyCatcher-SpyTag 

system is that it allows for the spontaneous irreversible conjugation of a purified antigen with 

native-like post-translational modifications to a scaffold via an incubation of the antigen and 

scaffold proteins under physiological conditions. Available SpyCatcher protein scaffolds are 

highly versatile, coming in different forms that range from a bacteriophage AP205 T=3 

icosahedral particle (180 SpyCatchers) to a designed dodecahedral NP called mi3 (60 

SpyCatchers) [18, 19]. We recently used AP205 SpyCatcher-VLPs to display SpyTagged 

trimeric HIV-1 Env immunogens and demonstrated priming in immunized mice and non-human 
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primates of B-cells carrying receptors displaying characteristics of V3-glycan patch-targeting 

HIV-1 bNAbs [21]. 

 

Here we describe the use of bacteriophage AP205-based SpyCatcher VLPs and engineered 

particle mi3-based SpyCatcher NPs [18, 19] to display a diverse array of HA ectodomain trimers 

from group 1 and group 2 influenza A strains. Successful conjugation was demonstrated by 

size-exclusion chromatography (SEC), SDS-PAGE, and electron microscopy (EM), with up to 

eight different HA trimers successfully conjugated to mosaic mi3 particles. Our results 

demonstrated that SpyCatcher-VLPs and SpyCatcher-NPs can be easily used to stably display 

at least 8 different trimeric antigens and that AP205-HA and mi3-HA particles produced strong 

immune responses in mice.  

 

Materials and methods 

 Expression and purification of soluble HA trimers. HA ectodomain trimers were 

expressed as shown schematically in Fig 1A with a C-terminal foldon trimerization domain, 13-

residue SpyTag [20], and a 6x-His (modified from HA constructs in [22] to include a SpyTag). 

Genes corresponding to the modified HA1-HA2 sequences (residues 1-504 H3 numbering) from 

A/Aichi/02/1968 (Aichi; H3), A/Shanghai/1/2013 (SH13; H7), A/Jiangxi-Donghu/346/2013 

JX346; H10), A/swine/HuBei/06/2009 (HB09; H4), A/California/04/2009 (CA09; H1), 

A/Vietnam/1203/ 2004 (Viet04; H5), A/Japan/305/1957 (JP57; H2), and A/guinea fowl/Hong 

Kong/1999 (WF10; H9N2) were subcloned into a pTT5 expression vector. Genes encoding 

SpyTagged HAs with a Y98F mutation (H3 numbering) were constructed using site directed 

mutagenesis. HA ectodomain trimer constructs were expressed by transient transfection using 

the Expi293 Expression System (ThermoFisher), and soluble HA trimers were purified from 

transfected cell supernatants by standard Ni-NTA chromatography using a prepacked HisTrapTM 
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HP column (GE Healthcare) and SEC using a HiLoad® 16/600 Superdex® 200 column (GE 

Healthcare). Proteins were concentrated using an Amicon Ultra 15 mL 30K concentrator 

(MilliporeSigma) and stored at 4°C in 20 mM Tris pH 8.0, 150 mM NaCl, 0.02% NaN3 (TBS 

buffer). 

 

Figure 1. Design and characterization of SpyTagged HAs, SpyCatcher VLPs, and 
SpyCatcher-NPs. A. Top: Schematic of the SpyTagged HA construct (SP = signal peptide). 
The HA2 ectodomain is followed by a foldon trimerization domain from T4 fibritin, a 13-residue 
SpyTag, and a 6x-His tag. Amino acids are numbered according to the H3 nomenclature. 
Horizontal lines represent Gly4Ser linkers. Bottom: Surface representation of an HA trimer 
structure (PDB 3VUN), schematic of a SpyTagged HA, and list of influenza strains from which 
SpyTagged HAs were derived. B. SEC profiles and reducing SDS-PAGE analysis of 8 purified 
SpyTagged HAs that contain Y98F substitution. C. SpyCatcher-AP205 VLPs. Top: Schematic of 
construct. Bottom: EM structure of T=3 AP205 particle (PDB 5FS3) [34] with the locations of 
SpyCatcher fusion sites indicated by red dots (left) and schematic SpyCatcher-VLP (right). D. 
Purification of SpyCatcher-VLPs. Left: SEC profile with peak representing properly-assembled 
VLPs indicated. Right: Reducing and non-reducing SDS-PAGE of two fractions corresponding 
to the VLP fractions in red on the SEC trace. E. SpyCatcher-mi3 NPs. Top: schematic of 
construct. Bottom: Cryo-EM structure of I3-01 particle related to mi3 [35] with the locations of 
SpyCatcher fusion sites indicated by red dots (left) and schematic SpyCatcher-NP (right). F. 
Purification of SpyCatcher-NPs. Left: SEC profile. Right: Reducing SDS-PAGE of fractions 
corresponding to the mi3 fractions shaded in red on the SEC trace. 
 

 HA ectodomain trimers for ELISAs were expressed as above without the 13-residue 

SpyTag or the Y98F substitution. Additional strains only used for ELISA include: 

A/shearwater/West Australia/2576/79 (WA79; H15) and A/flat-faced bat/Peru/033/2010 (Pe10; 

H18). The CA09-miniHA construct (construct #4900) [11] was subcloned into a pTT5 

mammalian expression vector with a 6x-His tag and expressed and purified as described for the 

HA ectodomain trimers. For flow cytometry experiments, an Avi-tag was inserted after the C-

termini of the Aichi, Viet04, and CA09 HAs with the Y98F substitution. Avi-tagged HAs were 

expressed and purified as described above and biotinylated using the Biotin ligase kit (Avidity) 

according to the manufacturer’s protocol. Biotinylated CA09-HA, Aichi-HA and Viet04-HA were 

incubated with eBioscienceTM Streptavidin APC, Streptavidin PE-eFluor™ 610, or Streptavidin 

PE (ThermoFisher) overnight at 4oC at a 1:1 molar ratio of HA trimer to streptavidin subunit.  
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 Expression of SpyCatcher-VLPs and SpyCatcher NPs. pGEM-SpyCatcher-AP205-

CP3 for expression of SpyCatcher-VLPs was the kind gift of Dr. Mark Howarth (Oxford 

University). pGEN SpyCatcher AP205-CP3 was transformed into OverExpress™ C41(DE3) 

E.coli (Sigma). Single colonies were picked and inoculated into a 2xYT (Sigma) overnight starter 

culture and then grown in 1L 2xYT media with shaking at 220 rpm at 37˚C until OD 0.5 (A600), 

after which they were induced with 0.42 mM IPTG and grown for 5 hours at 30˚C. Cultures were 

harvested and pellets were frozen in lysis buffer (20mM Tris-HCl pH 7.8, 150mM NaCl, 0.1% 

Tween 20, 75 mM imidazole). For producing VLPs for conjugation, pellets were thawed and 

lysed with a cell disruptor in the presence of 2.0 mM PMSF (Sigma). The lysate was spun at 

21,000xg for 30 min, filtered with a 0.2 µm filter, and VLPs were isolated by Ni-NTA 

chromatography using a prepacked HisTrapTM HP column (GE Healthcare). SpyCatcher VLPs 

were eluted with 2.0 M imidazole, 50 mM glycine, 25 mM sodium citrate, 0.1% Tween 20, pH 

8.5. Eluted VLPs were concentrated using an Amicon Ultra 15 mL 30K concentrator 

(MilliporeSigma) and further purified by SEC using a HiLoad® 16/600 Superdex® 200 (GE 

Healthcare) column equilibrated with 500 mM glycine pH 8.0, 250 mM sodium citrate, 1% 

Tween 20. VLPs were then stored at 4°C and used for up to 1 month for conjugations. 

SpyCatcher-VLPs precipitated out of solution over time and before conjugations, they were 

either filtered with a 0.2 µm filter or spun down at 21,000g for 10 min. 

 

 The pET28a His6-SpyCatcher-mi3 gene (Addgene) was transformed into BL21 (DE3)-

RIPL E.coli (Agilent). Single colonies were picked and inoculated into an LB overnight starter 

culture, and grown in 1L LB media until OD 0.8 (A600 nm) with shaking at 220 rpm at 37˚C, after 

which they were induced with 0.5 mM IPTG and grown for 16-20 hours at 20˚C. Cultures were 

then harvested and pellets were frozen in lysis buffer (250 mM Tris-HCl pH 8.0, 150 mM NaCl, 

50 mM imidazole, 0.02% NaN3). For producing NPs for conjugation, pellets were thawed and 
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lysed with a cell disruptor in the presence of 2.0 mM PMSF (Sigma), and the lysate was spun at 

21,000xg for 30 min, filtered with a 0.2 µm filter, and NPs were isolated by Ni-NTA 

chromatography using a prepacked HisTrapTM HP column (GE Healthcare), and eluting with 2.0 

M imidazole, 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% NaN3. Eluted NPs were 

concentrated using an Amicon Ultra 15 mL 30K concentrator (MilliporeSigma) and further 

purified by SEC using a HiLoad® 16/600 Superdex® 200 (GE Healthcare) column equilibrated 

with 25 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% NaN3. NPs were then stored at 4°C and 

used for up to 1 month for conjugations. SpyCatcher-NPs precipitated out of solution over time, 

and before use for conjugations, they were either filtered with a 0.2 µm filter or spun down at 

21,000g for 10 min. 

 

 Preparation of HA-VLPs and HA-NPs. Purified SpyCatcher-VLPs or SpyCatcher-NPs 

were incubated with a 1.2-fold molar excess (HA protomer to VLP or NP subunit) of purified 

SpyTagged HA (either a single HA for making homotypic particles or an equimolar mixture of 

two or more HAs for making mosaic particles) at room temperature in TBS (25 mM Tris-HCl pH 

8.0, 150 mM NaCl, 0.02% NaN3) overnight. Conjugated VLPs or NPs were then separated from 

free HA trimers by SEC on a Superose 6 10/300 (GE Healthcare) column equilibrated with PBS 

(20 mM sodium phosphate pH 7.5, 150 mM NaCl). Fractions corresponding to conjugated VLPs 

or NPs were collected and analyzed via SDS-PAGE. Concentrations were determined using a 

Bio-Rad Protein Assay. For stability studies, mosaic NP preps were stored for a month at 4°C 

and then analyzed via SEC using a Superose 6 10/300 (GE Healthcare) column equilibrated 

with PBS (20 mM sodium phosphate pH 7.5, 150 mM NaCl). 

 

 EM. HA-conjugated and unconjugated VLPs and NPs were compared by negative-stain 

EM. Ultrathin, holey carbon-coated, 400 mesh Cu grids (Ted Pella, Inc.) were glow discharged 

for 60 s at 15 mA. A 3-µl aliquot of SEC-purified HA-VLPs and HA-NPs diluted to approximately 
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40-100 ug/ml were applied to the grids for 60 s, and then negatively stained with 2% (w/v) 

uranyl acetate for 30 s. Data were collected with a FEI Tecnai T12 transmission electron 

microscope at 120 keV at 42,000x magnification. 

 

 SEC-purified HA-VLPs and HA-NPs were prepared on grids for cryo-ET using a Mark IV 

Vitrobot (ThermoFisher Scientific) operated at 21°C and 100% humidity. 3.1 μL of sample was 

mixed with 1 μL of 10 nm colloidal gold beads (Sigma-Aldrich) as fiducial markers and then 

applied to 300 mesh Quantifoil R2/2 grids, blotted for 3.5 s, and plunge-frozen in liquid ethane 

surrounded by liquid nitrogen. Cryo-ET was performed on a 300kV Titan Krios transmission 

electron microscope (ThermoFisher Scientific) equipped with a Gatan energy filter (slit width 20 

eV) operating at a nominal 33,000x magnification. For HA-VLPs, tilt series were collected on a 

K2 direct electron detector (Gatan) with a pixel size of 2.23 Å•pixel-1 using SerialEM software  

[23], a  -3 to -6 µm defocus range, and a total of 98 e-•Å-2 per tilt series. For HA-NPs, tilt series 

were recorded in counting mode on a K3 direct electron detector (Gatan) with a pixel size of 

2.68 Å•pixel-1 using SerialEM [23], a -4 to -5 μm defocus range, and a total dose of ~140 e-•Å-2 

per tilt series. For both data collections, tilt series images were collected using a dose-

symmetric tilt scheme [24] ranging from -60° to 60° with 2° and 3° intervals for HA-VLPs and 

HA-NPs, respectively. Images were aligned and reconstructed using IMOD [25, 26].  

 

 Immunizations. All animal experiments were carried out in 4-6 week old female Balb/c 

mice obtained from Charles River Laboratories. The immunizations with HA-VLPs and HA-NPs 

in Fig 4A and Fig 5A, respectively, were done in Balb/c mice (n=4 in each group) through 

intraperitoneal (ip) injections of 20 µg of antigen in 200 µL of 50% v/v of adjuvant (Sigma 

Adjuvant System®). For experiments in Fig 4A, mice were immunized on Day 0 and boosted on 

Day 14. Animals were bled weekly via tail veins. For animals in Fig 5A, mice were also boosted 

on Day 37. Mice were euthanized 2 weeks later (Day 49, 51), bled through cardiac puncture, 
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and spleens were harvested. For Fig 7A, mice (n=5 except for mi3- or VLP-immunized mice, 

where n=2) were immunized with the indicated immunogen in 100 µL of 50% v/v of AddaVax™ 

adjuvant (Invivogen) and boosted with adjuvant on Day 14, 28, and 168. Mice were euthanized 

2 weeks after the final boost (Day 182,183), bled through cardiac puncture, and spleens were 

harvested. All blood samples were allowed to clot at room temperature in MiniCollect® Serum 

and Plasma Tubes (Greiner), and then serum was harvested, frozen in liquid nitrogen, and 

stored at -80˚C until use. All animal procedures and experiments were performed according to 

protocols approved by the IACUC. 

 

 ELISAs. Nunc® MaxiSorp™ 384-well plates (Sigma) were coated with 10 µg/ml of a 

purified HA (without a SpyTag) in 0.1 M NaHC03 pH 9.8 and stored overnight at 4oC. Plates 

were blocked with 3% bovine serum albumin (BSA) in TBS-T (TBS with 0.1% Tween 20) for 1 hr 

at room temperature. Plates were washed with TBS-T after each step. Serum was diluted 1:100 

and then serially diluted by 4-fold with TBS-T/3% BSA and added for 3 hr at room temperature. 

A 1:50,000 dilution of secondary HRP-conjugated goat anti-mouse IgG (Abcam) was added for 

1 hr at room temperature. Plates were developed using SuperSignal™ ELISA Femto Maximum 

Sensitivity Substrate (ThermoFisher) and read at 425 nm. Curves were plotted and integrated to 

obtain the area under the curve (AUC) using Graphpad Prism 8.3. Statistical differences of AUC 

titers between groups were calculated using Tukey’s multiple comparison test via Graphpad 

Prism 8.3.  

 

 In vitro neutralization assays. Neutralization assays were conducted using live 

PB1flank-eGFP virus for BSL 2 strains A/Aichi/02/1968 (X31; H3N2), A/California/04/2009 

(CA09; H1N1), A/Texas/36/1991 (TX91; H1N1), and A/Wisconsin/67/2005 (WI05; H3N2) as 

described [27] using reagents kindly provided by Dr. Jesse Bloom (Fred Hutchinson). Plasma 

was set at a top dilution of 1:200 (for Fig 4C) or 1:100 (For Fig 5C) and serially diluted 5-fold (for 
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Fig 4C) or 4-fold (For Fig 5C) for a total of 8 dilutions. Pseudovirus assays were conducted as 

described [28] for BSL 3 strains A/Shanghai/1/2013 (SH13; H7), A/Jiangxi-Donghu/346/2013 

(JX346; H10), A/Vietnam/1203/ 2004 (Viet04-H5), and A/Netherlands/219/2003 (NL03-H7). 

Plasma was set at a top dilution of 1:200 (for Fig 4C) or 1:100 (For Fig 5C) and serially diluted 

4-fold for a total of 8 dilutions. Neutralization data were plotted, curves were fit, and ID50 values 

were calculated using Antibody Database [29]. Reported IC50s are geometric means, which are 

suitable for data sets covering multiple orders of magnitude [30]. Correlation between 

neutralization ID50s and ELISA AUC titers were calculated using the Pearson correlation 

function on Graphpad Prism 8.3.  

 

 Flow cytometry. Single cell suspensions were prepared from immunized mouse 

spleens by mechanical dissociation using the back of a syringe plunger. Cell suspensions in 70 

µm cell strainers were washed in cold RPMI 1640 media and treated with ACK lysing buffer 

(Gibco) to lyse red blood cells. The resulting white blood cell preparation was resuspended in 

RPMI 1640 MACS and enriched for memory B-cells using the negative selection portion of the 

protocol in a mouse Memory B-cell Isolation Kit (Miltenyi). For the experiment in Fig 6A, 

enriched splenocytes were then stained with the following monoclonal antibodies and reagents: 

CD4-APC-eFluor 780 (clone: RM4-5), F4/80-APC-eFluor 780 (clone: BM8), CD8a-APC-eFluor 

780 (clone: 53-6.7), Ly-6G-APC-eFluor 780 (clone: RB6-8C5), IgM-PerCP-eFluor 710 ( clone: 

II/41) (eBioscience), CD19-FITC (clone: 6D5) (Biolegend), IgG1 BV421 (clone: X40), IgG2 

BV421 (clone: R19-15) (BD Bioscience), and CA09-HA-APC, Aichi-HA-PEeflour610 and Viet04-

HA-PE (prepared as described above). Cell viability was analyzed with Ghost Dye™ Violet 510 

(Tonbo). For the experiment in Fig 8A, enriched splenocytes were stained with the following 

monoclonal antibodies and reagents: CD4-APC-eFluor 780 (clone: RM4-5), F4/80-APC-eFluor 

780 (clone: BM8), CD8a-APC-eFluor 780 (clone: 53-6.7), Ly-6G-APC-eFluor 780 (clone: RB6-

8C5), IgM- APC-eFluor 780 ( clone: II/41) (Thermo-fisher Scientific), CD19-FITC (clone: 6D5) 
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(Biolegend), IgG1 BV421 (clone: X40), IgG2 BV421 (clone: R19-15) (BD Bioscience), and 

CA09-HA-APC, Viet04-HA-PE for looking at CA09+Viet04+ B-cells, CA09-HA-APC  and Aichi-

HA-PE for looking at CA09+Aichi+ B-cells, or Sh13-HA-APC and Aichi-HA-PE for looking at 

Sh13+Aichi+ B-cells (all HA probes were prepared as described above). Cell viability was 

analyzed with Ghost Dye™ Violet 510 (Tonbo). Splenocytes were incubated for 30 min at 4oC in 

the dark and then washed twice with staining buffer (HBSS, 50 mM HEPES pH 7.4, 2.5 mg/ml 

BSA, 50 ug/ml DNAse, 1 mM MgCl2). Stained cells were then analyzed with a SY3200 Cell 

Sorter (Sony) configured to detect 9 fluorochromes. 500,000-1,000,000 events were collected 

per sample and analyzed via FlowJo software (TreeStar). Correlation between percentage of 

antigen-specific B-cells and ELISA AUC titers were calculated using the Pearson correlation 

function on Graphpad Prism 8.3. 

 

Results and discussion 

 Construction of HA-VLPs and HA-NPs. We adapted the AP205 SpyCatcher-VLP 

platform that we had previously used to conjugate a trimeric HIV-1 immunogen [21] as a way to 

increase the intrinsic immunogenicity of HA, mask undesired epitopes located at the bottom of 

the HA trimer, and attach different HA trimers to the same particle. We reasoned that the 

SpyCatcher-VLP platform could be used to display more than one HA by incubating with 

equimolar amounts of different SpyTagged HAs. Although the SpyTagged HAs would be 

conjugated at random to available SpyCatcher proteins, there should be no advantage for the 

conjugation of one HA over another since they all contained the same SpyTag. 

 

 We first expressed and purified SpyTagged soluble HA trimers derived from 8 different 

influenza strains from group 1 and group 2 influenza A viruses (Fig 1A). The constructs for each 

HA protomer contained HA1 and the HA2 ectodomain (residue 1-503 H3 numbering) linked to a 
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C-terminal foldon trimerization domain, a SpyTag and a 6x-His tag (Fig 1A). The HAs for the 

SpyCatcher-mi3 conjugations included the sialic acid binding knockout mutation Y98F (except 

for the SpyTagged HAs used to conjugate the SpyCatcher-VLPs). SpyTagged HAs including the 

Y98F substitution purified from the supernatants of transiently-transfected mammalian cells 

were verified to form monodisperse and well-behaved trimers by SEC and SDS-PAGE (Fig 1B).  

 

 We used SpyCatcher-AP205 VLPs and SpyCatcher-mi3 NPs as conjugation platforms 

for multivalent display of HA trimers. AP205-SpyCatcher VLPs are icosahedral capsids (T=3 

symmetry) with 180 copies total, therefore 180 SpyCatchers were available for conjugation (Fig 

1C). AP205-SpyCatcher VLPs were expressed in E. coli and purified via Ni-NTA affinity 

chromatography followed by SEC (Fig 1D) [18]. The Spycatcher-AP205-VLPs eluted near the 

void volume as a single monodisperse peak. SpyCatcher-mi3-NPs are an engineered 

dodecameric scaffold with 60 total subunits, therefore 60 conjugation sites [19] (Fig 1E). The 

SpyCatcher-mi3s were also expressed in E. coli, purified by Ni-NTA affinity chromatography 

followed by SEC, and analyzed with reducing SDS-PAGE (Fig 1F).  

 

 Using the SpyCatcher-AP205 VLPs, we first evaluated coupling of two recombinant HAs, 

A/California/04/09 H1 (CA09-HA) and A/Aichi/02/1968 H3 (Aichi-HA) (chosen to represent two 

strains that would normally be present in an annual influenza vaccine [2, 3]). Conjugations of the 

AP205-Spycatcher VLPs were carried out by room temperature incubation with CA09-HA, Aichi-

HA, or an equimolar mixture of both HAs in a 1.2 molar excess to the VLPs (HA protomer to 

VLP subunit) to prepare CA09-, Aichi-, and mosaic-2 VLPs, respectively (Fig 2A). VLP-

conjugated HA trimers were separated from free trimers by SEC (Fig 2B), and 

successful conjugation of the SpyCatcher VLPs to Aichi-HA, CA09-HA, and both HAs was 

verified by a shift in apparent molecular weight (from 75 kDa to 100 kDa) detected by SDS-

PAGE for HAs conjugated to the VLP subunits (Fig 2B).  
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Fig 2. Conjugation of SpyCatcher-VLPs and -NPs. A. SpyCatcher-AP205-VLP conjugations 
with SpyTagged-HA trimers. B. Purification of conjugated SpyCatcher-VLPs. Left: SEC 
separation of conjugated VLPs from free HA trimers. Right: Reducing SDS-PAGE analysis of 
VLPs and purified HAs. C. SpyCatcher-mi3 NP conjugations with SpyTagged-HA Y98F trimers. 
D. Purification of homotypic SpyCatcher-NPs. Left: SEC separation of conjugated NPs from free 
HA trimers. Right: Reducing SDS-PAGE analysis of NPs and purified HAs. E. Purification of 
heterotypic mosaic NPs. Left: SEC separation of conjugated NPs from free HA trimers, including 
SEC profile of purified conjugated NPs after one month storage at 4 ˚C. Right: Reducing SDS-
PAGE analysis of NPs and purified HAs.  
 

 Because VLPs conjugated with more than two different HAs tended to precipitate out of 

solution (data not shown), we switched to the SpyCatcher-mi3 NP platform, which is similarly 

immunogenic as the AP205 platform, but has been shown to exhibit improved yields, stability, 

and uniformity [19]. In addition, we modified the SpyTagged HAs to include a receptor binding 

site mutation, Y98F (H3 numbering), to abolish sialic acid binding [31] that could result in 

interactions of aggregation of HAs on neighboring particles. Starting with 8 HAs from influenza 

group 1 and group 2 strains (Fig 1A) with pandemic potential [32], we made mosaic-2, mosaic-4 

and mosaic-8 NPs (each with an equal representation of group 1 and group 2 strains) and the 8 

corresponding homotypic HA-conjugated NPs (Fig 2C). Homotypic and mosaic HA-mi3s were 

purified via SEC, and conjugation was verified by a shift in apparent molecular weight (from 75 

kDa to >100 kDa) detected by SDS-PAGE for HAs conjugated to the mi3 subunits (Fig 2D,E). 

To assess stability of the conjugated NPs, mosaic NP samples stored for one month at 4˚C 

were analyzed for degradation by SEC, revealing little to no free HA trimer for both the mosaic-4 

and mosaic-8 NPs (Fig 2E).  

 

 EM characterization of HA-VLPs and HA-NPs. Negative-stain EM revealed increased 

diameters for conjugated VLPs and NPs compared with their unconjugated counterparts (Fig 

3A). HA-conjugated VLPs were also examined by single-particle cryo-EM. 2D class averages of 

mosaic-2 VLPs showed ordered density for the AP205 VLP, but blurred densities for attached 

HAs (Fig 3B), suggesting variability in trimer orientations with respect to the VLP surface.  
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Fig 3. EM of conjugated VLPs and NPs. Scale bars shown apply to all images in each panel. 
A. Negative-stain EM of HA-conjugated VLPs and mi3 NPs compared with unconjugated 
counterparts. B. Cryo-EM micrograph of HA-VLP sample (left) and representative 2D class 
averages (right). Densities for HA trimers are blurry in the class averages, likely because the 
trimers occupy different positions on individual particles. C. Cryo-ET imaging of HA particles. 
Computationally-derived tomographic slices of HA-VLP (top panels; 2.78 nm slices) and HA-NP 
(bottom panels; 3.21 nm slices). Slices derived from the widest portions of representative 
particles are shown to the right in each panel.  
 
 Since the HA trimer densities could not be reliably interpreted by single-particle cryo-EM, 

we used cryo-ET to derive 3D reconstructions of individual HA-conjugated VLPs and NPs. 

Tomograms (Supplemental Movies 1 and 2) showed particles with average diameters of 60 nm 

(HA-VLPs) and 50 nm (HA-NPs) and revealed densities for individual HA trimers on VLPs and 

NPs. The trimers were separated by distances of ~7-10 nm and ~12-15 nm for VLPs and NPs, 

respectively (measured between the head regions of trimer axes on adjacent HAs). To estimate 

the number of conjugated HA trimers, we counted HA densities in ~3 nm tomographic slices of 

individual HA-VLPs and HA-NPs at their widest diameters, where the symmetries of each type 

of particle predicted a maximum of 20 potential attachment sites. We found 9-16 HA densities 

for conjugated VLPs and 6-8 densities for conjugated NPs, corresponding to occupancies of 45-

80% (VLPs) and 30-40% (NPs). Since AP205 VLPs and mi3 NPs contain 180 or 60 SpyCatcher 

domains, respectively, this translates to ~81-144 conjugated HA trimers per AP205 VLP and 

~18-24 trimers per mi3 NP.  

 

 Immunizations with homotypic- and mosaic-HA-VLPs/NPs. Our next goal was to 

determine whether mosaic HA-VLPs induced a more cross-reactive humoral immune response 

compared with a mixture of the corresponding homotypic HA-VLPs. We first immunized one 

group of four mice with mosaic-2 VLPs (presenting CA09 plus Aichi HAs) and a second group of 

four mice with an equal mixture of CA09-VLPs and Aichi-VLPS (admix-2) (Fig 4A). In addition, 

we immunized groups of mice with only Aichi-VLPs or only CA09-VLPs. In all cases, mice were 
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primed with equal doses of VLPs plus adjuvant, boosted 2 weeks later without adjuvant, and 

bled weekly for serum analyses.  

 

Fig 4. Immunizations with HA-VLPs. A. Schematic of the immunization protocol. Four animals 
were used for each sample group. B. Serum antibody response to HA was measured by ELISA 
and shown as area under the curve (AUC) of Day 28 serum sample to group 1 and group 2 HA 
trimers. Each dot represents serum from one animal, with arithmetic means and standard 
deviations represented by rectangles and horizontal lines, respectively. Homotypic strains 
(present on the mosaic-2 VLP) and heterotypic strains (not present on the mosaic-2 VLP) are 
indicated by the blue and red rectangles, respectively, above the ELISA data. C. Serum 
neutralization titers from Day 45 determined by in vitro neutralization assays using infectious 
virus or pseudoviruses. Each dot represents serum from one animal, with geometric mean and 
geometric standard deviations represented by rectangles and horizontal lines, respectively. 
Dotted lines indicate limits of detection. 
 

 Serum ELISAs were performed to measure IgG binding to purified HAs from a panel of 

group 1 and group 2 influenza A strains (Fig 4B). As expected, IgG titers elicited by 

immunization with mosaic-2- and admix-2-immunized mice were similar to titers elicited by 

CA09-VLP immunization against CA09 HA and Aichi-VLP immunization against Aichi-HA. 

Against heterotypic HAs not coupled tom the VLPs (Viet04, Jp57, WF10, Sh13 and JX346 HAs), 

IgG titers were similar for both mosaic-2- and admix-2-immunized mice, although titers were 

consistently higher compared with both CA09-VLP- and Aichi-VLP-immunized mice. Thus in 

terms of elicited IgG binding of HAs, it appeared that immunizing with the mosaic-2 VLPs that 

contained group 1 and group 2 HAs was no better at inducing cross-reactive binding of HAs 

from divergent strains than the corresponding admixture. However, the mosaic-2 and admix-2 

injections induced heterologous breadth that could not be explained by the overlapping 

immunogenicity of the homotypic VLPs.  

 

 Next, we determined neutralizing activity of the serum samples using in vitro 

neutralization assays (using infectious viruses for BSL 2 strains and pseudoviruses for BSL 3 

strains) against a panel of group 1 and group 2 influenza A strains (Fig 4C). For the mosaic-2- 
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and admix-2-immunized mice, neutralizing titers against homotypic infectious virus strains 

(CA09 and Aichi) were consistent with the ELISA titers against these strains. Against the Viet04 

and JX346 pseudoviruses, neutralization titers were not detectable except for one animal in the 

admix-2 group. Against the Sh13 pseudovirus, neutralizing titers for the mosaic-2-immunized 

mice were higher than for the other groups, although the spread in potency was broad and 

overlapped with the other groups. When considering the neutralization and ELISA results 

together, the mosaic-2 VLPs did not induce greater breadth than the corresponding mixture of 

homotypic VLPs.  

 

 In order to determine whether mosaic HA-NPs with higher valencies could elicit antibody 

responses with higher breadth, we conducted experiments similar to those described for VLPs 

to compare injections of mosaic-2, -4 and -8 NPs with the corresponding admixtures of 

homotypic NPs (Fig 5A), a CA09-NP homotypic control, and unconjugated SpyCatcher-NPs. A 

final boost was performed 5 weeks after the first prime and animals were sacrificed 2 weeks 

later to harvest spleens for B-cell analysis. Serum IgG titers from Day 21 and Day 49 were 

measured by ELISA against a panel of purified HAs from homotypic and heterotypic group1 and 

group 2 strains (Fig 5B) and against unconjugated SpyCatcher-NPs (mi3 NPs in Fig 5A). All 

groups of mice exhibited antibody responses to unconjugated SpyCatcher-mi3, suggesting that 

SpyCatcher and/or NP epitopes are accessible on HA-conjugated particles. 

 

Fig 5. Immunizations with HA-NPs. A. Schematic of the immunization protocol. Four animals 
were used for each sample group. B. Serum antibody response to HA was tested by ELISA and 
shown as binding as area under the curve (AUC) of Day 21 and Day 49 serum to recombinant 
group 1 and group 2 HA trimers. Each dot represents serum from one animal, with means and 
standard deviations represented by rectangles and horizontal lines, respectively. Homotypic 
strains that were present on the mosaic NPs  and heterotypic strains that were not present are 
indicated by the blue and red rectangles, respectively, above the ELISA data. C. Serum 
neutralization titers from Day 45 determined by in vitro neutralization assays using infectious 
virus or pseudoviruses. Each dot represents serum from one animal, with geometric means and 
geometric standard deviations represented by rectangles and horizontal lines, respectively. 
Dotted lines indicate limits of detection. ND represents data not determined. 
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 Against HAs from homotypic strains (CA09 and Aichi), the serum from mice immunized 

with both the admix and mosaic NPs featured equivalent titers, with the exception of the admix-

4 mouse group, which responded with overall lower titers and included 2 mice with no 

responses. Against the Viet04 and Sh13 HAs (presented on particles with valencies of 4 and 8), 

the response was slightly higher for the mosaic-2 NPs than for the CA09-NP and admix-2 

groups, whereas the mosaic-4, mosaic-8 and admix-8 groups showed higher titers, although 

over a broad range that included mice with poor responses even against strains of HA that were 

presented on admix-4 NPs. Against the Jp57, JX346, WF10, and HB09 HAs (only present on 

the valency-8 NPs), the admix-8 and mosaic-8 titers were equivalent to each other and the 

highest on average. The titers against heterologous HAs from the CA09-NP-injected mice were 

similar to titers from mice injected with unconjugated SpyCatcher-NPs, with the exception of 

responses against Jp57 HA. Responses to the mosaic-2 NPs were slightly higher than 

responses against admix-2 and CA09-NP, again except for the recognition of Jp57 HA. One 

animal in the mosaic-4 group exhibited high titers against HAs from all strains in comparison to 

the admix-4 mice, with the mosaic-4 responses being on par with responses from the animals 

immunized with the valency-8 NPs. Finally, against HAs from Pe10 and WA79 (not presented 

on the any of the NPs), serum titers were low for most of the injected animals except for some 

animals from the mosaic-4 group (e.g., the animal that exhibited high titers against strains not 

represented on the mosaic-4 NPs), and admix-8- and mosaic-8-immunized mice.  

 

 ELISAs were also used to evaluate recognition of CA09-miniHA, a stabilized stem-only 

construct derived from CA09 HA [11] to investigate whether there was preferred recognition of 

stem epitopes by the animals immunized with mosaic NPs. We found that the serum response 

against the CA09 stem was equivalent to responses against the head-containing CA09 HA 

trimer, with the CA09-NP-immunized mice exhibiting the highest titers (Fig 5B), suggesting that 

the mosaic NPs did not preferentially elicit anti-stem responses. 
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 ELISA titers determined for serum samples obtained on Day 49 showed similar 

responses as Day 21 titers with a few exceptions. For example, the mosaic-8 NP-immunized 

mice had lower titers compared to the admix-8 mice against some of the HAs, suggesting that 

the additional immunizations were not consistently resulting in strong immune responses. The 

mice immunized with the mosaic-4 NPs mounted more robust responses, although two of the 

animals exhibited low titers against all of the strains (as compared with three animals from Day 

21). Based on ELISAs, we did not find strong evidence of increased cross-reactivity induced in 

animals immunized with the mosaic NPs compared with animals injected with the corresponding 

admix-NPs of the same valency. However, for the mosaic-4 NP group, one animal repeatedly 

showed high titers of IgG binding to HAs from all strains tested, suggesting that this animal may 

have induced cross-reactive antibodies.  

 

 We also conducted in vitro neutralization assays using Day 49 serum against a panel 

group 1 and group 2 influenza strains (Fig 5C). For CA09, neutralization titers correlated with 

ELISA titers (S1A Fig), with CA09-NP-immunized mice showing the highest neutralization titers. 

The neutralizing response to Aichi HA also correlated with ELISA titers (S1C Fig). For the two 

heterotypic H1 and H3 HAs (TX91 and WI05 strains), serum from all animals was non-

neutralizing, suggesting that neutralizing antibodies that cross-react within the H1 and H3 

subtypes were not induced. For Viet04 and Sh13, neutralization correlated with the ELISA titers 

(S1B and S1D Fig) with valency 4 and 8 mosaic and admix particles showing higher 

neutralization titers as expected. Against NL03, the neutralizing responses were difficult to 

interpret due to high background neutralization from the unconjugated mi3 control serum. For 

JX346, neutralization titers also correlated with ELISA results (S1E Fig). Overall, it appeared 

that the mosaic NPs did not offer an advantage compared to corresponding mixtures of 
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homotypic particles in induction of neutralizing antibodies, although the mosaic-4 groups 

included some animals in which greater breadth was induced than admix-4 animals.  

 

 B-cell responses induced by mosaic- versus homotypic-NP immunizations. In 

order to determine if cross-reactive B-cells were elicited in mice immunized with the mosaic 

NPs, IgG+ B-cells from immunized mouse spleens were probed for binding to soluble HAs from 

three different influenza strains using flow cytometry (Fig 6A). The percent binding was 

determined by gating antigen-specific populations to compare populations positive for CA09, 

Viet04, or Aichi HAs alone, and for double-positive populations representing B-cells that 

exhibited cross-reactivity (Fig 6B). As expected, the CA09+ population was the largest for the 

CA09-NP-immunized mice, with the rest of the mosaic and admix groups eliciting lower 

proportions of the CA09+ B-cells. Admix and mosaic groups with valencies of 4 and 8 elicited a 

similar level of Viet04+ IgG+ B-cells, as expected since Viet04 HA was present only on these 

NPs. Interestingly, the mosaic-2-immunized mice elicited a somewhat lower, but detectable, 

number of Viet04+ B-cells, which were not present in the admix-2 and homotypic CA09-NP 

samples. Except for the CA09-NP-immunized mice, all animals showed Aichi+ B-cells; however, 

the mosaic-2-immunized mice elicited the largest number of antigen-specific B-cells, consistent 

with ELISA and neutralization results (Fig 6A-B). Interestingly, very few CA09+/Viet04+ B-cells 

were induced in all immunized animals, with the exception of one animal in the mosaic-4-

immunized group, which also featured a high serum IgG and neutralizing response. The CA09-

NP and admix-8 immunized mice also induced double-positive B-cells, although to a lesser 

extent. CA09+/Aichi+ and Viet04+/Aichi+ double-positive B-cells were not detected for any of 

the animals (data not shown). As expected, antigen-specific B-cell populations (CA09+, Viet04+ 

and Aichi+) correlated strongly with ELISA serum binding (Aichi-HA, Viet04-HA, and Aichi-HA, 

respectively; S2A-S2C Fig). Interestingly, the percent of double-positive CA09+Viet04+ B-cells 

correlated with serum titers for Pe10-HA (S2D Fig), a strain not represented on any of the 
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particles. This suggests that animals that induced CA09+Viet04+ B-cells also had cross-reactive 

serum antibodies. Although there was no significant difference in the induction of double-

positive B-cells between the mosaic versus admix NP-immunized mice, there is some capacity 

for the HA-conjugated NPs to induce cross-reactive B-cells and antibodies.  

 
Fig 6. B-cell responses induced by mosaic NP immunizations. A. Gating strategy for flow 
cytometry experiments using single cell suspension from spleens harvested from immunized 
mice in Fig 5A. Anti-CD3, anti-CD8, anti-F4/80, and anti-Ly6G were used to remove T cells, 
macrophages, monocytes, and neutrophils. Cells were then gated to isolate CD19/IgG-positive 
and IgM-negative B-cells, which were probed for binding to CA09-HA-APC (allophycocyanin), 
Aichi-HA-PE-eFluor610 (phycoerythrin-eFluor 610), and/or Viet04-HA-PE (phycoerythrin). B. 
Percentage of CA09+, Viet04+, Aichi+, and CA09+/Viet04+ in IgG+ B-cells plotted for each 
group.  
 

 Comparison of Mosaic NP and VLP immunizations. Several possibilities could 

account for why no significant differences between mosaic NPs and the corresponding 

admixture of homotypic NPs were observed. One reason is that there were some animals from 

each group that did not respond strongly to either prime or boost as determined by ELISA (Fig 

5B). Another possibility is that the mi3 NP platform is not as immunogenic as the AP205 VLP 

platform, which can serve as a self-adjuvant via toll-like receptors since AP205 carries bacterial 

nucleic acid [18, 19]. 

 

 Another animal experiment was conducted to compare mosaic VLPs and mosaic NPs 

with their counterpart admixtures. Mosaic VLPs and mosaic NPs were prepared with valencies 

of -4 and -8 along with the corresponding admixtures of homotypic VLPs and NPs (S2A and 

S2B Fig). Groups of 5 mice were immunized with mosaic and admixture VLPs and NPs, CA09-

NP, CA09-VLP, as well as unconjugated NPs and VLPs as controls (Fig 7A). Mice were then 

boosted with the same antigen in the presence of adjuvant a total of 3 times over the course of 

4 months. Mice were bled every two weeks after each immunization. Two weeks after the third 

boost, mice were sacrificed for B-cell analysis using harvested spleens.  
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Fig 7. Immunizations using Mosaic VLPs and NPs. A. Schematic of the immunization 
protocol (five animals per injection). B. Serum antibody response to HA shown by ELISA 
binding as area under the curve (AUC) of Day 28 serum to recombinant group 1 and group 2 
HA trimers. Each dot represents serum from one animal, with means and standard deviations 
represented by rectangles and horizontal lines, respectively. Homotypic strains that were 
present on the mosaic NPs and heterotypic strains that were not present are indicated by the 
blue and red rectangles, respectively, above the ELISA data. 
 

 Serum IgG titers were measured via ELISAs using samples from Day 28 against HAs 

from a panel of group 1 and group 2 strains (Fig 7B). There was no significant difference 

between antibody titers elicited by mosaic NPs or mosaic VLPs and their counterpart 

admixtures of equivalent valency against any of the strains tested. Furthermore, there was no 

major difference between antibody titers from animals immunized with mosaic VLPs versus 

mosaic NPs.  

 

 However, there was a statistically significant difference in ELISA titers against CA09-H1, 

when comparing mice immunized with CA09-VLPs with respect to mice immunized with mosaic-

4 VLPs (p=0.0018) and mosaic-8 VLPs (p=0.0084). The difference between CA09 mi3 versus 

the mosaic NPs was not significant. This suggests that the increase of valency of strains 

represent on the mosaic VLPs reduced the humoral response against at least one of the 

component strains.  

 

 Somewhat surprisingly, mice immunized with either CA09-NP or CA09-VLP, which only 

presented the group 1 CA09 H1N1 HA, elicited antibody titers that were cross-reactive against 

all of the strains tested including the group 2 HAs, often to a similar level as the admix and 

mosaic VLPs  and mosaic NPs  that had those strains represented (Fig 7B), suggesting that 

immunization with a monovalent particle can be sufficient to induce cross-reactivity. Day 42 

ELISA titers showed a similar trend (S2B Fig).  
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 Flow cytometry comparisons of mosaic NP and VLP immunizations. The antigen-

specific B-cell response for the mice immunized with mosaic VLPs or mosaic NPs was 

characterized using flow cytometry (Fig 8A). IgG+ splenocytes were analyzed for binding to a 

panel of soluble HAs derived from four strains: two from group 1 (CA09 and Viet04) and two 

from group 2 (Aichi and Sh13). The percent binding was determined for each antigen by gating 

the antigen-specific CD19+, IgG+, B-cell population that recognized either CA09, Viet04, Sh13, 

and Aichi HAs alone (Fig 8A), or that recognized double-positive populations that represented 

cross-reactive B-cells (Fig 8B). Three sets of double-positive cross-reactive antigen specificities 

were interrogated: CA09+/Viet04+ to look for group 1 breadth, Sh13+/Aichi+ to look for group 2 

breadth, and CA09+/Aichi+ to look for group 1/group 2 breadth (Fig 8B).  

 
Fig 8. B-cell responses induced by Mosaic VLP and NP immunization. Flow Cytometry 
Analysis of IgG+ B-cells isolated from splenocytes as described in Fig 6A. A. Percent CA09+, 
Viet04+, Aichi+, and Sh13+ B-cells plotted for each group. B. Cross-reactive B-cell 
compartment: CA09+/Viet04+, CA09+/Aichi+, Sh13+/Aichi+ B-cell plotted for each group. 
 

 Single positive populations for CA09, Viet04, Aichi, or Sh13 correlated with the Day 28 

ELISA titers (S4A-S4D Fig). CA09-NP and CA09-VLP elicited a significantly higher percentage 

of CA09+ B-cells with respect to both the mosaic and admix versions of NPs and VLPs (Fig 8A), 

in agreement with ELISA results in which the CA09-VLPs elicited higher anti-CA09 titers than 

mosaic-4 and mosaic-8 VLPs (Fig 7B). There were no statistical significant differences in the 

percent of antigen-specific B-cells between mosaic-4 and mosaic-8 NPs and VLPs. However, as 

a general trend, the higher the mosaic valency, the lower the percent of strain-specific B-cells 

that were elicited, especially in the case of Viet04+ and Aichi+ B-cells (Fig 8A). Interestingly, 

mice immunized with CA09-NP and CA09-VLP induced antigen-specific B-cells that were 

specific to Viet04, Aichi, and Sh13 (Fig 8A). This could explain why cross-reactive ELISA titers 

were observed for these animals against HAs from every strain that was tested.  
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 Similar to the results shown in Fig 6B, induction of cross-reactive CA09+/Viet04+ B-cells 

were rare (Fig 8B). The difference in the percent of CA09+/Viet04+ B-cells between mosaic, 

admix, and homotypic VLPs/NPs was therefore not significant. Interestingly, both CA09-NP and 

Ca09-VLPs were able to induce CA09+/Viet04+ B-cells, suggesting that immunization with 

monovalent CA09-VLPs/NPs was sufficient to induce cross-reactive B-cells. As previously 

observed, the percent of CA09+/Viet04+ B-cells correlated with the Day 28 serum ELISA titers 

against Pe10, a mismatched strain not represented on any of the VLPs or NPs (S4E Fig, 

p=0.0234), 

 

 Induction of Ca09+/Aichi+ B-cells was observed, although rarely, making it unclear 

whether they represented B-cells that were cross-reactive to group 1 and group 2 HAs (Fig 8B). 

Sh13+/Aichi+ B-cells were also observed at a low frequency (Fig 8B). Since both of these 

populations were rare, there was no significant difference in the percent of double-positive B-

cells between each group of immunized mice.  

 

Conclusions 

 Attempts to develop broadly protective influenza vaccines have been challenging partly 

due to the immunodominance hierarchy of antibody epitopes on HA. The variable epitopes on the 

HA head tend to be more easily recognized than invariant stem epitopes, therefore driving a 

predominantly strain-specific immune response [2, 3]. A potential strategy to redirect the antibody 

response towards more conserved stem epitopes is to co-display influenza HAs from different 

antigenically-distinct strains on particles. A previous study demonstrated the potential for this 

approach in that antibody responses with greater breadth were observed for mice injected with 

mosaic HA receptor binding domain particles compared with counterpart homotypic admixtures 

[16]. Here we sought to extend these results by preparing homotypic and mosaic particles 
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containing trimeric HAs that included stem epitopes that are not present on monomeric HA 

receptor binding domains. Since HA trimers cannot be fused to ferritin nanoparticles, as 

previously done to prepare the monomeric HA receptor binding domain particles [16], we used a 

“plug and display” strategy [18] to covalently couple trimeric HAs to symmetric particles with 

different numbers of attachment sites (VLPs with 180 attachment sites and NPs with 60 

attachment sites), thereby developing a simple method to make homotypic particles displaying a 

single strain of HA and mosaic particles displaying HAs derived from up to 8 strains. We 

demonstrated successful conjugation of HA trimers using biochemical methods and EM imaging, 

including cryo-ET to examine coupling densities of HA on VLPs and NPs. Our biochemical and 

EM analyses of HA-VLP and HA-NP particles provide useful characterizations for future efforts to 

utilize the SpyCatcher-SpyTag “Plug and Display” approach [18] for homotypic and heterotypic 

display of oligomeric antigens. 

 

 Our results showed that immunizations with mosaic particles conjugated with HA trimers 

did not offer a clear advantage in the induction of cross-reactive B-cells compared with 

immunization of mixtures of homotypic particles. The finding that mosaic particles conjugated with 

monomeric HA receptor binding domains showed increased induction of cross-reactive B cells 

compared with admixtures [16], but that mosaic HA trimer particles compared with admix HA 

trimer particles did not, suggests that potential advantages of mosaic presentation may be related 

to particular forms of an antigen. For example, the monomeric HA antigens coupled to ferritin 

were limited to inducing HA head-specific antibodies [16], whereas the trimeric HA ectodomains 

contained head epitopes as well as stem epitopes that may be partially occluded from interactions 

with BCRs. In addition, the HA head monomers that were coupled to ferritin were restricted to the 

H1N1 subfamily [16], whereas our study involved HA trimers derived from group 1 and group 2 

influenza strains. Consistent with our results, a recent study using designed nanoparticles to 
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present trimeric HAs from influenza A and B strains also reported no increased breadth of 

antibody responses against mosaic particles compared with admixtures [33].  

 

 Although a clear difference in the degree of cross-reactive B-cells induced by mosaic NPs 

versus admix NPs when presenting a trimeric HA antigen has not yet been demonstrated, we 

observed cross-reactive B-cells in response to injections of mosaic and admixture particles. In 

particular, VLPs and NPs including CA09 HA induced broad responses for both homotypic and 

heterotypic particles. This suggests the inclusion of CA09 HA antigens on particles in future 

vaccines. In addition, although mosaic particles and the corresponding admixtures of homotypic 

particles induced similar levels of increased breadth, the use of mosaic NPs presents a potential 

therapeutic advantage: i.e., production of a mosaic NP would require purification of one set of 

particles, whereas use of admix NPs of the same valency would require purification and then 

mixing of multiple particles prior to immunization. Thus mosaic particles presenting HA antigens 

derived from multiple influenza strains should be considered as a potential vaccine strategy, and 

the SpyCatcher-SpyTag “Plug and Display” system [18] can be used to quickly combine different 

mixtures of oligomeric antigens for preparation of mosaic particles. 
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Figure legends 

 
 
Figure 1. Design and characterization of SpyTagged HAs, SpyCatcher VLPs, and 
SpyCatcher-NPs. A. Top: Schematic of the SpyTagged HA construct (SP = signal peptide). 
The HA2 ectodomain is followed by a foldon trimerization domain from T4 fibritin, a 13-residue 
SpyTag, and a 6x-His tag. Amino acids are numbered according to the H3 nomenclature. 
Horizontal lines represent Gly4Ser linkers. Bottom: Surface representation of an HA trimer 
structure (PDB 3VUN), schematic of a SpyTagged HA, and list of influenza strains from which 
SpyTagged HAs were derived. B. SEC profiles and reducing SDS-PAGE analysis of 8 purified 
SpyTagged HAs that contain Y98F substitution. C. SpyCatcher-AP205 VLPs. Top: Schematic of 
construct. Bottom: EM structure of T=3 AP205 particle (PDB 5FS3) [34] with the locations of 
SpyCatcher fusion sites indicated by red dots (left) and schematic SpyCatcher-VLP (right). D. 
Purification of SpyCatcher-VLPs. Left: SEC profile with peak representing properly-assembled 
VLPs indicated. Right: Reducing and non-reducing SDS-PAGE of two fractions corresponding 
to the VLP fractions in red on the SEC trace. E. SpyCatcher-mi3 NPs. Top: schematic of 
construct. Bottom: Cryo-EM structure of I3-01 particle related to mi3 [35] with the locations of 
SpyCatcher fusion sites indicated by red dots (left) and schematic SpyCatcher-NP (right). F. 
Purification of SpyCatcher-NPs. Left: SEC profile. Right: Reducing SDS-PAGE of fractions 
corresponding to the mi3 fractions shaded in red on the SEC trace. 
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Fig 2. Conjugation of SpyCatcher-VLPs and -NPs. A. SpyCatcher-AP205-VLP conjugations 
with SpyTagged-HA trimers. B. Purification of conjugated SpyCatcher-VLPs. Left: SEC 
separation of conjugated VLPs from free HA trimers. Right: Reducing SDS-PAGE analysis of 
VLPs and purified HAs. C. SpyCatcher-mi3 NP conjugations with SpyTagged-HA Y98F trimers. 
D. Purification of homotypic SpyCatcher-NPs. Left: SEC separation of conjugated NPs from free 
HA trimers. Right: Reducing SDS-PAGE analysis of NPs and purified HAs. E. Purification of 
heterotypic mosaic NPs. Left: SEC separation of conjugated NPs from free HA trimers, including 
SEC profile of purified conjugated NPs after one month storage at 4 ˚C. Right: Reducing SDS-
PAGE analysis of NPs and purified HAs.  
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Fig 3. EM of conjugated VLPs and NPs. Scale bars shown apply to all images in each panel. 
A. Negative-stain EM of HA-conjugated VLPs and mi3 NPs compared with unconjugated 
counterparts. B. Cryo-EM micrograph of HA-VLP sample (left) and representative 2D class 
averages (right). Densities for HA trimers are blurry in the class averages, likely because the 
trimers occupy different positions on individual particles. C. Cryo-ET imaging of HA particles. 
Computationally-derived tomographic slices of HA-VLP (top panels; 2.78 nm slices) and HA-NP 
(bottom panels; 3.21 nm slices). Slices derived from the widest portions of representative 
particles are shown to the right in each panel.  
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Fig 4. Immunizations with HA-VLPs. A. Schematic of the immunization protocol. Four animals 
were used for each sample group. B. Serum antibody response to HA was measured by ELISA 
and shown as area under the curve (AUC) of Day 28 serum sample to group 1 and group 2 HA 
trimers. Each dot represents serum from one animal, with arithmetic means and standard 
deviations represented by rectangles and horizontal lines, respectively. Homotypic strains 
(present on the mosaic-2 VLP) and heterotypic strains (not present on the mosaic-2 VLP) are 
indicated by the blue and red rectangles, respectively, above the ELISA data. C. Serum 
neutralization titers from Day 45 determined by in vitro neutralization assays using infectious 
virus or pseudoviruses. Each dot represents serum from one animal, with geometric mean and 
geometric standard deviations represented by rectangles and horizontal lines, respectively. 
Dotted lines indicate limits of detection. 
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Fig 5. Immunizations with HA-NPs. A. Schematic of the immunization protocol. Four animals 
were used for each sample group. B. Serum antibody response to HA was tested by ELISA and 
shown as binding as area under the curve (AUC) of Day 21 and Day 49 serum to recombinant 
group 1 and group 2 HA trimers. Each dot represents serum from one animal, with means and 
standard deviations represented by rectangles and horizontal lines, respectively. Homotypic 
strains that were present on the mosaic NPs  and heterotypic strains that were not present are 
indicated by the blue and red rectangles, respectively, above the ELISA data. C. Serum 
neutralization titers from Day 45 determined by in vitro neutralization assays using infectious 
virus or pseudoviruses. Each dot represents serum from one animal, with geometric means and 
geometric standard deviations represented by rectangles and horizontal lines, respectively. 
Dotted lines indicate limits of detection. ND represents data not determined. 
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Fig 6. B-cell responses induced by mosaic NP immunizations. A. Gating strategy for flow 
cytometry experiments using single cell suspension from spleens harvested from immunized 
mice in Fig 5A. Anti-CD3, anti-CD8, anti-F4/80, and anti-Ly6G were used to remove T cells, 
macrophages, monocytes, and neutrophils. Cells were then gated to isolate CD19/IgG-positive 
and IgM-negative B-cells, which were probed for binding to CA09-HA-APC (allophycocyanin), 
Aichi-HA-PE-eFluor610 (phycoerythrin-eFluor 610), and/or Viet04-HA-PE (phycoerythrin). B. 
Percentage of CA09+, Viet04+, Aichi+, and CA09+/Viet04+ in IgG+ B-cells plotted for each 
group.  
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Fig 7. Immunizations using Mosaic VLPs and NPs. A. Schematic of the immunization 
protocol (five animals per injection). B. Serum antibody response to HA shown by ELISA 
binding as area under the curve (AUC) of Day 28 serum to recombinant group 1 and group 2 
HA trimers. Each dot represents serum from one animal, with means and standard deviations 
represented by rectangles and horizontal lines, respectively. Homotypic strains that were 
present on the mosaic NPs and heterotypic strains that were not present are indicated by the 
blue and red rectangles, respectively, above the ELISA data. 
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Fig 8. B-cell responses induced by Mosaic VLP and NP immunization. Flow Cytometry 
Analysis of IgG+ B-cells isolated from splenocytes as described in Fig 6A. A. Percent CA09+, 
Viet04+, Aichi+, and Sh13+ B-cells plotted for each group. B. Cross-reactive B-cell 
compartment: CA09+/Viet04+, CA09+/Aichi+, Sh13+/Aichi+ B-cell plotted for each group.  
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Supporting Information 

S1 Fig. Correlation of ELISA AUC titers to live and pseudoviral neutralization titers. 
Pearson correlation of Day45 serum ELISA AUC titers and viral neutralization titers for A. CA09 
H1N1 B. Viet04 H5 C. Aichi H3N2 D. Sh13 H7 E. JX346 H10. 
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S2 Fig. Correlation of ELISA AUC titers to antigen-specific B-cell populations. A. Pearson 
correlation of Day45 CA09+ B-cell population to serum anti-CA09 ELISA AUC titers. B. Pearson 
correlation of Day45 Viet04+ B-cell population to serum anti-Viet04 ELISA AUC titers. C. 
Pearson correlation of Day45 Aichi+ B-cell population to serum anti-Aichi ELISA AUC titers. B. 
Pearson correlation of Day45 CA09+Viet04+ B-cell population to serum anti-Pe10 ELISA AUC 
titers. 
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S3 Fig. Conjugation of SpyCatcher-VLPs and -NPs. A. SpyCatcher-AP205-VLP and 
SpyCatcher-mi3 conjugations with SpyTagged-HA trimers. B. Purification of homotypic and 
mosaic SpyCatcher-VLPs and SpyCatcher-mi3s. Left: SEC separation of conjugated NPs from 
free HA trimers. Right: Reducing SDS-PAGE analysis of NPs and purified HAs.  
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S4 Fig. Correlation of ELISA AUC titers to antigen-specific B-cell populations. A. Pearson 
correlation of Day28 CA09+ B-cell population to serum anti-CA09 ELISA AUC titers. B. Pearson 
correlation of Day28 Aichi+ B-cell population to serum anti-Aichi ELISA AUC titers.  C. Pearson 
correlation of Day28 Viet04+ B-cell population to serum anti-Viet04 ELISA AUC titers. D 
Pearson correlation of Day28 Sh13+ B-cell population to serum anti-Sh13 ELISA AUC titers. E. 
Pearson correlation of Day45 CA09+Viet04+ B-cell population to serum anti-Pe10 ELISA AUC 
titers. 
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