Supporting Information

Cell-Selective Cytotoxicity of a Fluorescent Rhodium Metalloinsertor Conjugate Results from Irreversible DNA Damage at Base Pair Mismatches

Adela Nano,†* Julie M. Bailis,‡*,# Natalie F. Mariano,‡ Elizabeth D. Pham,‡ Stephanie D. Threatt,† and Jacqueline K. Barton†*

† Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
‡ Department of Oncology Research, Amgen Research, Amgen, Inc., South San Francisco, CA 94080
These authors contributed equally to the work.

* To whom correspondence should be addressed. Julie M. Bailis, Email: jbailis@amgen.com;
Telephone: +1 (650) 244 2361, and Jacqueline K. Barton, Email: jkbarton@caltech.edu;
Telephone: +1 (626) 395-6075; Fax: +1 (626) 577-4976.
Table of Figures

Figure S1. 1H NMR spectrum of RhDPA-Cy3.
Figure S2. 13C NMR spectrum of RhDPA-Cy3.
Figure S3. 13H NMR spectrum of RhPPO-Cy3.
Figure S4. TOF-MS ES+ characterization of RhDPA-Cy3.
Figure S5. TOF-MS ES+ characterization of RhPPO-Cy3.
Figure S6. MS-ESI+ characterization of RhPPO-Cy3 using an LTQ spectrometer.
Figure S7. HPLC trace of RhPPO-Cy3 after purification.
Figure S8. Absorption profile of RhPPO-Cy3, and its models Cy3-linker and RhPPO-Hdpa.
Figure S9. Evaluation of cytotoxicity of RhPPO-Cy3 at different time points.
Figure S10. RhPPO-Cy3 shows preferential cytotoxicity for MMR-deficient CRC cell lines.
Figure S11. RhPPO-Cy3 causes DNA damage.
Figure S1. 1H NMR spectrum of RhDPA-Cy3. The spectrum was collected in deuterated acetonitrile at room temperature.

Figure S2. 13C NMR spectrum of RhDPA-Cy3. The spectrum was collected in deuterated acetonitrile at room temperature.
Figure S3. 13H NMR spectrum of RhPPO-Cy3. The spectrum was collected in deuterated acetonitrile at room temperature. The compound was obtained as a diastereomeric mixture and characterized as such.
Figure S4. TOF-MS ES+ characterization of RhDPA-Cy3. (Upper) Experimental spectrum of RhDPA-Cy3; (Lower) Calculated spectra for m/z 538.2; 613.1; 1225.3. When the spectrum was recorded, the compound was not anion exchanged to its chloride salt. Therefore, we observe the triflate salt in the experimental spectrum.
Figure S5. TOF-MS ES+ characterization of RhPPO-Cy3. (Upper) Calculated $m/z = 1177.4449$ for $[M - 2H]^+$; (Lower) Experimental spectrum with $m/z = 1177.3186$. $[M - 2H]^+$ is assigned to the complex with both imines deprotonated, indicated with an arrow in the chemical structure.
Figure S6. MS-ESI+ characterization of RhPPO-Cy3 using an LTQ spectrometer. The spectrum was recorded after HPLC purification of RhPPO-Cy3. Insets are zooms of m/z 393.67 and m/z 589.83 peak; m/z 393.67 (100%) corresponds to [M]$^{3+}$ (both imines on chrysi ligand are protonated); m/z 589.83 (77%) corresponds to [M – H]$^{2+}$ (only one imine is protonated).
Figure S7. HPLC trace of RhPPO-Cy3 after purification. The HPLC purification was followed using three different wavelengths: at 270 nm, 410 nm (marking the absorption of rhodium complex center), and 550 nm (marking the absorption of Cy3 dye). Mobile phase: 85/15 to 50/50 to 85/50 (0.1% trifluoroacetic acid in water)/acetonitrile eluting over 40 minutes.
Figure S8. Absorption profile of RhPPO-Cy3, and its models Cy3-linker and RhPPO-Hdpa. Spectra collected in Tris buffer (5mM Tris, 200 mM NaCl, pH 7.4) at room temperature. [RhPPO-Cy3]; [Cy3-linker]; [RhPPO-Hdpa] = 10 µM. Absorption maxima for RhPPO-Cy3 (in Tris 5 mM, 200 mM NaCl, pH 7.4): λ(552nm) ε = 61,000 M⁻¹ cm⁻¹; λ(267nm) ε = 28,000 M⁻¹ cm⁻¹. Inset: Emission of RhPPO-Cy3 at 1µM free in Tris buffer solution (5mM Tris, 200 mM NaCl, pH 7.4) with λ.max = 565 nm, or in the presence of 1 eq. MM dsDNA with λ.max = 570 nm. The synthesis and characterization of RhPPO-Hdpa and Cy3-linker have been previously reported.¹²
Figure S9. Evaluation of cytotoxicity of RhPPO-Cy3 at different time points. The cells were treated with RhPPO-Cy3 at the concentrations indicated, and then cell viability was assessed with a Cell Titer-glo assay. (A) Dose response curve of cell viability assessed after 24 hours incubation with RhPPO-Cy3; (B) dose response curve assessed after 48 hours incubation with RhPPO-Cy3. Error bars are representative of three replicates.
Figure S10. RhPPO-Cy3 shows preferential cytotoxicity for MMR-deficient CRC cell lines. A panel of MMR-deficient and MMR-proficient CRC cell lines was treated with RhPPO-Cy3 in a dose response. After 72 hours incubation, cell viability was assessed with a Cell Titer-glo assay. Duplicate samples were analyzed in each experiment. (A) Dose response curves from a representative experiment are shown. In blue are MSS cell lines; in red are MSI cell lines. (B) Comparison of EC₅₀ values for the MSS and MSI cell lines.
Figure S11. RhPPO-Cy3 causes DNA damage. HCT-116 O and HCT-116 N cells were treated with 5 μM RhPPO-Cy3 or cisplatin for 24 hours, and then analyzed for DNA damage using a neutral Comet assay. Cells were embedded in agarose, denatured and analyzed by TBE gel electrophoresis. Cell nuclei and comet tails were visualized with a Vista Green fluorescent dye. Representative images are shown. Scale bar, 20 μM.

REFERENCES
