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ON THE SPECTRUM OF ASYMPTOTIC ENTROPIES OF

RANDOM WALKS

OMER TAMUZ AND TIANYI ZHENG

Abstract. Given a random walk on a free group, we study the random
walks it induces on the group’s quotients. We show that the spectrum
of asymptotic entropies of the induced random walks has no isolated
points, except perhaps its maximum.

1. Introduction

Let G be a finitely generated group, and let µ be a probability measure on
G. The µ-random walk on G is a time homogeneous Markov chain g1, g2, . . .
on the state space G whose steps are distributed i.i.d.µ: for g, h ∈ G the
transition probability from g to h is µ(g−1h). An important statistic of a
random walk is its Avez Asymptotic Entropy [4]

hRW(G,µ) := lim
n→∞

1

n
H (gn) ,

where H(·) is the Shannon entropy. The asymptotic entropy vanishes if and
only if every bounded µ-harmonic function is constant; that is, if the µ-
random walk has a trivial Poisson boundary [4, 30]. The asymptotic entropy
is the limit of the mutual information I(g1; gn) between the first step of the
random walk and its position in later time periods, and hence quantifies the
extent by which the random walk fails to have the Liouville property.

Given G and µ, and given a quotient Γ = G/N , the induced random walk
g1N, g2N, . . . on Γ has step distribution µΓ, which is the push-forward of µ
under the quotient map; we will simply write µ instead of µΓ whenever this
is unambiguous. A natural question is, for a given G and µ, what values
can be realized as the asymptotic random walk entropies of such quotients.
This is particularly interesting when G has many quotients, and we indeed
focus on the case that of Fd, the free groups with d ≥ 2 generators. In
this case, the question can be restated as follows: for a uniformly chosen µ,
what asymptotic random walk entropy values are realizable in groups with
d generators?

A closely related question—and, to our knowledge, a much better studied
one—is that of the spectrum of Furstenberg entropies. Let (X, ν) be a stan-
dard Borel space, equipped with a probability measure, and on which G acts
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by measure class preserving transformations. We say that (X, ν) is a (G,µ)-
space, if the measure ν is µ-stationary, that is µ ∗ ν = ν. The Furstenberg
entropy of a (G,µ)-space (X, ν) is a numerical invariant defined in [19] as

hµ(X, ν) :=
∑

g∈G

µ(g)

∫

X

− log
dg−1ν

ν
dν.

The Furstenberg entropy realization problem asks given (G,µ), what is
the spectrum of the Furstenberg entropy hµ(X, ν), as (X, ν) varies over all
ergodic µ-stationary actions of G. Kaimonovich and Vershik [30] showed that
hµ(X, ν) ≤ hRW(G,µ), with equality when (X, ν) is the Poisson boundary.
The Poisson boundary of an induced random walk on a quotient is a (G,µ)-
space, whose Furstenberg entropy is equal to the random walk’s asymptotic
entropy, and so every realizable random walk entropy value is also a realizable
Furstenberg entropy value. One of the results due to Nevo and Zimmer [38]
implies that if G is a connected semisimple Lie group with finite center and
R-rank at least 2, then the Furstenberg entropy of a stationary action of G
satisfying a certain mixing condition (called P -mixing) can only take value
in a finite set. This is a higher rank rigidity phenomenon: in [38] it is shown
that for PSL(2,R) there exists an infinite sequence of stationary actions
satisfying the P -mixing condition such that the Furstenberg entropies are
all distinct. Nevo [37] shows that whenever G has property (T) then there
is an ǫ > 0 such that whenever hµ(X, ν) < ǫ then it in fact vanishes.

In [12], Bowen showed that for the free group Fd, d ≥ 2, and µ uniform
on the symmetric generating set S∪S

−1, all values in [0, hRW(Fd, µ)] can be
realized as Furstenberg entropy of an ergodic stationary action of Fd. The
approach in [12] is to take an ergodic invariant random subgroup of G and
construct an ergodic stationary system (which can be referred to as a Poisson
bundle, using the terminology introduced in [29]). The Furstenberg entropy
of this stationary system is then studied by considering random walk en-
tropies on the coset spaces associated with the invariant random subgroups.
Recall that an IRS is a Borel probability measure η on the Chabauty space
Sub(G) of subgroups of G, which is invariant under conjugation by G. This
term was coined in [2]. For further work on the Furstenberg entropy re-
alization problem using the IRS-Poisson bundle approach, see [26, 27] and
references therein.

One may consider restricted versions of this problem, namely the range
of Furstenberg entropy restricted to smaller classes of ergodic µ-stationary
systems. Of particular interest are the following two subclasses. The first is
the above mentioned spectrum of random walk entropies:

H
rw
µ (G) := {hRW(Γ, µ̄) : Γ is a quotient group of G, µ̄ is pushforward of µ}.
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The second is the spectrum of Furstenberg entropies of (G,µ)-boundaries;

recall that these are the G-factors of the Poisson boundary of (G,µ):

H
bnd
µ (G) := {h(X, ν) : (X, ν) is a (G,µ)-boundary}.

One can ask the following

• Quotient group random walk asymptotic entropy realization:
describe the set Hrw

µ (G).
• (G,µ)-boundary Furstenberg entropy realization: describe the

set Hbnd
µ (G).

As we discussed above, since the Poisson boundary of (Γ, µ), where Γ is a
quotient group of G, is a (G,µ)-boundary, by definitions we have Hrw

µ (G) ⊆

Hbnd
µ (G). Note that if an ergodic IRS measure η is not a δ-mass supported

at a normal subgroup, then the Poisson bundle constructed using the IRS η
is not a quotient of the Poisson boundary of (G,µ) because of the measure-
preserving factor (Sub(G), η). Hence Bowen’s results do not resolve the
question for Furstenberg entropies of (Fd, µ)-boundaries, or for asymptotic
random walk entropies.

Our main result is the following. A measure µ on Γ has finite first mo-
ment if

∑

g∈Γ |g|S µ(g) < ∞, where |·|S is the word length with respect to
generating set S. With slight abuse of notation, given a measure µ on Fd

and a quotient π : Fd → Γ, we write hRW(Γ, µ) for the asymptotic entropy
of the (π∗µ)-random walk on Γ.

Theorem 1.1. Let µ be a non-degenerate probability measure with finite

first moment on the free group Fd, d ≥ 2. Suppose Γ is a proper quotient

of Fd. Then for any ǫ > 0, there exists a quotient group Γ̃ of Fd such that

Fd ։ Γ̃ ։ Γ and

hRW(Γ, µ) < hRW(Γ̃, µ) < hRW(Γ, µ) + ǫ

In particular, the set Hrw
µ (Fd) has no isolated points, except perhaps its max-

imum.

It follows from Theorem 1.1 that if Hrw
µ (Fd) is a closed subset in R, then

Hrw
µ (Fd) must be the full interval [0, hRW(Fd, µ)]. To the best of our knowl-

edge, it is not known whether the sets Hrw
µ (Fd) or Hbnd

µ (Fd) are closed.
One next result is a similar statement—but slightly weaker—regarding

Furstenberg entropies of boundaries.

Theorem 1.2. In the setting of Theorem 1.1, suppose (X, ν) is a (Fd, µ)-
boundary such that the action of Fd is not essentially free. Then for any

ǫ > 0, there exists a (Fd, µ)-boundary
(

X̃, ν̃
)

such that

h(X, ν) < h(X̃, ν̃) < h(X, ν) + ǫ,

and (X, ν) is an Fd-factor of (X̃, ν̃).
3



The key ingredient in the proofs of Theorems 1.1 and 1.2 is an explicit
construction, which might be of independent interest, of a sequence of groups
in the Chabauty space Gd of d-marked groups with the following properties.

Proposition 1.3. Let µ be a non-degenerate probability measure on Fd,

d ≥ 2, with finite first moment. Then there exists a sequence of marked

groups ((Γk, Sk))
∞
k=1 in Gd such that:

(i): The sequence (Γk, Sk) converges to (Fd,S) as k → ∞ in the Chabauty

topology.

(ii): The sequence of asymptotic entropies hRW(Γk, µ) → 0 as k → ∞.

(iii): For each k ∈ N, Γk is non-amenable, has no nontrivial amenable nor-

mal subgroups, and has only countably many amenable subgroups.

The moment condition on µ is used to bound the random walk asymptotic
entropy. It seems to be an interesting question whether Proposition 1.3
remains true assuming only that µ has finite entropy.

Property (iii) in the statement above implies that the action of Γk on the
Poisson boundary of (Γk, µ) is essentially free. This property is crucial for
our purposes. Any sequence of d-marked finite groups with girth growing to
infinity would satisfy properties (i) and (ii), but the Poisson boundaries are
trivial for finite groups.

We construct the sequence of marked groups as stated via taking exten-
sions of the Fabrykowski-Gupta group. In the proof, a result of Bartholdi and
Erschler [7] on almost identities in weakly branch groups are applied. Nec-
essary terminology and background are reviewed in Section 2. Provided the
sequence of marked groups stated in Proposition 1.3, the proof of Theorem
1.1 is completed by taking suitable diagonal product of groups or stationary
joinings of µ-boundaries, see Section 4.

The same kind of construction implies the following result on spectral radii
of symmetric random walks. Recall that the spectral radius of a µ-random
walk on Γ is defined as

ρ(Γ, µ) = lim sup
n→∞

µ(n)(idΓ)
1

n .

Theorem 1.4. Let µ be a symmetric non-degenerate probability measure on

the free group Fd, d ≥ 2. Suppose Γ is a proper marked quotient of Fd. Then

for any ǫ > 0, there exists a quotient group Γ̃ of Fd such that Fd ։ Γ̃ ։ Γ
and

ρ(Γ, µ)− ǫ < ρ(Γ̃, µ) < ρ(Γ, µ).

Using a diagonal product of marked groups is similar to the construction
in [31]. A result of Kassabov and Pak [32] states that the set of the spectral
radii {ρ(Γ, µ) : Γ is a quotient of Fd} contains a subset homeomorphic to
the Cantor set. The same construction shows that the set Hrw

µ (Fd) contains
a subset homeomorphic to the Cantor set as well. It is not known whether
this set of spectral radii is closed.
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2. Preliminaries

2.1. (G,µ)-boundaries. In this note we only consider countable groups. A
probability measure µ on G is non-degenerate if supp µ generates G as a
semigroup. For a countable group G, we say a Lesbesgue space (X, ν) is
a G-space, if G acts measurably on X and the probability measure ν is
quasi-invariant with respect to the G-action. A G-space (X, ν) is ergodic if
a G-invariant subset is either null or conull. A measurable map π : (X, ν) →
(Y, η) is called a G-map if it is G-equivariant and η is the pushforward of ν
under π.

Given a probability measure µ on G, let Ω = GN be the path space, Pµ be
the law of the µ-random walk starting at id, and I be the σ-field on Ω that is
invariant under time shifts. The Poisson boundary of (G,µ) is denoted by the
measure space (B,F , νB) together with a G-map b : (Ω,I,Pµ) → (B,F , νB),
where b

−1F = I up to null sets with respect to Pµ, and the σ-algebra F is
countably generated and separating points. The existence and uniqueness up
to isomorphism of the Poisson boundary of (G,µ) was shown by Furstenberg
[19, 20, 21]. The G-action on the Poisson boundary (B, νB) is ergodic, and
in fact doubly ergodic, by Kaimanovich [28].

We use the notation (B, νB) to denote a compact model of the Poisson
boundary of (G,µ), which exists by the Mackey realization [35]. A (G,µ)-
boundary (X, ν) is defined to be a G-factor of (B, νB). Moreover, the factor
map (B, νB) → (X, ν) is essentially unique, see [5, Theorem 2.14], and we
will denote it by βX .

Denote by P (X) the space of Borel probability measures on the compact
space X. A factor map π : (Y, η) → (X, ν) gives a unique disintegration map
Dπ : X → P (Y ) such that for ν-a.e. x ∈ X, Dπ(x) is supported on the fiber
of x and

∫

X
Dπ(x)dν(x) = η. We say (Y, η) is a relatively measure preserving

extension of X if Dπ is G-equivariant, that is Dπ(g · x) = g ·Dπ(x).
We will need the following properties regarding Furstenberg entropy and

relatively measure preserving extensions.

Proposition 2.1 ([38, Proposition 1.9]). Let π : (Y, η) → (X, ν) be a G-

factor map. Suppose h(X, ν) < ∞ and h(Y, η) = h(X, ν). Then (Y, η) is a

relative measure preserving extension of (X, ν).

Lemma 2.2 ([5, Corollary 2.20]). Let π : (Y, η) → (X, ν) be a relatively

measure-preserving extension of two (G,µ)-boundaries. Then (Y, η) = (X, ν).

2.2. Chabauty space of marked groups and convergence to the free
group. Denote by Gd the space of d-generated groups (G,S), where S =
(s1, . . . , sd) is a generating tuple, equipped with the Chabauty-Grigorchuk

topology. We refer to the pair (G,S) as a marked group and Gd the Chabauty
space of d-marked groups. Recall that in this topology, two marked groups
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(G1, S1) and (G2, S2) are close if marked balls of large radius in the Cayley
graphs of (G1, S1) and (G2, S2) around the identities are isomorphic.

Following [7], for G a finitely generated group and (H,T ) ∈ Gd, we say G
preforms (H,T ) if there exists a sequence of d-markings (Sn)n∈N such that
(G,Sn) converges to (H,T ) in the Chabauty-Grigorchuk topology.

We will use groups that preforms the free group (Fd,S), where S =
(s1, . . . , sd) consists of the free generators. Let G be a d-generated group.
Following the definition in Akhmedov [3] and Olshanskii-Sapir [39], we say
a non-trivial word w(x1, . . . , xd) is a d-almost-identity for G, if the identity
w(g1, . . . , gd) = 1 is satisfied for any d-generating tuple (g1, . . . , gd). By [39,
Theorem 9], G preforms (Fd,S) if G is d-generated and satisfies no d-almost
identity.

In [1], Abért gives a general criterion for a group to satisfy no identity.
Suppose G y X by permutations. We say G separates X, if for every finite
subset Y of X, the pointwise fixator GY = {g ∈ G : y · g = y for all y ∈ Y }
has no fixed point outside Y . Abért shows that if G separate X then G sat-
isfies no identity. Bartholdi and Erschler [7] provides a criterion for absence
of almost-identities: under the additional assumption that the Frattini sub-
group Φ(G) has finite index in G, the condition in Abért’s criterion implies
that G satisfies no almost-identity.

Weakly branch groups provide examples of groups satisfying Abért’s cri-
terion. The notion of weakly branch group is introduced by Grigorchuk in
[24]. Let T be a rooted spherical symmetric tree. For a vertex u ∈ T, let
Cu be the set of infinite rays with prefix u. We say a group G acting by
automorphisms on T is weakly branching if the rigid stabilizer RistG(Cu)
is nontrivial, where RistG(Cu) = {g ∈ G : x · g = x for all x /∈ Cu}. By
definition it is clear that if G is weakly branching, then G separates ∂T .

Recall that the Frattini subgroup of G is the intersection of maximal
subgroups of G. Pervova [40] proves for a torsion Grigorchuk-Gupta-Sidki
(GGS) group G, all of its maximal subgroups are normal, hence the Frattini
subgroup contains the derived subgroup [G,G] and is of finite index in G.
Thus results in [40] and [7] imply that a torsion, weakly branching GGS
group preforms (F2,S).

3. A sequence of marked groups

This section is devoted to the proof of Proposition 1.3. The starting point
is a 2-generated group of intermediate volume growth which preforms the
free group F2. To fix ideas, we take G to be the Fabrykowski-Gupta group
introduced in [15]. Recall that the Fabrykowski-Gupta group acts on the
ternary rooted tree T. It is generated by the root permutation a which
permutes the 3 subtrees of the root cyclically and a directed permutation b
which fixes the right most ray 2∞ and is defined recursively by

b = (a, id, b).
6



In other words we have for any ray w ∈ {0, 1, 2}∞,

0w · a = 1w, 1w · a = 2w, 2w · a = 0w;

0w · b = 0(w · a), 1w · b = 1w, 2w · b = 2(w · b).

For more background on groups acting on rooted trees and the notation
of wreath recursion see the reference .The group G = 〈a, b〉 is called the
Fabrykowski-Gupta group. It is an example of non-torsion Grigorchuk-
Gupta-Sidki (GGS) groups.

The group G = 〈a, b〉 satisfies:

1. ([8]) G is a just infinite branch group which is regularly branching
over its commutator group [G,G].

2. ([16, 9]) G is of intermediate growth.
3. ([17]) G has the congruence subgroup property: every finite index

subgroup of G contains some level stabilizer StG(n).
4. ([18]) Maximal subgroups of G are normal and of finite index.

By Bartholdi-Erschler [7], properties 1 and 4 above implies that G preforms
the free group (F2,S).

Recall that Tn denotes the level n vertices of the rooted tree T and StG(n)
denotes the level n stabilizer. Let Gn be the quotient group G/StG(n), which
acts faithfully and transitively on Tn. Consider the level n Schreier graph
Sn with vertex set Tn and edge set E = {(x, x · a), (x, x · b) : x ∈ Tn}. It is
a finite graph on 3n vertices. Consider the permutation wreath product Wn

of the free product A = (Z/3Z) ∗ (Z/3Z) and Gn over the set Tn, that is,

Wn = A ≀Tn
Gn = (⊕Tn

A)⋊Gn,

where Gn acts on ⊕Tn
A by permuting the coordinates. We write element of

Wn as pairs (ϕ, g), where ϕ ∈ ⊕Tn
A and g ∈ Gn.

Denote by s and t the two standard generators of A, A =
〈

s, t|s3 = t3 = 1
〉

.
Consider the subgroup Γn of Wn generated by

(3.1) an = (id, ā) , bn =
(

δs2n−10 + δid2n−11 + δt2n , b̄
)

,

where in the direct sum ⊕Tn
A, δγx denotes the element that is γ at x and

identity elsewhere and we use additive notation δγ1x + δγ2y , x 6= y, for the
element that is γ1 at x, γ2 at y and identity elsewhere.

The choice of (an, bn) guarantees:

Lemma 3.1. The sequence (Γn, (an, bn)) converges to (G, (a, b)) in the Chabauty

topology as n → ∞. Indeed, (Γn+1, (an+1, bn+1)) is a marked quotient of

(Γn, (an, bn)), and the ball of radius 2n−2 around id in the Cayley graph of

(Γn, {ã, b̃}) coincide with the ball of radius 2n−2 around id in (G, {a, b}).

Proof. The Fabrykowski-Gupta group belongs to the class of bounded au-
tomaton groups. Schreier graphs of bounded automaton groups are studied
systematically in Bondarenko’s dissertation [11]. In particular, on the fi-
nite Schreier graph Sn, we have that the graph distance between the points

7



2n−10, 2n satisfy dSn
(2n−10, 2n) = 2n−1. For more details see [11, Chapter

VI].
Note that G embeds as a subgroup of G ≀Tn

Gn, where the embedding is
given by the wreath recursion

a 7→ (id, ā), b 7→
(

δa2n−10 + δid2n−11 + δb2n , b̄
)

.

Now consider a word w = w1 . . . wℓ, where wj ∈ {a±1, b±1} and evaluate this
word in G≀Tn

Gn by the embedding above. For the configuration φw ∈ ⊕Tn
G,

we have that

φw(x) =

n
∏

i=1

φwi
(x · w1 . . . wi−1).

It follows from the triangle inequality that if ℓ ≤ 2n−2, then the trajectory
{x, x·w1, . . . , x·w1 . . . wℓ−1} can visit at most one point in the set {2n−10, 2n}.
In particular, φw(x) is an element in either 〈a〉 or 〈b〉. It follows that if we
evaluate the same word w in Γn under a 7→ an and b 7→ bn, the resulting

element
(

φ̃w, w̄
)

can be identified with (φw, w̄) in G ≀Tn
Gn. Namely, φw is

obtained from φ̃w by replacing s with a and t with b and vice versa.
The quotient map from (Γn, (an, bn)) to (Γn+1, (an+1, bn+1)) is given as

follows. Note that A ≀Tn+1
Gn+1 =

(

A ≀{0,1,2} 〈a〉
)

≀Tn
Gn. Let τ : A →

A ≀{0,1,2} 〈a〉 be the group homomorphism determined by τ(s) = (id, a)

and τ(t) =
(

δs0 + δid1 + δt2, id
)

. The homomorphism τ extends to ⊕Tn
A →

⊕Tn

(

A ≀{0,1,2} 〈a〉
)

coordinate-wise, that is τ(φ)(x) = τ(φ(x)), x ∈ Tn.
Then it is clear by the wreath recursion formula in G that the map

Γn → Γn+1

(φ, g) 7→ (τ(φ), g)

is an epimorphism which sends an to an+1 and bn to bn+1.
�

Note that Γn is virtually a direct product of free groups:

Lemma 3.2. The group Γn contains ⊕Tn
[A,A] as a finite index normal

subgroup.

Proof. We proceed by induction on n.
As in the proof of Lemma 3.1, let τ : A → A ≀{0,1,2} 〈a〉 be the group

homomorphism determined by τ(s) = (id, a) and τ(t) =
(

δs0 + δid1 + δt2, id
)

,
where a is the 3-cycle (0, 1, 2). When n = 1, by definition Γ1 is generated by
a1 = τ(s) and b1 = τ(t). Since a−1

1 b1a1 = (δid0 + δt1 + δs2, id), it follows that
the projection of Γ1 ∩ ⊕T1

A to the component over vertex 2 is A. Direct

calculation shows that
[

b1a
−1
1 b1a1, a1b1a

−1
1 b1

]

=
(

δsts
−1t−1

2 , id
)

. It follows

that [Γ1,Γ1]∩⊕T1
A contains

{

(δγ2 , id) : γ ∈
〈

sts−1t−1
〉A

}

, while the normal

closure
〈

sts−1t−1
〉A

is exactly the commutator subgroup [A,A]. Since ã acts
8



as a 3-cycle permuting T1, it follows that [Γ1,Γ1]∩⊕T1
A > ⊕T1

[A,A]. The
quotient group Γ1/⊕T1

[A,A] is a subgroup of (A/[A,A]) ≀T1
〈a〉, which is

finite.
We have shown that τ([A,A]) contains ⊕T1

[A,A] as finite index normal
subgroup, which reflects the property that G is regularly branching over its
commutator subgroup.

Suppose the statement is true for n that Γn contains ⊕Tn
[A,A] as a finite

index normal subgroup. To prove the claim for n+1, it suffices to show that
(

δγ
2n+1 , id

)

∈ Γn+1 for any γ ∈ [A,A]. Recall the quotient map π : Γn →
Γn+1 explained in the proof of Lemma 3.1, where A ≀Tn+1

Gn+1 is identified

with
(

A ≀{0,1,2} 〈a〉
)

≀Tn
Gn. By the induction hypothesis, (δσ2n , id) ∈ Γn for

any σ ∈ [A,A]. Under the quotient map π, we have

π ((δσ2n , id)) =
(

δ
τ(σ)
2n , id

)

.

With the map τ we are back in the situation of the induction base, where
we have shown that τ ([A,A]) contains ⊕T1

[A,A]. In particular, for any
γ ∈ [A,A], there is an element σ ∈ [A,A] such that τ(σ) = (δγ2 , id). It

follows that π ((δσ2n , id)) =
(

δ
τ(σ)
2n , id

)

=
(

δγ
2n+1 , id

)

, in particular it is an

element of Γn+1.
�

Next we consider random walks on the group Γn, n ≥ 1. To bound the
asymptotic entropy from above, we simply use the well-known “fundamental
inequality”, see e.g. [10]. More precisely, let µ be a probability measure on
Fd with finite first moment, π : Fd → Γ an epimorphism. Let S = π(S)
be the induced marking on Γ and µ̄ = π ◦ µ be the pushforward of µ. The
fundamental inequality implies that

hRW(Γ, µ̄) ≤ vΓ,S · ℓΓ,µ̄,

where vΓ,S and ℓΓ,µ̄ are asymptotic volume growth rate and asymptotic speed
with respect to generating set S:

vΓ,S = lim
r→∞

1

r
log VΓ,S(r) and ℓΓ,µ̄ = lim

t→∞

1

t

∑

g∈Γ

|g|S µ̄
(t)(g).

By subadditivity, we have ℓΓ,µ̄ ≤
∑

g∈Γ |g|S µ̄(g) ≤
∑

g∈Fd
|g|Sµ(g). Thus the

asymptotic entropy can be bounded by

(3.2) hRW (Γ, µ̄) ≤ vΓ,S
∑

g∈Fd

|g|Sµ(g).

The estimate (3.2) is the only place where the moment condition on µ is
needed.

By [13, Theorem 5.1], for any non-degenerate probability measure µ on a
countable group Γ, a sufficient condition for the action of Γ on the Poisson
boundary Π(Γ, µ) to be essentially free is that

(1): Γ has only countably many amenable subgroups,
9



(2): Γ does not contain any non-trivial normal amenable subgroup.

We verify that these two properties are satisfied by Γn in the following lemma.

Lemma 3.3. For each n, the group Γn is non-amenable, has no non-trivial

normal amenable subgroup, and has only countably many amenable sub-

groups.

Proof. Since [A,A] is a free group, the only amenable subgroups are the
trivial group and the cyclic groups. It follows that the direct sum ⊕Tn

[A,A]
has only countably many amenable subgroups. The property of having only
countably many amenable subgroups is clearly preserved under taking finite
extensions. Thus by Lemma 3.2, Γn is non-amenable and has only countably
many amenable subgroups.

Let N be a non-trivial normal subgroup of Γn. We need to show N is
non-amenable. For g ∈ Gn, define

SN (g) := {φ ∈ ⊕Tn
A : (φ, g) ∈ N}.

Then SN (g) is either empty or a right coset of SN (idGn
) in ⊕Tn

A. We show
that N ∩ ⊕Tn

[A,A] 6= {idΓn
}. Suppose on the contrary the intersection is

{idΓn
}, that is SN (idGn

)∩⊕Tn
[A,A] = {id}. Note that in the free product

A, a subgroup with trivial intersection with [A,A] must be finite, since
A/[A,A] is finite.

We now show that SN (idGn
) being a finite group contradicts with the

condition that N is a non-trivial normal subgroup of Γn. Fix a choice of
coset representative SN (g) = SN (idGn

)ag for each g ∈ Gn with SN (g) 6= ∅.
Then as a set,

N = ∪g:SN (g)6=∅{(φag , g) : φ ∈ SN (idGn
)}.

Since N is normal in Γn, it is invariant under conjugation by any γ ∈
⊕Tn

[A,A],

γ−1(SN (idGn
)ag, g)γ = (SN (idGn

)ag, g),

that is

γ−1SN (idGn
)agτg(γ) = SN (g),

where τg acts by permuting the coordinates.

• For g 6= idGn
, since the action of Gn on Tn is faithful, there exists

a vertex v ∈ Tn such that v · g 6= v. Then the projection of the set
{

γ−1SN (idGn
)agτg(γ), γ ∈ ⊕Tn

[A,A]
}

to the component over vertex
v contains (SN (idGn

)ag)v[A,A] if SN (g) 6= ∅. In particular, it contra-
dicts with γ−1SN (g)τg(γ) = SN (g), since SN (g) is a finite set. Thus
SN (g) = ∅ for all g 6= idGn

.
• For g = idGn

, γ−1SN (idGn
)γ = SN (idGn

) for all γ ∈ ⊕Tn
[A,A]

implies that elements in SN (idGn
) have finite conjugacy classes in

⊕Tn
A. Since all nontrivial conjugacy classes of A are infinite, it

follows that SN (idG) = {id}.
10



Combine these two items we conclude that SN (idG) = {id} and SN (g) = ∅
for all g 6= idGn

, which is equivalent to N = {idΓn
} and contradicts with the

condition that N is nontrivial.
We have shown that N ∩ ⊕Tn

[A,A] 6= {idΓn
}, thus this intersection is

a non-trivial normal subgroup of ⊕Tn
[A,A]. Since [A,A] is a non-abelian

free group, all of its non-trivial normal subgroups are non-amenable. We
conclude that N is non-amenable.

�

We are now ready to prove Proposition 1.3 stated in the Introduction.

Completion of proof of Proposition 1.3. Let µ be a non-degenerate probabil-
ity measure on Fd given, where d ≥ 2 and µ is of finite first moment. Let
Γn = 〈an, bn〉, n ≥ 1, be the sequence of groups defined at the beginning of
this section. We are going to choose a subsequence of (Γn) and d-markings
on them to satisfy the conditions (i),(ii).

The Fabrykowski-Gupta group G preforms the free group Fd. Fix a se-
quence of d-markings T1, T2, . . . on G such that (G,Tk) → (Fd,S) in the
Chabauty space Gd as k → ∞. Denote by rk the maximum radius such that
the ball around id in (G,Tk) coincide with the ball of same radius around
identity in (Fd,S).

For the marking Tk =
(

t
(k)
1 , . . . , t

(k)
d

)

, let

ℓk = max

{

∣

∣

∣
t
(k)
j

∣

∣

∣

(a,b)
: 1 ≤ j ≤ d

}

be the maximum word length of these generators with respect to the original

generating set (a, b) of G. For each t
(k)
j , fix a word w

(k)
j in {a±1, b±1} of

shortest length which represents t
(k)
j . Let

qk = max {|a|Tk
, |b|Tk

}

be the maximum of length of generators a, b with respect to Tk. Similarly

fix a shortest word z
(k)
a (z

(k)
b resp.) representing a (b resp.) in the alphabet

Tk ∪ T−1
k .

By Lemma 3.1, the ball of radius 2n−2 around id in the Cayley graph of
(Γn, {ã, b̃}) coincide with the ball of radius 2n−2 around id in (G, {a, b}).
With Tk given, take a sufficiently large nk ≫ ℓkqk and consider the group
Γnk

. How large nk needs to be will be made precise shortly. Evaluating the

word w
(k)
j in Γnk

with a 7→ ank
, b 7→ bnk

, we obtain an element s
(k)
j in Γnk

.

Claim 3.4. The tuple Sk =
(

s
(k)
1 , . . . , s

(k)
d

)

generates Γnk
. Moreover, the

ball of radius 2nk−3/ℓk in (Γnk
, Sk) coincide with the ball of the same radius

around id in (G,Tk).

Proof of the claim. Recall that by Γnk
is generated by (ank

, bnk
) and by

Lemma 3.1 the ball of radius 2nk−2 in (Γnk
, (ank

, bnk
))) coincides with the

11



ball of the same radius around id in (G, {a, b}). Since nk > ℓkqk, it follows

that the word z
(k)
a in the alphabet Tk ∪ T−1

k evaluated in Γnk
by t

(k)
j 7→ s

(k)
j

is ank
; similarly, the word z

(k)
b evaluates to bnk

. It follows that Sk is a gener-

ating tuple. For the same reason that nk > ℓkqk, the word w
(k)
j in {a±1, b±1}

evaluated in Γnk
by a 7→ ank

, b 7→ bnk
is s

(k)
j . In particular, vertices in the

ball of radius r around id in the Cayley graph (Γnk
, Sk) is contained in the

vertex set of the ball of rℓk in (Γnk
, {a, b}). The claim follows.

�

Recall that the Fabrykowski-Gupta group G has sub-exponential volume
growth,

lim
r→∞

1

r
log VG,S(r) = 0,

where S is any finite generating set. Fix a choice of sufficiently fast growing
sequence (nk) such that nk > ℓkqk and

1

2nk−3/ℓk
log VG,Tk

(2nk−3/ℓk) ≤
1

k
.

We have completed the description of the choice of sequence of marked groups
(Γnk

, Sk). It remains to verify the properties stated.

(i): The Claim above shows that (Γnk
, Sk) converges to the same limit as the

sequence (G,Tk) as k → ∞. The limit group is the sequence (G,Tk)
is the free group (Fd,S) by the choice of (Tk).

(ii): The choice of nk and the Claim guarantees that

vΓn
k
,Sk

≤
1

2nk−3/ℓk
log VG,Tk

(2nk−3/ℓk) ≤
1

k
.

The fundamental inequality (3.2) implies that with respect to the
marking (Fd,S) → (Γnk

, Sk),

hRW (Γnk
, µ) ≤ vΓn

k
,Sk

Σg∈Fd
|g|Sµ(g) ≤

1

k
Σg∈Fd

|g|Sµ(g).

Thus the sequence of asymptotic entropies converge to 0 as k → ∞.
(iii): This property is shown in Lemma 3.3.

The proof of Proposition 1.3 is complete.
�

Remark 3.5. The definition of Γn is inspired by the constructions in Er-
schler [14] and Kassabov-Pak [31]. For d ≥ 3, in the proof of Proposition
1.3 one can use the first Grigorchuk group G012 = 〈a, b, c〉 introduced in
[25, 23] instead of the Gupta-Sidki group. Recall that G012 acts on the
rooted binary tree. Then one can consider the permutational wreath exten-
sion B ≀Tn

Gn, where Gn = G/StG(n) and B = (Z/2Z) ∗ (Z/2Z × Z/2Z) =
(〈s〉) ∗ (〈t〉 × 〈u〉). Similar to the sequence of extensions Γn, set

Hn = 〈an, bn, cn〉 < B ≀T3n
G3n

12



where the generators are defined as

an = (id, ā), bn =
(

δt13n + δs13n−10, b̄
)

, cn =
(

δu13n + δs13n−10, c̄
)

.

Similar proof as in this section with Γn replaced by Hn shows that for d ≥ 3,
the statement Proposition 1.3 is true under the weaker assumption that µ
has finite α0-moment and finite entropy, where α0 is the exponent in the
growth upper bound vG012

(r) . er
α0 from [6, 36], α0 ≈ 0.7674. We choose to

take extensions of the Fabrykowski-Gupta group here because the resulting
groups are 2-generated, which allows to cover the case d = 2.

4. stationary joinings and proof of the main results

Let (X, ν) and (Y, η) be two µ-stationary G-spaces. Following [22], we say
a probability measure λ on X × Y is a stationary joining of ν and η if it is
µ-stationary and its marginals are ν and η respectively.

In this section we focus on the situation where both stationary systems
are (G,µ)-boundaries. We use notations introduced in Section 2.1. Denote
by (B, νB) a compact model of the Poisson boundary of (G,µ). Let (X, ν)
and (Y, η) be compact models of two (G,µ)-boundaries and denote by βX

and βY the corresponding maps from the Poisson boundary (B, νB) to (X, ν)
and (Y, η). Consider the map

βX × βY : B → X × Y

b 7→ (βX(b),βY (b)) ,

and denote by Z the range (βX × βY ) (B) and ν 	 η the pushforward of the
harmonic measure νB under βX × βY . Then it’s clear by definition that
(Z, ν 	η) is a G-factor of the Poisson boundary (B, νB), in other words, it is
a (G,µ)-boundary. The G-space (Z, ν 	 η) is the unique stationary joining
of the µ-boundaries (X, ν) and (Y, η), see [22, Proposition 3.1].

On the level of groups, given two d-marked groups (G1, S1) and (G2, S2),
one can take their diagonal product, denoted by (G1 ⊗G2, S), as the sub-
group of G1 ×G2 generated by

S =
((

s
(1)
1 , s

(2)
1

)

, . . .
(

s
(1)
d , s

(2)
d

))

,

where Si =
(

s
(i)
1 , . . . , s

(i)
d

)

, i = 1, 2. This operation on two groups corre-

sponds to taking stationary joinings of the Poisson boundaries:

Lemma 4.1. Let µ be a probability measure on Fd. The Poisson boundary

of (G1 ⊗G2, µ) is the stationary joining of the Poisson boundaries of (G1, µ)
and (G2, µ).

Proof. Denote by (Bi, νi) the Poisson boundary of (Gi, µ), i = 1, 2 and regard
them as G1 ⊗ G2-spaces. Denote by (Z, ν1 	 ν2) the stationary joining of
(B1, ν1) and (B2, ν2) as above and πi : Z → Bi the projections. We need to
show (Z, ν1 	 ν2) is the maximal (G1 ⊗G2, µ)-boundary.
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Let (Y, η) be a (G1 ⊗ G2, µ)-boundary. Denote by Ki the subgroup of
G1 ⊗G2 which consists of elements that project to identity in Gi, that is,

Ki = {(g1, g2) ∈ G1 ×G2 : (g1, g2) ∈ G1 ⊗G2, gi = idGi
} .

Denote by Yi = Y//Ki the space of Ki-ergodic components of Y and ηi the
pushforward of the measure η under the Ki-factor map Y → Y//Ki. Since
(Y, η) is an ergodic G1 ⊗G2-space and K1 ∩K2 = {id}, we have that Y can
be viewed as a subset of Y2×Y1. It’s easy to see that by definition of Ki that
G1 ⊗ G2/K2 ≃ G1. It follows that (Y2, η2) is a (G1, µ)-boundary. Denote
by βY2

the boundary map from (B1, ν1) to (Y2, η2). In the same way we
have (Y1, η1) is a (G2, µ)-boundary and denote by βY1

: (B2, ν2) → (Y1, η1)
the boundary map. By uniqueness of stationary joinings of µ-boundaries, we
have that (Y, η) = (Y2×Y1, η2�η1). It follows that (Y, η) is a factor of (Z, ν1	
ν2), where the boundary map is given by z 7→ (βY2

◦ π1(z), βY1
◦ π2(z)).

�

With the sequence of marked groups provided by Proposition 1.3, we are
now ready to complete the proofs of Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Denote by (B, νB) the Poisson boundary of (Fd, µ).
Let ((Γk, Sk))

∞
k=1 be a sequence marked groups provided by Proposition 1.3.

Denote by (Πk, ηk) the Poisson boundary of (Γk, µ). Since (Γk, Sk) can be
identified with a projection πk : Fd → Γk, we regard (Πk, ηk) as a (Fd, µ)-
space, where the Fd-action factors through πk.

Since Γ is a proper quotient of Fd, N = ker(π : Fd → Γ) is nontrivial. Fix
a choice of element g ∈ N , g 6= id. Choose an index k ∈ N sufficiently large
such that the balls of radius 2|g|S around identities in (Γk, Sk) and (Fd,S)

coincide and hRW(Γk, µ) < ǫ. Take Γ̃ to be the diagonal product (Γ⊗ Γk, S).
Then

hRW(Γ⊗ Γk, µ) ≤ hRW(Γ, µ) + hRW(Γk, µ) < hRW(Γ, µ) + ǫ.

Since g acts trivially on the Poisson boundary of (Γ, µ) but acts freely on
(Πk, νk), it follows that (Πk, νk) is not a Fd-factor of the Poisson boundary
of (Γ, µ). By Lemma 2.2, we conclude that hRW(Γ⊗ Γk, µ) > hRW(Γ, µ).

�

Proof of Theorem 1.2. The proof is similar to Theorem 1.1. Since (X, ν) is
assumed to be a (Fd, µ)-boundary where the action of Fd is not essentially
free, we can choose an element g ∈ Fd, g 6= 1, such that ν(FixX(g)) > 0.
Choose an index k ∈ N sufficiently large such that the balls of radius 2|g|S
around identities in (Γk, Sk) and (Fd,S) coincide and hRW(Γk, µ) < ǫ. Take
the stationary joining (Zk, ν 	 ηk) of (X, ν) and (Πk, ηk). By the general
inequality, we have

h(Zk, ν 	 ηk) ≤ h(X, ν) + h(Πk, ηk) ≤ h(X, ν) + ǫ.

It remains to show that h(Zk, ν 	 ηk) > h(X, ν). Suppose on the contrary
equality holds, then by Lemma 2.2, the equality would imply (Zk, ν 	 ηk) =
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(X, ν). However the action of Γk on (Πk, ηk) is essentially free, which implies
ν 	 ηk (FixZk

(g)) = 0, contradicting ν(FixX(g)) > 0.
�

We now show an analogous result on spectral radii stated as Theorem
1.4 in the Introduction. Consider a symmetric non-degenerate probability
measure µ on Γ. In [33, 34] Kesten proved the following theorem: let µ be
a symmetric non-degenerate probability measure on Γ and N be a normal
subgroup of Γ, then the following are equivalent:

(i): ρ(Γ, µ) = ρ(Γ/N, µ),
(ii): N is amenable.

Given a proper quotient Γ of Fd and ǫ > 0, to prove Theorem 1.4 we take Γ̃
to be a diagonal product Γ⊗H, for some appropriate choice of H similar to
the groups used in Theorem 1.1.

Proof of Theorem 1.4. Let ǫ > 0 be a constant given. Let Γ be a proper
quotient of Fd and fix a choice of g ∈ ker(Fd → Γ), g 6= id. Fix a choice of
d-marking T of the Fabrykowski-Gupta group G such that the ball of radius
2|g|S around identity is the same as the ball of same radius in (F,S). Take
first the diagonal product Γ ⊗G. By the choice of g and marking on G we
have that N0 = ker(Γ⊗G → Γ) is non-trivial.

Denote by (Wn) a µ-random walk on Fd. For a marked group (H,S), we
write πH for the quotient map Fd → H when the marking is clear from the
context.

Take a small constant ǫ1 > 0, choose n large enough such that

P (πΓ (Wn) = idΓ) ≥ ((1− ǫ1)ρ(Γ, µ))
n.

For γ ∈ N0, set

Q(γ) =
P(πΓ⊗G(Wn) = γ)

P(πΓ(Wn) = idΓ)
.

Then Q is a symmetric probability measure on N0. Equip N0 with the
induced metric | · |T from (G,T ). Let R be a sufficiently large radius such
that Q({γ ∈ N0 : |γ|T > R}) ≤ ǫ1. Truncate the measure Q at R and let

QR(g) =
1

Q ({γ : |γ|T ≤ R})
Q(g)1{|g|T≤R}.

Since N0 is a normal subgroup of G, thus amenable, there exists an integer
m such that

Q2m
R (idN0

) ≥ (1− ǫ1)
2m.

With n,m,R chosen, take a sufficiently large index ℓ (to be specified
shortly) and consider the group Γℓ = 〈aℓ, bℓ〉 where the generators aℓ, bℓ are
defined in (3.1). Mark the group Γℓ with the generating tuple Sℓ inherited
from T as in Claim 3.4. Choose ℓ to be sufficiently large such that the ball
of radius 2mR in (Γℓ, Sℓ) coincide with the ball of the same radius in (G,T ).
Consider the diagonal product Γ⊗ Γℓ.
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Now we follow the original argument in Kesten’s theorem (ii) ⇒ (i) above
to show ρ(Γ⊗ Γℓ, µ) > ρ(Γ, µ)− ǫ. Write W kn

(k−1)n = W−1
(k−1)nWkn.

P (πΓ⊗Γℓ
(W2nm) = idΓ⊗Γℓ

)

≥ P

(

∩2m
k=1

{

πΓ

(

W kn
(k−1)n

)

= idΓ,
∣

∣

∣
πΓℓ

(

W kn
(k−1)n

)
∣

∣

∣

Sℓ

≤ R

}

∩ {πΓℓ
(W2mn) = idΓℓ

}

)

≥ ((1 − ǫ1)ρ(Γ, µ))
2mn(1− ǫ1)

2mQ2m
R (idN0

) ≥ (1− ǫ1)
2mn+4mρ2mn.

Choose ǫ1 < ǫ/3, we have that ρ(Γ⊗ Γℓ, µ) > (1− ǫ)ρ(Γ, µ).
Finally, in Lemma 3.3 it is proved that Γℓ has no nontrivial amenable

normal subgroups. Since by the choice of markings ker(Γ̃ → Γ) is nontrivial,

it follows that ker(Γ̃ → Γ) is non-amenable. By Kesten’s theorem (i) ⇒ (ii),

we conclude that ρ(Γ̃, µ) < ρ(Γ, µ).
�
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