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Abstract: We study the pressure spectrumP(t) of the maximal measure for arbitrary
rational maps. We also consider its modified versionP̃ (t) which is defined by means of
the variational principle with respect to non-atomic invariant measures. It is shown that
for negative values oft , the modified spectrum has all major features of the hyperbolic
case (analyticity, the existence of a spectral gap for the corresponding transfer operator,
rigidity properties, etc). The spectrumP(t) can be computed in terms of̃P(t). Their
Legendre transforms are the Hausdorff and the box-counting dimension spectra of the
maximal measure respectively. This work is closely related to a paper [32] by D. Ruelle.

1. Introduction and Results

This is the first of two papers in which we study the pressure spectrumP(t) of the
maximal measure for rational maps, and also some other related parameters. In this part
we consider the caset < 0.

We begin by briefly introducing the main objects. LetF be a rational map on the
Riemann sphere, of degreed ≥ 2. We writeFn for the nth iterate ofF , andF ′

n for
the derivative ofFn. Distances and derivatives are measured in the spherical metric.
TheJulia setof F is denoted byJF . Crit F is the set of all critical points (≡ zeros of
F ′), and PerF is the set of periodic points. We refer to [6,24] for definitions and basic
facts of complex dynamics. See also [3,29,40] regarding thermodynamical formalism
of conformal dynamical systems.

1.1. Pressure functions.Let M be the set of allF -invariant probability measures on
JF . Forµ ∈ M, we denote byhµ the entropy and byχµ the Lyapunov exponent ofµ,
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χµ := ∫
log |F ′| dµ. For each real numbert , the correspondingfree energy

of µ is
Ft (µ) := hµ − tχµ.

Thepressure function(or spectrum) P(t) ≡ PF (t) of F can be defined by means of the
so calledvariational principle:

P(t) := sup
µ∈M

Ft (µ),

see [3,36]. A measure satisfyingFt (µ) = P(t) is called anequilibrium statefor Ft .
A version P̃ (t) ≡ P̃F (t) of the pressure spectrum is obtained by restricting the

class of admissible measures to the subclassM̃ ⊂ M which consists of all invariant
non-atomicmeasures:

P̃ (t) := sup
µ∈M̃

Ft (µ).

The functionsP(t) andP̃ (t) have several useful interpretations, in particular in terms
of partition functions or in terms of certain transfer operators. Some of these approaches
are mentioned below. Our main result concerning the behavior of the pressure functions
for t < 0 is the following. Denote

χmax := sup{χa : a ∈ PerF },
whereχa is the Lyapunov exponent of a periodic point{a}:

χa := 1

n
log |F ′

n(a)|, (n = period ofa).

Theorem A. For an arbitrary rational mapF , the pressure functioñPF (t) is real ana-
lytic on (−∞, 0), and

PF (t) = max{P̃F (t), −χmaxt}.

1.2. Transfer operators.Our motivation for TheoremA comes from the classical theory
of Sinai, Ruelle, and Bowen (see [3,29–31,34]) which applies to the (“hyperbolic” ) case
where the dynamics isexpandingon the Julia set (i.e.||F ′|| > 1 on JF with respect
to a smooth conformal metric defined nearJF ), and from a more recent paper [32] by
Ruelle.

Let Lt denote the (Ruelle–Perron–Frobenius)transfer operatorwhich acts in appro-
priate function spaces according to the formula

Ltf (z) =
∑

y∈F−1(z)

f (y) |F ′(y)|−t (1.1)

(the preimages are counted with multiplicities). Let us recall some properties of the
hyperbolic case.

• The operatorsLt act in the spaceC(JF ) of continuous functions andλ(t) := eP (t) is
the spectral radius ofLt .

• λ(t) is a simple eigenvalue ofLt . There is a strictly positive eigenfunctionft , and
there is a unique probability measureνt onJF which is an eigenvector of the adjoint
operator.
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• The probability measureµt := ft νt (we always assumeνt (ft ) := ∫
ftdνt = 1) is

a unique equilibrium state for the free energyFt . We also have the usual form of the
Perron–Frobenius theorem:

λ(t)−n Ln
t ϕ → νt (ϕ) ft as n → ∞, (∀ϕ ∈ C(JF )). (1.2)

• The operatorLt isquasicompactin the spaceHα of Hölder continuous (with exponent
α > 0) functions onJF . Quasicompactness means that the essential spectral radius
of Lt : Hα → Hα is strictly smaller than the spectral radiusλ(t). Moreover, the
eigenvalueλ(t) has spectral multiplicity one, and there are no other eigenvalues of
the same modulus.

• Consequently, the convergence in (1.2) is exponentially fast for Hölder continuous
functions, and the pressure functionP(t) is real analytic.

The same is true for a transfer operator of the form

Lf (z) ≡ Lgf (z) =
∑

y∈F−1(z)

f (y) g(y) (1.3)

provided thatF is expanding and theweight functiong is Hölder continuous andstrictly
positive.

In [32], Ruelle extended some of the mentioned properties to transfer operators asso-
ciated with arbitrary,non-expanding rational mapsF assuming that the weight function
g ≥ 0 belongs to the spaceBV2 (≡ functions for which the second derivatives are com-
plex measures) and satisfies a certain integrability condition at all critical points ofF .
(The weightsg = |F ′|−t , corresponding to our operatorsLt , satisfy this condition for
everyt < 0.) He showed that in this case

L is quasicompact inBV2 provided thatg satisfies the following additional condition:

∃n : λn > sup
JF

gn, (1.4)

whereλ is the spectral radius ofL in C(JF ), andgn := ∏n−1
j=0 g ◦ Fj . Moreover,λ is

an eigenvalue ofL and there is a non-negative eigenfunction.

To relate the spectral radiusλ of L to the pressure

P(logg) := sup
µ∈M

[hµ + µ(logg)],

Ruelle referred to the following fact which is due to Przytycki [28]:

Let F be an arbitrary rational function and letg be a non-negative continuous
function onJF . If λ denotes the spectral radius of the transfer operator (1.3) inC(JF ),
then

logλ = P(logg).

The quasicompactness of transfer operators in spaces of smooth functions is usually
derived from thesmoothness improving propertyof the operatorsλ−1L. In the hyperbolic
case, this property follows from the expanding nature of the dynamics. To establish qua-
sicompactness in the non-hyperbolic case, one can try to find an appropriate functional
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space which relates to the smoothness “on the average” or in some other generalized
sense. Ruelle’s choice ofBV2 seems to have been motivated by the similarity with the
spaceBV (functions of bounded variation) which is widely used in one-dimensional
real dynamics.

In this paper we will use the Sobolev spacesW1,p. They work almost as well as the
spaceBV2, but the corresponding estimates are somewhat simpler. We state a version of
Ruelle’s theorem for Sobolev spaces in Sect. 2.7. Moreover, our approach gives a weaker
condition (cf. (2.6)) than the condition (1.4) in Ruelle’s theorem. This weaker condition
(unlike the latter) is always satisfied for the weightsg = |F ′|−t with t < 0, so the
operatorsLt are always quasicompact in appropriate Sobolev spaces. On the other hand,
the well-known (see, e.g., [14,7,28,13]) condition (1.4) will be used for uniqueness of
the equilibrium states. We discuss the uniqueness problem in the next subsection.

1.3. Exceptional maps and “phase transition”.The functionPF (t) may or may not be
real analytic. We will see that the first possibility is more typical. We say thatF has a
phase transitionif PF (t) is not real analytic on(−∞, 0). (See the papers [2,10,18,25]
for the “physical” interpretation of this phenomenon.) If this is the case, then we have a
phase transition pointtc < 0 at which the first derivative has a jump discontinuity, and

PF (t) =
{

P̃F (t), tc ≤ t ≤ 0,

−χmax t, −∞ < t ≤ tc.

To characterize the phase transition case, we need the following definition. A rational
mapF is said to beexceptionalif there is a finite, non-empty set6 such that

F−16 \ Crit F = 6. (1.5)

Any such6 has at most four elements (at most two in the polynomial case, cf. [21]),
and so there is a maximal set6 ≡ 6F satisfying (1.5). This set contains at least one
periodic orbit, and we define

χ∗ := max {χa : a ∈ 6F ∩ PerF }.
Theorem B. A rational mapF has a phase transition if and only ifF is exceptional
and

χ∗ > sup {χµ : µ ∈ M, µ(6F ) = 0}. (1.6)

According to an unpublished result by F. Przytycki, the supremum of Lyapunov
exponents in (1.6) can be computed by considering only periodic cycles and so (1.6) is
equivalent to the condition

χ∗ > sup {χa : a ∈ PerF \ 6F }. (1.7)

On the other hand, it is easy to see that if the exponent of a periodic point can not be
approximated by the exponents of periodic cycles with arbitrarily large periods, then this
point has to be in the exceptional set. Thus a rational map has a phase transition if and
only if there is a finite number of periodic points such that their Lyapunov exponents are
larger than the exponents of all other periodic points by a positive constant.

The algebraic condition (1.5) means that the (local) geometry ofJF near6F is
different from the geometry of other parts of the Julia set. The meaning of (1.6) or (1.7)
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in the polynomial case is the following: the Julia set has a “tip” at some point of6F ,
and this tip is substantially more “pointed” than any tip inJF \ 6F , see [21].

In terms of equilibrium distributions, one can describe the phase transition case as
follows. For eacht ∈ (tc, 0) there is a unique equilibrium state which is supported by
the whole Julia set. Att = tc we have another equilibrium state that lives on a periodic
cycle in 6F and persists fort < tc. The original equilibrium state, however, extends
analytically to{t < tc} but its free energyP̃ (t) is now smaller than that of the new
(degenerate) state. Thus we can think ofP̃ (t) as a “hidden” pressure spectrum which
can be obtained by the analytic continuation ofP(t). Note that this phenomenon differs
from the phase transition in the positive spectrum (e.g. for parabolic maps, see [9]), or
from the one described in [10].

Critically finite rational functions with parabolic orbifolds(see, e.g., [8,24]) provide
important examples of exceptional maps. Recall that ifF is critically finite, i.e. if

#




⋃
n≥0

Fn(Crit F)


 < ∞,

then theramification function

ν ≡ νF : Ĉ → N ∪ {∞}
can be defined as a minimal function satisfying the following condition:

ν(Fx) is a multiple of ν(x) degx F, (∀x ∈ Ĉ).

Theorbifold (Ĉ, νF ) is parabolic if its Euler characteristic

2 −
∑
x∈Ĉ

(
1 − 1

ν(x)

)

is zero, or, equivalently, if

ν(Fx) = ν(x) degx F, (∀x ∈ Ĉ).

The latter implies that the set6 = {x : ν(x) = max ν} satisfies (1.5), and therefore
maps with parabolic orbifolds are exceptional.

The Euler characteristic of an orbifold(Ĉ, νF ) is zero if and only if the set of values
of ν at the ramification points is one of the following:

(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6), (2, 2, ∞), or (∞, ∞).

The latter two cases correspond to Chebychev’s polynomials and to the mapsz±d re-
spectively. In the four former cases, the Julia set is the whole Riemann sphere. One can
show that

P(t) = max{1 − t, −2t} logd

for Chebychev’s polynomials, and

P(t) = max{1 − t

2
, −kt} logd with k = 1,

3

2
, 2, 3

for the types(2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and(2, 3, 6) respectively. These maps play
a special role in many questions of rational dynamics. The fact that is relevant to our
study is essentially due to Zdunik [38]:
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Theorem C. LetF be a rational function. TheñP ′′
F (t) = 0 for some/every pointt < 0 if

and only if the functionF is critically finite and the corresponding orbifold is parabolic.

It is easy to give examples of exceptional maps other than critically finite. For instance,
the family

Fλ(z) = (z + λ)2

z
, (λ ∈ C, λ 6= 0),

consists of exceptional maps with6F = {0, ∞}. See also polynomial examples in [21].
Note though that polynomials with #6F = 2, and rational functions with #6F = 4
must be critically finite of types(2, 2, ∞) and(2, 2, 2, 2) respectively.

1.4. Dimension spectrum of the maximal measure.Our results concerning the pressure
functionsP(t) andP̃ (t) can be interpreted in terms of the“multifractal analysis” of the
maximal measure. See the book [27] for background material.

Recall that for every rational mapF , there is a natural invariant measurem,

m := weak*- lim
n→∞

1

dn

∑
y∈F−n(z)

δy,

whered is the degree ofF andz is any complex number (with at most two exceptions).
The measurem is called themaximal measureof F . It was characterized in [4,11,19]
as a unique invariant probability measure with entropy equal to logd.

If F is a polynomial, thenm is theharmonic measureof JF evaluated at infinity.
Harmonic measure is a basic object of harmonic and complex analysis, and there is
extensive literature relating the properties of harmonic measure to the geometry of the
boundary.

To each pointz ∈ J ≡ JF one can associate a range of local dimensionsα given by

lim inf
r→0

log m(B(z, r))

log r
≤ α ≤ lim sup

r→0

log m(B(z, r))

log r
,

whereB(z, r) is the ball of radiusr aboutz and lim inf and lim sup are called the upper
and lower pointwise dimensions ofm at z respectively. For manyz these pointwise
dimensions will be equal so that one can talk of alocal dimensionα(z). Typically, there
are large fluctuations in the value ofα(z) asz ranges overJ . The multifractal analysis is
a description of the fine-scale geometry of the setJ whose “components” are the subsets
{z : α(z) = α} with a homogeneous concentration ofm parameterized byα ∈ R.

TheHausdorff dimension spectrumof m is defined as the function

f̃ (α) := dim {α(z) = α},
where dim denotes the Hausdorff dimension. Note that the standard notation for the
Hausdorff spectrum isf (α) but we reserve the latter for the definition based on box-
counting methods (which are supposed to be more relevant for numerical simulations).
Namely, we define thebox-dimension spectrumf (α) of m as the limit (assuming its
existence)

f (α) := lim
δ→0

log N(δ, α)

| log δ| ,
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whereN(δ, α) denotes the number of squaresQ of a δ-grid satisfyingm(Q) ≈ δα; see
Sect. 5 for an accurate definition.

To relate the dimension spectra to the pressure functions, we denote

s(t) := P(t)

logd
and s̃(t) := P̃ (t)

logd
.

It is well-known that ifF is hyperbolic, thenf (·) ≡ f̃ (·) ands(·) ≡ s̃(·), and these
functions are Legendre-type transformations of each other:

s(t) = sup
α

f (α) − t

α
, (1.8)

f (α) = inf
t

[t + αs(t)]. (1.9)

If, in addition,F is not conjugate toz±d , then the equation

αs′(t) = −1

establishes a one-to-one correspondence between the pointst ∈ R and the local dimen-
sionsα in some interval(αmin, αmax). In particular, the negativet-axis corresponds to
the interval(αmin, α0), where

α0 = |s′(0)|−1 = dimm.

Here dimm denotes the Hausdorff dimension of the measurem, i.e. the maximal Haus-
dorff dimension of a Borel set supportingm.

For general,non-hyperbolicrational maps, we have the following result.

Theorem D. SupposeF is not a critically finite map with parabolic orbifold. Denote
α0 := dimm. Then

(i) the functionss(t) on {t ≤ 0}, and the functionf (α) on {α ≤ α0} form a Legendre
pair in the sense of(1.8)–(1.9);

(ii) the same is true for̃s(t), t ≤ 0, andf̃ (α), α ≤ α0.

This theorem shows that the Hausdorff dimension spectrum always has hyperbolic-
type behavior: if we set̃αmin := sup {α : f̃ (α) > −∞}, then

f̃ (α) is real analytic on the interval(α̃min, α0).

On the other hand, the box-counting spectrum may have a discontinuity in thesecond
derivative.
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1.5. The paper is organized as follows. In Sect. 2, we prove quasicompactness of the
transfer operatorsLt in appropriate Sobolev spaces. In Sect. 3, we establish analyticity of
the pressure function assuming the existence of a non-atomic eigenmeasure. In Sect. 4,
we study the phase transition case and complete the proofs of Theorems A and B.
Theorem C is discussed in Subsect. 3.8. Finally, in Sect. 5, we study the dimension
spectrum of the maximal measure and prove Theorem D.

In what follows, we consider only the polynomial case. This allows to replace some
of the dynamical arguments with shorter proofs based on complex analysis, and also to
reduce the number of cases in the study of exceptional maps. There is no difficulty in
extending the proofs to general rational maps.

In the study of the pressure spectrum, the caset ≥ 0 is considerably more difficult
than the caset < 0. We have only partial results concerning the positive part of the
pressure spectrum for some special classes of polynomials. This will be the topic of the
second part [22] of our work.

For related recent results and further references see [1,5,7,12,15,17,28,33,37].

2. Transfer Operators in Sobolev Spaces

In this section we prove the quasicompactness of the operatorsLt (see (1.1)) in appro-
priate Sobolev spaces. The proof is based on the standard technique – the two-norm
inequality of Ionescu-Tulcea and Marinescu [16]. To state the result, we introduce the
following notation.

Let F be a polynomial of degreed. Fix a large open disc� containingJF such that

F−1� ⊂ �.

For technical reasons we always assume thatthe orbits of critical points ofF do not
intersect the boundary∂�. We will consider the operatorsLt in C(�̄) and in the Sobolev
spacesW1,p(�). We writeρ(Lt , X) for thespectral radiusof Lt in the corresponding
functional spaceX,

ρ := lim
n→∞ ‖Ln

t ‖
1
n

X.

Theessential spectral radiusis denoted by

ρess(Lt , X) := inf {ρ(Lt − K, X) : K compact operator inX}.

2.1.

Theorem. Let t < 0. Then for allp > 2 sufficiently close to2, the transfer operatorLt

is bounded inW1,p(�), and

ρess(Lt , W1,p(�)) < ρ(Lt , W1,p(�)) = ρ(Lt , C(�̄)).

The proof takes the rest of this section. We begin by recalling some properties of
W1,p(�). See [39] for general reference.
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2.2. Sobolev spaces.The Sobolev spaceW1,p(�), p ≥ 1, is equipped with the norm

‖f ‖1,p := ‖f ‖p + ‖∇f ‖p,

where‖ · ‖p is theLp-norm. We will need only the casep > 2. It is well known that
for p > 2, the elements ofW1,p(�) can be represented as continuous functions and the
embedding

W1,p(�) ⊂ C(�̄)

is a compact operator. Moreover, continuousW1,p-functions areHölder continuous:

( |x − y| ≤ δ ) ⇒
(

|f (x) − f (y)| . δ
1− 2

p ‖∇f ‖Lp(B(x,δ))

)
. (2.1)

The embedding result will be used in the following form.

Lemma. There is a constantC (depending on� and onp > 2) such that for anyε > 0
there exists a finite rank operatorK in W1,p(�) such that

‖K‖1,p ≤ C,

‖f − Kf ‖∞ ≤ ε ‖f ‖1,p. (2.2)

Proof. Extendf to the whole plane with Sobolev norm� ‖f ‖1,p, and consider a grid of
equilateral triangles1 of sizeδ � 1. DefineKf to be a continuous function satisfying

Kf =
{

f at all vertices
linear in each triangle1.

Then for each1, we have the following estimates:

|∇(Kf )| . 1

δ
‖f − f (center)‖L∞(1)

(2.1)
. δ

− 2
p

(∫
1∗

|∇f |p
) 1

p

,

where1∗ is the union of1 with the adjacent triangles. It follows that∫
1

|∇Kf |p .
∫

1∗
|∇f |p.

Summing up over all1’s, we obtain the first inequality. The second inequality follows
from (2.1) by the choice ofδ. ut

2.3.

Lemma. If p > 2 and t < −2(1 − 2
p
), then Lt W1,p(�) ⊂ W1,p(�).

Proof. Let f ∈ W1,p(�). Changing the variable in the integral we obtain∫
�

|∇(Lf )|p ≤
∫

�

|∇(f |F ′|−t )|p |F ′|2−p . I + II,

where

I :=
∫

�

|∇f |p|F ′|−tp+2−p ≤ const‖f ‖1,p,
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(because−tp + 2 − p > 0), and

II :=
∫

�

|f |p |∇(|F ′|−t )|p|F ′|2−p ≤ ‖f ‖p∞
∫

�

|∇(|F ′|−t )|p |F ′|2−p.

To see that the latter integral is finite, we only need to consider neighborhoods of critical
points. Supposec is a zero ofF ′ of orderk ≥ 1. Then we have (asz → c):

|∇(|F ′|−t ) . |z|−1−kt ,

and

|∇(|F ′|−t )|p |F ′|2−p . |z|−p(1+kt)+k(2−p).

Since the inequalityt < −(1 + 1
k
)(1 − 2

p
) implies

−p(1 + kt) + k(2 − p) > −2,

the integral converges.ut

2.4. The function s(t).We define

s(t) := logd ρ(Lt , C(�̄)).

We will see later (Remark 3.4) thatρ(Lt , C(�̄)) = ρ(Lt , JF ), and therefore by Przy-
tycki’s result (see Subsect. 1.2), we have

s(t) = P(t)

logd
,

in agreement with notation in Introduction. Some preliminary properties ofs(t) are
stated in the following lemma.

Lemma. (i) For every pointz0 ∈ ∂�, we have

Ln
t 1(z0) � ‖Ln

t ‖∞,

and therefore ∑
y∈F−n(z0)

|F ′
n(y)|−t = ds(t)n+o(n).

(ii) The functions(t), t ≤ 0 is strictly decreasing and satisfies the inequality

s(kt) ≤ k s(t) (∀k ≥ 1). (2.3)
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Proof. Sincet ≤ 0, the functionz 7→ Ln
t 1(z) is subharmonic, and therefore we have

‖Ln
t ‖∞ = ‖Ln

t 1‖∞ = sup
∂�

Ln
t 1.

If z1, z2 ∈ ∂�, then we can choose a simply connected domain that containsz1 and
z2 but does not contain forward iterates of the critical points. All branches ofF−n are
conformal on such a domain, and by the distortion theorem we have

|F ′
n(y1)| � |F ′

n(y2)| as n → ∞,

wherey1, y2 denote the images ofz1, z2 under the same branch. It is easy to see that the
constants in this relation can be chosen independent of the pointsz1, z2. This completes
the proof of the first statement.

Similar argument and the area estimate show that∑
y∈F−n(z0)

|F ′
n(y)|−2 . 1.

By Hölder’s inequality,

dn =

 ∑

y∈F−n(z0)

1


 =


 ∑

y∈F−n(z0)

|F ′
n(y)|−t




2
2−t


 ∑

y∈F−n(z0)

|F ′
n(y)|−2




−t
2−t

,

and we haves(t) ≥ 1 − t
2, ands′(0−) ≤ −1

2, sos(t) is strictly decreasing. To prove
(2.3), we simply observe thatLn

kt 1 ≤ (Ln
t 1)k. ut

2.5. Two-norm inequality.

Lemma. Lett andp be as in Lemma 2.3. Then there exists a positive numberε = ε(p, t)

such that

‖Ln
t f ‖1,p ≤ dn(s(t)−ε)+o(n)‖f ‖1,p + Cn‖f ‖∞ , (f ∈ W1,p(�)). (2.4)

Proof. We have

∫
�

|∇(Ln
t f )|p .

∫
�


 ∑

y∈F−n(z)

|(∇f )(y)| |F ′
n(y)|−(1+t)




p

dA(z)

+
∫

�


 ∑

y∈F−n(z)

|f (y)| |F ′
n(y)|−1 |∇(|F ′

n|−t )(y)|



p

dA(z)

:= I + II.

By the argument of the previous lemma, we have

II ≤ C
p
n ‖f ‖p∞.
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On the other hand, by Hölder’s inequality, we have

I ≤
∫

�


 ∑

y∈F−n(z)

|(∇f )(y)|p |F ′
n(y)|−2





 ∑

y∈F−n(z)

|F ′
n(y)|p′( 2

p
−1−t)




p

p′

dA(z),

wherep′ is the conjugate exponent (i.e.p−1 + (p′)−1 = 1). Using the obvious relation
|F ′

n(y)|−2dA(z) = dA(y), we obtain the estimate

I ≤ ‖∇f ‖p
p

∥∥∥∥Ln

p′(1+t− 2
p

)

∥∥∥∥
p

p′

∞
.

It remains to note that∥∥∥∥Ln

p′(1+t− 2
p

)

∥∥∥∥
1
p′

∞
= d

n 1
p′ s(p′(1+t− 2

p
))+o(n)

,

and that
1

p′ s
(

p′ ·
(

1 + t − 2

p

))
<

1

p′ s(p
′t) ≤ s(t)

by Lemma 2.4. ut

2.6. Proof of Theorem. Fix numberst < 0 andp > 2 satisfying

t < −2

(
1 − 2

p

)
.

The transfer operatorLt is bounded inW1,p(�) by Lemma 2.3. By Lemma 2.5, for any
givenq ∈ (0, 1), we can find an integerN and a constantQ such that

‖LN
t f ‖1,p ≤ q dNs‖f ‖1,p + Q‖f ‖∞, (s := s(t)). (2.5)

By induction, we have

‖LkN
t f ‖1,p ≤ dkNs‖f ‖1,p + QMk‖f ‖∞, (k = 1, 2, . . . ),

where the sequence{Mk} is determined by the equations

M1 = 1, Mk+1 = dNsMk + ‖LkN
t ‖∞.

Sinceds is the spectral radius ofLt in C(�̄), we have

Mk ≤ d(k+o(k))Ns as k → ∞.

It follows that
‖LkN

t ‖1,p ≤ d(k+o(k))Ns,

and
ρ(Lt , W1,p(�)) ≤ ds.
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The opposite inequality is obvious:

‖Ln
t ‖∞ = ‖Ln

t 1‖∞ . ‖Ln
t 1‖1,p . ‖Ln

t ‖1,p.

Let us now prove the strict inequality for the essential spectral radius. The argument
is again based on the estimate (2.5), in which we chooseq such that

q <
1

3(1 + C)
,

whereC is the constant in Lemma 2.2. We also take

ε <
1

3Q
dNs

in (2.2). By Lemma 2.2, there is a finite rank operatorK satisfying

‖K‖1,p ≤ C, ‖f − Kf ‖∞ ≤ ε ‖f ‖1,p.

Thus we have

‖LN
t (f − Kf )‖1,p ≤ qdNs‖f − Kf ‖1,p + Q‖f − Kf ‖∞

≤ dNsq(1 + C) ‖f ‖1,p + Qε ‖f ‖1,p

≤ 2

3
dNs ‖f ‖1,p,

and therefore

ρess(Lt , W1,p(�)) ≤
(

2

3

) 1
N

ds < ds(t).ut

2.7. A version of Ruelle’s theorem.The main result of this section can be extended
to general transfer operators with Sobolev weight functions. Repeating the argument
of Lemma 2.3 and Lemma 2.5 with obvious simple changes, we obtain the following
statement.

Proposition. Let F be a rational function, and letg be a non- negative continuous
function on the Riemann sphere such thatg vanishes at the critical points ofF and
belongs to some Sobolev spaceW1,q(Ĉ) with q > 2. Then for all numbersp > 2
sufficiently close to2, the condition

P(p′ log [g |F ′| 2
p

−1]) < p′P(logg),

(
p′ := p

p − 1

)
, (2.6)

implies the quasicompactness of the transfer operatorLg in W1,p(Ĉ).

Corollary. LetF andg be as above, and letλ denote the spectral radius ofLg in C(JF ).
Suppose also thatg satisfies Ruelle’s condition(1.4):

∃n : λn > sup
JF

gn.

Then for all numbersp > 2 sufficiently close to2, the operatorLg acts inW1,p(Ĉ) and
is quasicompact.
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Proof. Sinceg vanishes at the critical points ofF , we can represent it as follows:

g = h |F ′|τ ,

whereτ is some positive number andh ∈ W1,q for someq > 2. By the argument of
Lemma 2.3, the transfer operator acts inW1,p provided that

2 < p < q and p <
4

2 − τ

(we can assumeτ < 2). It remains to show that (1.4) implies (2.6) for allp close to 2.
If the condition (1.4) is true, then there isλ1 < λ such that

‖gn‖∞ . λn
1.

It follows that for all sufficiently smallε > 0, we have

‖ gn |F ′
n|−ε‖∞ = ‖ h

ε
τ
n g

τ−ε
τ

n ‖∞ . λn
2

for someλ2 < λ. Givenp close to 2, we setε = p − 2. Then we have

∥∥∥∥∥∥z 7→
∑

y∈F−n(z)

gn(y)p
′ |F ′

n(y)|(−1+2/p)p′
∥∥∥∥∥∥∞

=
∥∥∥∥∥∥z 7→

∑
y∈F−n(z)

[
gn |F ′

n(y)|−ε
]p′−1

gn

∥∥∥∥∥∥∞

. λ
(p′−1)n
2 λn+o(n) . λ

p′n
3

with someλ3 < λ. This implies (2.6). ut
The last statement represents a version of Ruelle’s theorem mentioned in Sect. 1.2.As

we noted, the condition (1.6) is weaker than Ruelle’s condition (1.4). The latter condition
can fail even if (1.6) is valid.

3. Analyticity of the Pressure Function

In this section we verify the statements of Theorems A and B for non-exceptional poly-
nomials.

3.1.

Theorem. If F is not exceptional, then the functions(t) is real analytic fort < 0.
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Again, the proof is rather standard. It is contained in the next four lemmas. Fixt < 0
andp > 2 satisfying the condition of Lemma 2.3. Denote

λ ≡ λ(t) := ds(t).

In other words,
λ = ρ(Lt , C(�̄)) = ρ(Lt , W1,p(�)).

We show that λ(t) is an isolated, simple eigenvalue ofLt : W1,p(�) → W1,p(�).
Then the theorem follows by the usual application of the analytic perturbation theory.
The first lemma is taken from [32]. Lemma 3.3 is a version of the construction of
conformal measures due to Patterson [26] and Sullivan [35]. Lemma 3.5 is essentially
Lemma 6.1 of [21]. For the convenience of the reader, we outline the proofs.

3.2. λ is an eigenvalue.

Lemma. We haveker(Lt −λ) 6= ∅ in W1,p(�). The corresponding eigenspace contains
a non-negative eigenfunction.

Proof. Sinceρess(Lt , W1,p(�)) < λ, there are only finitely many eigenvaluesλj satis-
fying |λj | = λ, and the corresponding spectral projections have finite ranks. Denote

gj := Pj 1; g0 := 1 −
∑

gj .

Applying Ln
t , we have

Ln
t g0 +

∑
Ln

t gj = Ln
t 1,

and since

‖Ln
t g0‖∞ . ‖Ln

t g0‖1,p = o(‖Ln
t 1‖∞) as n → ∞,

at least one ofgj ’s is not zero.
We also have

‖Ln
t gj‖1,p � nkj λn as n → ∞,

wherekj ≥ 0 is the maximal integer number such that

ϕj := (L − λj )
kj gj 6= 0,

(i.e.kj is the size of the corresponding Jordan cell). Letk := max{kj }. Then

pn := n−k (Ln
t 1) =

∑
j : kj =k

λn
j ϕj + o(λn) (3.1)

in W1,p(�) and also inC(�̄). Since the functionsϕj are linearly independent, we have

‖pn‖∞ � ‖pn‖1,p � λn,

and we also havepn(z0) � λn for some fixedz0 ∈ ∂�. Sincepn ≥ 0, it follows that∥∥∥∥∥ 1

N

N∑
n=1

pn

λn

∥∥∥∥∥
∞

& 1

N

N∑
n=1

pn(z0)

λn
� 1.

By (3.1), this is possible only if one of the eigenvaluesλj is positive. ut
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3.3. Existence of eigenmeasures.LetL∗
t denote the adjoint of the operatorLt : C(�̄) →

C(�̄). ThenL∗
t acts in the spaceM(�̄) of finite complex measures according to the

following formula:
L∗

t : ν 7→ µ := |F ′|−t (ν ◦ F).

The latter means that
|F ′|t ∈ L1(µ),

in particularµ(Crit F) = 0, and that

ν(FA) =
∫

A

|F ′|t dµ

for every setA such thatF is one-to-one onA and satisfiesA ∩ (Crit F) = ∅. In the
special caseν = δz, we have

L∗
t δz =

∑
y∈F−1(z)

|F ′(y)|−t δy . (3.2)

Lemma. There exists a probability measureν onJF such that

L∗
t ν = λ(t) ν.

Proof. Fix a pointz ∈ ∂� and consider the sequence of positive measures

µn := λ−n (L∗
t )

n δz = λ−n
∑

y∈F−n(z)

|F ′(y)|−t δy .

Clearly,L∗
t µn = λ µn+1, and by the proof of Lemma 3.2, we have

‖µn‖ = λ−n Ln
t 1(z) � nk

for some integerk ≥ 0. Next we define

νn :=
n∑

j=0

µn,

and take some (weak-∗) limit point ν of the sequenceνn / ‖νn‖. Thenν is a probability
measure supported onJF , and since

‖L∗
t νn − λνn‖

‖νn‖ = ‖λ(µn+1 − µ0)‖
‖νn‖ � nk

nk+1 = 1

n
→ 0,

we haveL∗
t ν = λν. ut

3.4. Remark.The last lemma implies in particular that

ρ(Lt , C(JF )) = ρ(Lt , C(�̄)).

Indeed,λ is an eigenvalue of the adjoint ofLt : C(JF ) → C(JF ), and therefore
ρ(Lt , C(JF )) ≥ λ. The opposite inequality is obvious:

‖Ln
t ‖C(JF ) = ‖Ln

t 1‖C(JF ) ≤ ‖Ln
t 1‖C(�̄).
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3.5. The support of an eigenmeasure.

Lemma. Letν be a probability measure onJF satisfying

L∗
t ν = λ(t) ν.

Then either

suppν = JF ,

or the set

6 := suppν

is finite and satisfies

F−16 \ Crit F = 6,

in particular F is exceptional. In the latter case, we have (see Introduction for notation)

logλ(t) = −tχ∗ = −tχmax.

Proof. From the equation

λν = |F ′|−t ν ◦ F (3.3)

we have

F−16 \ Crit F ⊂ 6.

It follows that if #6 = ∞, then we can find a pointa ∈ 6 such that

⋃
n≥0

F−na ⊂ 6,

which implies

6 = JF .

On the other hand, if #6 < ∞, then by (3.3) we have

(x ∈ 6) ⇒ (ν(x) 6= 0) ⇒ (|F ′(x)| 6= 0 and ν(Fx) 6= 0)

⇒ (x ∈ F−16 \ Crit F).

To prove the last statement of the lemma, observe that ifb ∈ PerF , then clearly

logλ(t) ≥ − tχb.

On the other hand, we have

logλ(t) = −tχa

for every periodic pointa ∈ 6. ut
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3.6. Multiplicity ofλ.

Lemma. Suppose there exists a probability measureν such that

L∗ ν = λ(t) ν and suppν = JF .

Thenλ ≡ λ(t) is a simple eigenvalue of the operatorLt in W1,p(�):

dim ker(Lt − λ)2 = 1.

Proof. We will need the following fact: iff ∈ W1,p(�), then{
Ltf = λf

f |JF
= 0

implies f = 0. (3.4)

Assuming (3.4), we can use the following standard argument to prove the lemma. It is
known that the existence of an eigenmeasure with suppν = JF implies dim ker(Lt −
λ) = 1 in C(JF ), see for example Sect. 3.6 of [21]. By (3.4), the same is true for the
spaceW1,p(�). Suppose now that

(Lt − λ)2h = 0

for someh ∈ W1,p(�). We need to show thatf := (Lt − λ)h is trivial. By (3.4), it is
sufficient to provef |JF

= 0. We have

(f, ν) = (Lth, ν) − (λh, ν)

= (h, L∗
t ν) − λ (h, ν) = 0.

Since dim ker(Lt − λ) = 1, we can assume (by Lemma 3.2) thatf ≥ 0, and therefore,
we havef = 0 ν-almost everywhere. The equalityf |JF

= 0 now follows from the
assumption suppν = JF .

It remains to prove (3.4). Fixz ∈ �. We have

|f (z)| = |λ−n Ln
t f (z)|

≤ λ−n
∑

y∈F−n(z)

|F ′
n(y)|−t |f (y)|

. λ−n
∑

y∈F−n(z)

|F ′
n(y)|−t dist(y, JF )α,

whereα < −t is a fixed positive number such thatW1,p(�) ⊂ Hα, see (2.1). Observe
now that

dist(y, JF ) . |F ′
n(y)|−1. (3.5)

Indeed, ifz is in the basin of attraction to∞, andG(·) denotes the Green function with
pole at infinity, then (3.5) follows from the estimates

|F ′
n(y)| |∇G(z)| = dn |∇G(y)|

. dnG(y)

dist(y, JF )
(3.6)

= G(z)

dist(y, JF )
.
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On the other hand, ifz belongs to some bounded component ofC\JF , then the iterates
{Fn} are uniformly bounded in the discsB(y, dist(y, JF )) (the discs lie in the filled-in
Julia set), and so (3.5) follows from the Schwarz lemma.

We can now finish the proof of (3.4). From (3.6) and (3.5), we have

|f (z)| . λ−n
∑

y∈F−n(z)

|F ′
n(y)|−t−α

≤ d−s(t)n ds(t+α)n do(n) → 0 as n → ∞,

becauses(·) is strictly decreasing.ut
We conclude this section with several remarks concerning some other “hyperbolic”

features ofnon-exceptionalpolynomials.

3.7. Remarks.(i) Perron-Frobenius Theorem.The probability eigenmeasureν ≡ νt in
Lemma 3.3 is unique, and ifft ∈ W1,p(�) denotes the non-negative eigenfunction of
Lt satisfying

νt (ft ) = 1,

then the rank one operator
P := (·, νt )ft

is the spectral projection ofLt : W1,p(�) → W1,p(�) corresponding to the isolated
eigenvalueλ ≡ λ(t). One can show that

ρ((I − P)Lt , W1,p(�)) < λ, (3.7)

which implies that
λ−nLn

t → P
with exponential rate of convergence in the uniform operator topology.

To prove (3.7), we first observe that the set{ft = 0} is finite. Assume that

Lt f̂ = λ̂f̂

for some number̂λ of modulusλ and some functionf̂ ∈ W1,p(�) with normalization
νt (|f̂ |) = 1. Then we have

|f̂ | = ft

(use, e.g., the argument of [21], p.142). Define the functionη = η(z)

for z ∈ JF \ {ft = 0} by the equation

f̂ = ηft .

From the identity

(Lt ft )(z) = λ

λ̂η(z)
(Lt ηft )(z),

we have ∑
y∈F−1z

(
1 − λη(y)

λ̂η(z)

)
ft (y)|F ′(y)|−t = 0,
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and therefore
η(Fy)

η(y)
= λ

λ̂

except for a finite set ofy’s. Taking two periodic points with relatively prime periods
and with orbits avoiding this finite set, we haveλ̂ = λ. ut
(ii) Equilibrium states.Let µt denote the probability measureftνt . Standard argument
shows thatµt is an ergodic,F -invariant measure.We claim thatµt is a unique equilibrium
state:

P(t) = ht − tχt , (3.8)

where we writeht andχt for the entropy and the exponent ofµt .
The equality (3.8) follows from the Rokhlin-type formula

ht =
∫

logJt dµt , (3.9)

where

Jt := λ(t)
ft ◦ F

ft

|F ′|t ∈ L1(µt )

is theJacobianof µt . (We also use the obvious fact that logft is integrable with respect
to µt .) The formula (3.9) follows from the well-known estimate

ht ≥
∫

logJt dµt

and from the variational principle.
To prove the uniqueness result, it is sufficient to show that ifµ is an equilibrium state,

then
µ(9) = µt(9) for all 9 ∈ C∞.

The latter is an immediate consequence (cf. [28]) of the differentiability at 0 of the
pressure function

p(s) := P(−t log |F ′| + s9), (s ∈ R),

see the next remark and also Subsect. 2.7.

(iii) Derivatives of the pressure function.For non-exceptional polynomials, one can
establish the same formulas for the derivatives ofP(t) as in the hyperbolic case (see
[29–31]). Namely, for the first derivative we have

P ′(t) = −χt , (t < 0),

and also

P ′(0−) = −χm,

P ′(−∞) = sup
M

χµ = lim
n→∞

1

n
log‖F ′

n‖∞.

(Recall thatm denotes the measure of maximal entropy.) The first statement follows, for
example, from the variational principle which also implies the inequality

P ′(0−) ≥ −χm.
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To prove that
P ′(0−) ≤ −χm,

we denote
Pε(t) = P(−t log(|F ′| + ε)),

and consider the corresponding equilibrium stateµε,t :

Pε(t) = hε,t − t

∫
log(|F ′| + ε) dµε,t

(hε,t is the entropy of the equilibrium state). It follows that

hε,t → Pε(0) = log d as t → 0,

and therefore
weak*- lim

t→0
µε,t = m

by the upper semicontinuity of the entropy and the uniqueness of the maximal measure.
SincePε(t) ≤ P(t), we have

P ′(0−) ≥ lim sup
t→0−

logd − Pε(t)

−t

≥ lim sup
t→0−

hε,t − Pε(t)

−t

= − lim inf
t→0−

∫
log(|F ′| + ε) dµε,t

= −
∫

log(|F ′| + ε) dm → χm as ε → 0.

To state the formula for the second derivative of the pressure function, we denote
A := log |F ′| andSn := ∑n−1

j=0 A ◦ Fj . For t < 0, consider theasymptotic varianceσ 2
t

of the process{A ◦ Fn}n≥0 in L2(µt ):

σ 2
t := lim

n→∞
1

n

∫
[Sn − µt(Sn)]2 dµt

=
∫

A2 dµt + 2
∞∑

n=1

∫
A(A ◦ Fn)dµt .

The asymptotic variance is finite because of the exponential decay of the correlations∫
A(A◦Fn)dµt (use the fact thatLt(Aft ) ∈ W1,p(�) and apply Perron-Frobenius). As

in the hyperbolic case, we have
P ′′(t) = σ 2

t .

Indeed, standard computation based on the differentiation of the identity

Lτfτ = λ(τ)fτ

(with normalizationνt (fτ ) ≡ 1 for the eigenfunctionsfτ ) shows that

P ′′(t) = n−1[µt(S
2
n) − µt(Sn)

2] − 〈n−1Snḟt , νt 〉,
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(the dot denotes the derivative with respect tot) and so we need to show that the last
term tends to zero asn → ∞. Since

〈(A ◦ Fj )ḟt , νt 〉 = λ(t)−j 〈A(L
j
t )ḟt , νt 〉,

we have
〈n−1Snḟt , νt 〉 = 〈AMnḟt , νt 〉,

where

Mnḟt := 1

n

n−1∑
j=0

L
j
t

λ(t)j
ḟt

W1,p−→ 〈ḟt , νt 〉ft = 0.

(iv) P(t) ≡ P̃ (t) for non-exceptional maps.This follows from the fact that the equilib-
rium statesµt are non-atomic. The latter can be proved as follows. The analyticity of
the pressure function implies that

P(t) > P ′(−∞) t, (∀t < 0).

On the other hand, we have

|P ′(−∞)| = lim
n→∞

1

n
log‖F ′

n‖∞.

Hence, for everyt < 0, we have

‖F ′
n‖−t∞ = o(λ(t)n) as n → ∞.

Suppose now thatνt (x) 6= 0. Sinceνt is an eigenmeasure, we have

|F ′
n|−t (νt ◦ Fn) = λ(t)nνt ,

and

νt (F
nx) = λ(t)n

|F ′
n(x)|−t

νt (x) → ∞.

3.8. Rigidity. It follows from Remark (iii) that ifP ′′(t) = 0 for somet < 0, thenσt = 0
and therefore the function log|F ′| is homologous to a constant inL2(µt ), i.e. for some
u ∈ L2(µt ) we have

log |F ′| = u − u ◦ F + const. (3.10)

According to Zdunik [38], log|F ′| can be homologous to a constant inL2(m), where
m is the maximal measure, if and only ifF is critically finite and the corresponding
orbifold is parabolic. One can modify the argument in [38] to extend her result to our
equilibrium statesµt .

Theorem. LetF be a nonexceptional rational function. Then

P ′′(t) > 0 for all t < 0.



Thermodynamics of Rational Maps I 727

Proof. SupposeP ′′(t) = 0 for somet < 0 and letµ = µt denote the corresponding
equilibrium state. We claim that (3.10) implies

F−1(CV) ⊂ CV ∪ C, (3.11)

where
C := J ∩ Crit F and CV:= {Fnc : n ≥ 1, c ∈ C}.

It then follows that the set CV is finite, in which case the statement is known.
To prove (3.11), we need the following lemma. Let us choose a subsetS ⊂ J with

µS > 1/2 such thatu is bounded onS.

Lemma. Let p ∈ J \ CV. Then there is a discB aboutp and a subsetE ⊂ B of full
µ-measure inB such that the following is true:
for every pair of pointsx, y ∈ E, there is an integern > 0 and a componentP ofF−nB

such that

(i) the mapFn : P → B is univalent, and
(ii) x, y ∈ Fn(S ∩ W).

This lemma immediately implies (3.11). First we observe thatu is bounded onE∩ 1
2B.

Indeed, ifx = Fna andy = Fnb for somea, b ∈ S ∩ W , then by (3.10) we have

u(x) − u(y) = log
|F ′

n(a)|
|F ′

n(b)| + u(b) − u(a),

and the first term to the right is bounded by the distortion theorem. Next we takex ∈ CV,
y ∈ F−1x and suppose thaty 6∈ C ∪ CV. It follows that u is µ-bounded in some
neighborhood ofy. Applying (3.10), we see thatu is µ-bounded in some neighborhood
of x. On the other hand, there is a critical pointc ∈ C\ CV such thatx = Fkc for some
k ≥ 1. Thenu is µ-bounded nearc, but the equation

log |F ′
k| = u ◦ Fk − u + const,

shows thatu cannot beµ-bounded atx. This proves (3.11) and hence the theorem.
We now turn to the proof of the lemma.
Consider the natural extension(J̃ , F̃ , µ̃) of the dynamical system(J, F, µ). Recall

thatF̃ is the left shift in the space of sequences

J̃ := {x̃ = (. . . , x−1, x0, x1, . . . ) ∈ J Z : xk+1 = Fxk}.
Let πk : J̃ → J denote the projection onto the k-th coordinate. We will writeπ for π0.
The ergodic measurẽµ is defined as a uniquẽF -invariant measure satisfyingµ = π∗µ̃.

For a given discB andn > 0, we denote byU−n the union of the components of
F−nB on whichFn is univalent. Consider the set

O := {x̃ ∈ J̃ : x0 ∈ B, xk ∈ Uk for all k < 0}.
We can introduce a direct product structure inO in the following way. Let6 be the set
of all infinite sequences of the inverse branches participating in the construction ofO:

6 = O/ ∼,
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where, by definition,̃x ∼ ỹ if the pointsxk andyk belong to the same component ofUk

for all k < 0. If τ : O → 6 denotes the corresponding projection, then the map

π × τ : O → B × 6

is a bijection.
Consider now the restriction ofµ̃ to the setO as a measure onB×6. Letρ denote the

projection of this measure to6 and{µσ : σ ∈ 6} the corresponding family (“canonical
system”) of conditional measures onB. The proof of the lemma is based on the following
two facts:

(*) if the radius ofB is sifficiently small, theñµ(O) > 0;
(**) the restriction ofµ to B is absolutely continuous with respect toµσ for ρ-a.e.σ .

Assuming these facts, we can now finish the proof of the lemma. Sinceµ̃(π−1S) > 1
2,

applying the ergodic theorem we can find a subsetE of O of full measure,̃µ(O\E) = 0,
such that

(x̃, ỹ ∈ E) ⇒ (∃k < 0, xk ∈ S, yk ∈ S).

Denote
Eσ := π(E ∩ τ−1σ).

Then we have

0 = µ̃(O \ E) =
∫

µσ (B \ Eσ ) dρ(σ ),

and therefore
µσ (B \ Eσ ) = 0 for ρ-a.e.σ .

By (**), we have
µEσ = µB for ρ-a.e.σ ,

and so almost every setEσ satisfies the condition of the lemma.
It remains to verify (*) and (**).

Proof of (*). Recall thatµ = f ν, wheref = ft andν = νt are the corresponding
eigenfunction and eigenmeasure respectively. Sincep 6∈ CV, we havef (p) 6= 0. We
will also use the estimate

‖ F ′
n ‖−t∞ . λn

1, λ1 < λ := λ(t), (3.12)

which is true, as was already mentioned, for all non-exceptional maps. Forn > 0, let
C−n be the union of the componentsP of F−nB such that

P ∩ C 6= ∅, but FP ⊂ U1−n.

It is clear that the number of such componentsP of C−n as well as the degrees of the
mapsFn : P → B are bounded by a constant depending only on the degree ofF .
Using the fact thatν is an eigenmeasure and thatf (p) 6= 0, it follows that if the radius
of B is small enough, then

µC−n . const
‖f ‖∞ ‖ F ′

n ‖−t∞ µB

f (p) λn
,
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with a constant depending only on the degree ofF . For an arbitraryN , we can takeB
so small that

C−1, . . . , C−N = ∅,

and by (3.12), we can chooseN such that∑
n>0

µC−n =
∑
n>N

µC−n < µB.

Since
π−1B \ O ⊂

⋃
n>0

{x̃ ∈ π−1B : x−n ∈ C−n},

we have
µ̃O ≥ µB −

∑
µC−n > 0.ut

Proof of (**). Fix η ∈ (0, 1), and letB ′ denote the discηB. We will show that if

µ̃(O ∩ π−1B ′) > 0, (3.13)

then

( µe > 0, e ⊂ B ′ ) ⇒ (µσ e > 0 for ρ-a.e. σ).

By (*), the inequality (3.13) holds for allη close to 1, and therefore (**) follows.ut
We will use the symbolsPk, k > 0, to denote any component ofU−k. The statement

follows from the estimate

µ̃ [O ∩ π−1
0 e ∩ π−1

−k Pk] ≥ constµ̃ [O ∩ π−1
0 B ′ ∩ π−1

−k Pk], (3.14)

with a constant independent ofk andPk. Since⋃
(Pn)

π−1−nPn ↘ O as n → ∞,

we have

µ̃ [O ∩ π−1
0 e ∩ π−1

−k Pk] = lim
n → ∞

∑
µ̃ [O ∩ π−1−nPn]

= lim
n → ∞

∑
µ(Pn ∩ F−ne), (3.15)

where the sums are taken over all componentsPn such thatFn−kPn = Pk. We can
represent the right-hand side of (3.14) in a similar way, and so to prove (3.14) we only
need to compare theµ-measures of the setsPn ∩ F−ne andPn ∩ F−nB ′.

Assume first that the eigenfunctionf does not vanish onJ . Then it is enough to
notice that theν-measures of the above sets are comparable. The latter is a consequence
of the distortion theorem and of the fact thatν is an eigenmeasure:

ν(Pn ∩ F−ne)

ν(Pn ∩ F−nB ′)
= λ−n

∫
e
|F ′

n|t d(ν ◦ Fn)

λ−n
∫
B ′ |F ′

n|t d(ν ◦ Fn)
.
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The eigenfunctionf may have zeros in general. LetZ denote the set{f = 0}. Since
F in non-exceptional, there is an integerm > 0 such that

δ := dist(Z, F−mZ) > 0.

We can also assume that the discB is so small that the diameters of all setsPn∩F−nB ′ are
� δ. Returning to the computation (3.15), we modify some of the termsµ(Pn ∩F−ne)

as follows. If the setPn ∩ F−ne contains a point at whichf is very small, then we
replace the coresponding term with the sum∑

µ(Pn+m ∩ F−n−me)

taken over all componentsPn+m such thatFmPn+m = Pn. In the new expression, the
eigenfunctionf is bounded away from zero by a constant independent ofn, and so the
previous argument applies.ut

4. Hidden Spectrum

In this section we study the phase transition case, and complete the proof of Theorems
A and B.

Let F be an exceptional polynomial. We assume thatF is not conjugate to a Cheby-
chev’s polynomial. From the discussion in Sect. 1.3, it follows that there exists a fixed
pointa ∈ JF , F(a) = a, such that

F−1a \ {a} ⊂ Crit F.

Consider the function
H(z) := |z − a|.

We have
H ◦ F

H
(z) =

∏
c∈Crit F∩F−1a

|z − c|k(c)+1,

wherek(c) denotes the multiplicity of a critical pointc. We also define the numberκ̃ > 0
from the equation

κ̃

1 − κ̃
= min{k(c) : c ∈ F−1a ∩ Crit F }.

4.1. The functionssκ(t). The idea is to replace the weights|F ′|−t in the transfer oper-
ators (1.1) with “homologous” weights of the form

Gκ,t := |F ′|−t

(
H ◦ F

H

)κt

.

If 0 ≤ κ ≤ κ̃, then the weightsGκ,t are continuous in̄� and the corresponding transfer
operators

Lκ,tf (z) :=
∑

y∈F−1(z)

Gκ,t (y)f (y)
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are bounded inC(�̄). The special property of the caseκ = κ̃ is that every point in�
has at least one preimage that is not a zero ofGκ̃,t . This means that we are no longer in
the “exceptional” situation – we have

L∗
κ̃,t ν 6= 0 (4.1)

for every probability measureν onJF . Unfortunately, the operatorsLκ̃,t are not bounded
in any spaceW1,p(�), and to apply the technique of Sects. 2 and 3 we have to useLκ,t

with κ < κ̃. (The operators withκ < κ̃ do not satisfy (4.1) but they are bounded in
appropriate Sobolev spaces.)

Let λκ(t) denote the spectral radius ofLκ,t in C(�̄). Define

sκ(t) := logd λκ(t).

We will need the following properties of the functionssκ(t).

(i) If t < 0 and0 ≤ κ ≤ κ ′ ≤ κ̃, thensκ ′(t) ≤ sκ(t).

Proof. Denote
h(z) = |z − a|−t (κ ′−κ)

and observe that

Ln
κ ′,t 1 = 1

h
Ln

κ,t h.

Let zn be the points in∂� such that

‖Ln
κ ′,t‖∞ = Ln

κ ′,t 1(zn).

The existence of such points follows from the subharmonicity of the function

z 7→ Ln
κ ′,t 1(z).

Then we have

‖Ln
κ ′,t‖∞ � Ln

κ,t h(zn) ≤ ‖Ln
κ,t h‖∞ . ‖Ln

κ,t‖∞,

which implies the statement.ut
(ii) If there is a probability measureν satisfying

L∗
κ,t ν = λκ(t) ν

and ifν 6= δa , then
sκ ′(t) = sκ(t) for all κ ′ > κ.

Proof. We have

‖Ln
κ ′,t‖∞ & ‖h Ln

κ ′,t 1‖∞ = ‖Ln
κ,t h‖∞

& 〈Ln
κ,t h, ν〉 = λn

κ(t)〈h, ν〉
� λn

κ(t),

which implies
sκ ′(t) ≥ sκ(t).

ut
(iii) For everyκ ∈ [0, κ̃], the functionsκ(·) is strictly decreasing.

Proof. It is clear thatνt 6= δa if t is sufficiently close to 0. By the previous statement,
we havesκ(t) = s(t) for sucht ’s, and therefore the functionsκ(t) is strictly decreasing
in a neighborhood of 0. It remains to note thatsκ is convex (use Hölder’s inequality and
the definition ofsκ ). ut
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4.2.

Lemma. s̃(t) > −t (1 − κ̃) logd |F ′(a)|.
Proof. DenoteM := F ′(a). The statement is obvious ifa is a neutral fixed point, so we
assume thata is repelling:|M| > 1. For simplicity, we writeG andL instead ofGκ̃,t

andLκ̃,t respectively. Observe that

G(a) = |M|−t (1−κ̃).

By (4.1), we can consider the operator

ν 7→ ‖L∗ν‖−1 L∗ν
on the set of probability measures onJF . By Schauder’s theorem, this operator has a
fixed pointν, and we have

L∗ν = λ ν (4.2)

for someλ > 0. It is clear that logd λ ≤ s̃(t), and it remains to show that

G(a) < λ. (4.3)

Sincea is a repelling point ofF , there is a conformal mapϕ from the unit disc onto
some neighborhood ofa such that

ϕ(Mz) = F(ϕ(z)), (|z| < |M|−1).

If |z| < |M|−(1+n), then we have

|F ′
n(ϕ(z))| = |M|n |ϕ′(Mnz)|

|ϕ′(z)| � |M|n,
and

Gn(ϕ(z)) = |F ′
n|−t

( |ϕ(Mnz) − a|
|ϕ(z) − a|

)κ̃ t

� |M|−tn (|M|n)κ̃t = G(a)n.

To prove (4.3), we consider the sequence of pairwise disjoint domains

Un := ϕ (|M|−(2+n) < |z| < |M|−(1+n)), (n ≥ 0).

By construction,Fn is injective onUn, Fn(Un) = U0, and

Gn(z) � G(a)n for z ∈ Un.

Then by (4.2), we have

ν(Un) = λ−n

∫
U

Gn(z) dν(z)

� λ−n G(a)n ν(U).

It is easy to see that suppν = JF . (This follows from (4.1), see the proof of Lemma 3.5.)
Henceν(U) > 0, and since the domainsUn are disjoint, we have∑

n≥0

(
G(a)

λ

)n

.
∑
n≥0

ν(Un) < 1,

which implies (4.3). ut
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4.3. The operatorsLκ,t with κ < κ̃. The argument of Lemma 2.3 shows that ift < 0
and 0≤ κ < κ̃, thenLκ,t is bounded inW1,p(�) with p > 2 sufficiently close to 2.
We can now apply the methods of Sects. 2 and 3 to establish the following result. The
condition (4.4) below simply means that a measureν satisfying

L∗
κ,t ν = λκ(t) ν

cannot be equal toδa , and therefore

suppν = JF

by the proof of Lemma 3.5. Indeed, we have

L∗
κ,t δa = Gκ,t (a) δa,

and if we assume (4.4), then

Gκ,t (a) = |F ′(a)|−t (1−κ) < λκ(t).

Lemma. Let0 ≤ κ < κ̃, andt < 0. Suppose that

sκ(t) > −t (1 − κ) logd |F ′(a)|. (4.4)

Then the functionsκ(·) is real analytic att , and there is a non-atomic equilibrium state
µκ,t for the functionlogGκ,t .

Proof. There are only minor changes in the reasoning of the previous sections. We again
write G andL for Gκ,t andLκ,t .

(i) We first establish a two-norm inequality similar to (2.4). Choosep > 2 such thatL
acts inW1,p(�). We claim that for someε > 0,

‖Ln f ‖1,p ≤ dn(sκ (t)−ε)+o(n)‖f ‖1,p + Cn‖f ‖∞ , (f ∈ W1,p(�)). (4.5)

To prove (4.5), we repeat the computation of Lemma 2.5 to obtain∫
�

|∇(Lnf )|p . ‖L̂n‖
p

p′ ‖∇f ‖p
1,p + Cn‖f ‖p∞, (4.6)

whereL̂ denotes the transfer operator

L̂f (z) =
∑

y∈F−1z

f (y) Ĝ(y)

with the weight function

Ĝ := Gp′ |F ′|( 2
p

−1)p′ ≡ Gκ̂,t̂ ,

p′ is the conjugate exponent, and

t̂ := p′
(

t + 1 − 2

p

)
, κ̂ := κt

t + 1 − 2
p

.
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Sinceκ̂ > κ andt̂ > p′t , the properties (i) and (iii) of Subsect. 4.1 imply that

1

p′ sκ̂ (t̂) <
1

p′ sκ(p′t) ≤ sκ(t),

and therefore

‖L̂n‖ 1
p′ = dn(sκ (t)−ε)+o(n).

Together with (4.6), the latter implies (4.5).

(ii) The quasicompactness ofL,

ρess(L, W1,p(�)) < ρ(L, W1,p(�)) = ρ(L, C(�̄)) ≡ λκ(t),

is a consequence of the two-norm inequality (4.5). It also follows thatλκ(t) is an eigen-
value ofL : W1,p(�) → W1,p(�) and that there is a probability measureνκ,t satisfying

L∗νκ,t = λκ(t) νκ,t .

The proofs are identical to those in Sects. 2 and 3. As we mentioned, from (4.4) we have

suppνκ,t = JF . (4.7)

This in turn implies thatλκ(t) is a simple isolated eigenvalue of
L : W1,p(�) → W1,p(�), and so the spectrumsκ(·) is analytic att . The proof is exactly
the same as in Lemma 3.6 except that the fact

( f ∈ W1,p(�), Lf = λκ(t) f, f |JF
≡ 0 ) ⇒ (f ≡ 0) (4.8)

requires a slightly different argument. Fixz ∈ � \ JF . Then we have

|f (z)| = |λκ(t)−n Lnf (z)|
. λ−n

κ (t)
∑

y∈F−n(z)

|Gn(y)| dist(y, JF )β,

for some positive numberβ < −t . Using the inequality (3.5), we have

|f (z)| . λ−n
κ (t)

∑
y∈F−n(z)

Gn(y) |F ′
n(y)|−β

= λ−n
κ (t) H(z)tκ

∑
y∈F−n(z)

|F ′
n(y)|−t−β H(y)−tκ

= eo(n) d−sκ (t)n dsκ̂ (t̂)n,

with
t̂ := t + β > t, and κ̂ = t

t + β
> κ.

By (i) and (iii) of Subsect. 4.1, we have

sκ̂ (t̂) < sκ(t),

which completes the proof of (4.8).
(iii) The construction of an equilibrium stateµ and the proof thatµ has no atoms is the
same as in Subsect. 3.7.ut
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4.4. Corollary. P̃ (t) = s̃(t) logd.

Proof. Fix t < 0. By property (i) of Subsect. 4.1 and by Lemma 4.2, we have

sκ(t) ≥ s̃(t) > −t (1 − κ̃) logd |F ′(a)|,

and therefore

sκ(t) > −t (1 − κ) logd |F ′(a)|
for some parameterκ ∈ (0, κ̃) which we now consider fixed. As we mentioned, the last
inequality implies that there exists an eigenmeasureνκ,t satisfying suppνκ,t = JF . By
property (ii), it follows that

s̃(t) = sκ(t).

Applying the variational principle (see Subsect. 1.2), we have

sκ(t) logd = P(logGκ,t ).

We also have the equality

P̃ (t) = P(logGκ,t )

which follows from the existence of a non-atomic equilibrium state for the function
logGκ,t and from the fact that ifµ is a probability measure onJF such thatµ(a) = 0,
then

µ(logGκ,t ) = −tχµ. (4.9)

To prove (4.9), we observe that if

log
H ◦ F

H
6∈ L1(µ),

then both sides in (4.9) are−∞, otherwise we have

µ

(
log

H ◦ F

H

)
= 0.

Indeed, forε ∈ (0, 1) denoteHε := H + ε. Then

∣∣∣∣log
Hε ◦ F

Hε

∣∣∣∣ ≤
∣∣∣∣log

H ◦ F

H

∣∣∣∣ + const

onJF , and

log
Hε ◦ F

Hε

µ- a.e.−→ log
H ◦ F

H
as ε → 0. ut
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4.5. Proof of Theorems A and B.If F is not exceptional, thenPF (t) is real analytic on
the negative axis, and thereforePF (t) > −χmax for all t < 0. The equalityPF = P̃F

was explained in Subsect. 3.7.
Suppose now thatF is an exceptional map. Clearly, we always have

PF (t) ≥ max {P̃F (t), −χmaxt}.

If PF (t) > −χ∗t for somet < 0, then we havePF (t) = P̃F (t) by the property (ii) and
Lemma 3.5. This completes the proof of Theorem A.

A phase transition occurs if and only if

χ∗ > P̃ ′
F (−∞).

On the other hand, it is clear that

P̃ ′
F (−∞) = sup {χµ : µ ∈ M, µ(6F ) = 0},

and Theorem B follows.

4.6. Remark.One can extend all results of Sects. 3.7 and 3.8 to exceptional polynomials.
In particular, the argument of Sect. 3.8 proves Theorem C:P̃ ′′(t) > 0 for all t < 0
unlessF is critically finite with parabolic orbifold. In the next section we will also use
the following formula involvingP̃ ′(t).

Fort < 0, letκ be a number satisfying the conditions of Lemma 4.3, and letµ ≡ µκ,t

be the corresponding equilibrium state. Then applying (4.9), we have

P̃ ′(t) = −χµ.

Since

P̃ (t) = hµ − tχµ,

we get

dimµ = hµ

χµ

= t − P̃ (t)

P̃ ′(t)
. (4.10)

(The first equality in (4.10) follows from Mañé’s formula [23].)

5. Dimension Spectrum

In this section we study the dimension properties of the maximal measurem and prove
Theorem D.
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5.1. Definitions and results.We define thebox-counting dimension spectrumf (α) of
m as follows:

f (α) := lim
η→0

lim sup
δ→0

logN(δ; α, η)

| logδ| ,

whereN(δ; α, η) is the maximal number of disjoint discsB of radiusδ centered atJF

and satisfying
δα+η ≤ mB ≤ δα−η.

TheHausdorff dimension spectrum̃f (α) is defined be the equation

f̃ (α) := dim {z : α(z) exists and= α},
whereα(z) is the pointwise dimension ofm atz, and dim denotes Hausdorff dimension
if the set is uncountable and−∞ otherwise. Recall the statement of Theorem D. Letα0
denote the Hausdorff dimension of the maximal measure. By (iii) of Subsect. 3.7, we
haveα0 = |s′(0−)|−1.

Claim. (i) The functions(t) on {t ≤ 0}, and the functionf (α) on {α ≤ α0} form a
Legendre pair:

s(t) = sup
α≤α0

f (α) − t

α
, (t ≤ 0),

f (α) = inf
t≤0

[t + αs(t)], (α ≤ α0).

(ii) The functions̃s(t), t ≤ 0, andf̃ (α), α ≤ α0 form a Legendre pair.

Using Theorem D, we can restate our results on the pressure function in terms of
the spectraf (α) andf̃ (α). Let us assume thatF is not critically finite with parabolic
orbifold. Denote

αmin := 1

|s′(−∞)| .
If s(t) has a phase transition point, then we also define the parameters

α̃min := 1

|s̃′(−∞)|
and

αc := 1

|s′(tc+)| = 1

|s̃′(tc)| .
We always have

0 < αmin < α0,

and in the phase transition case we have

0 < αmin < α̃min < αc < α0.

Finally, note thatf (α0) = f̃ (α0) = α0 becauseα0 = dimm.

Corollary 1. If F is not critically finite with parabolic orbifold, theñf (α) is a real ana-
lytic, strictly increasing and strictly convex (f̃ ′′ > 0) function on the interval(α̃min, α0),
and f̃ (α) ≡ −∞ for α < α̃min.
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Proof. Define
α(t) := |s̃′(t)|−1.

Sinces̃′′ > 0, we have

α′(t) = s̃′′(t)
(s̃′(t))2 > 0,

and soα(t) is strictly increasing on the interval(−∞, 0), and the inverse functiont (α)

is real analytic on(α̃min, α0). It follows that forα ∈ (α̃min, α0), the function

f̃ (α) = inf
t≤0

[t + αs̃(t)]
= t (α) + αs̃(t (α))

has the stated properties. It is also clear thatf̃ (α) ≡ −∞ if α < α̃min. ut
Corollary 2. If F is not exceptional (more generally, if there is no phase transition),
then

f ≡ f̃ .

In the phase transition case,f (α) is C1 but notC2 on (αmin, α0). More precisely,

f (α) =




f̃ (α), αc ≤ α ≤ α0,

linear, αmin ≤ α ≤ αc,

0, α = αmin,

−∞, α < αmin.

Proof. Reasoning as above, we have

f (α) = t + αs(t), (αc ≤ α ≤ α0),

whereα andt are related by the equationαs′(t) = −1. We also have

f (α) = tc

(
1 − α

αmin

)
on [αmin, αc].

It follows thatf ′ is continuous atαc. Indeed,

f ′(αc+) = 1

αc

[f (αc) − tc]

= 1

αc

[
tc

(
1 − αc

αmin

)
− tc

]

= − tc

αmin
= f ′(αc−).

The rest of the proof is obvious.ut
We will prove the theorem only forpolynomialswith connectedJulia sets. The proof

is considerably shorter in this special case because we can express the spectras(t) and
s̃(t) in terms of the Riemann map

ϕ : 1 := {|z| > 1} → A(∞), (ϕ(∞) = ∞),

whereA(∞) is the basin of attraction to infinity, and apply some general facts of the
conformal mapping theory. (For arbitrary rational maps, one should replace certain
parts of the argument with corresponding dynamical considerations.) Recall that for
connected polynomial Julia sets,m is the image of the normalized Lebesgue measure
under the boundary correspondence. In what follows, we assume that the polynomialF

is exceptional (but not Chebychev’s) with6F = {a}.
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5.2.

Lemma. For eacht < 0, we have

dns(t) � dn(1−t)

∫
|z|=1+d−n

|ϕ′|t , (5.1)

dns̃(t) � dn(1−t)

∫
|z|=1+d−n

|ϕ − a|−κ̃ t |ϕ′|t . (5.2)

Proof. Fix some point inA(∞) and consider the preimages{y} underFn.
The Riemann mapϕ conjugatesF with the dynamicsT : z 7→ zd on 1 . Differentiating
the identityFn ◦ ϕ = ϕ ◦ T n, we get

|F ′
n(y)| � dn|ϕ′(ϕ−1y)|−1.

The points{ϕ−1y} are equidistributed on a circle of radiusrn satisfying

rn − 1 � d−n.

Applying the distortion theorem, we have

‖Ln
t ‖∞ � dn(1−t)

∫
|z|=rn

|ϕ′|t ,

and

‖Ln
κ̃,t‖∞ �

∑
y

|F ′
n(y)|−t |y − a|−κ̃ t

� dn(1−t)

∫
|z|=rn

|ϕ − a|−κ̃ t |ϕ′|t .ut

5.3. Proof of (i). The key observation is thats(t) coincides with thepacking spectrum
of the maximal measurem:

π(t) = lim sup
ε→0

logL(ε; t)

| logε| ,

where
L(ε; t) := sup

B

∑
B∈B

diam(B)t

the supremum being taken over all collectionsB of disjoint discsB satisfying
mB = ε. It is a general fact (see [20]) that the harmonic measure packing spectrum of
an arbitrary simply connected domain is related to the integral means spectrum

β(t) := lim sup
r→1

∫
|z|=r

|ϕ′(z)|t |dz|
| log(r − 1)|

of the corresponding conformal map by the equation

π(t) = β(t) + 1 − t.
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Thus for polynomials with connected Julia set, the equalitys(t) = π(t) follows from
(5.1). The packing spectrum and the box-counting dimension spectrum of an arbitrary
measure satisfy the Legendre-type relation

s(t) = sup
α≤dimm

f (α) − t

α
, (t ≤ 0),

and so we obtain the first formula in (i).
Applying the inverse Legendre transform, we get

cof (α) = inf
t<0

[t + αs(t)],

where cof denotes theconvex envelopeof f . Sinces(t) is differentiable and strictly
convex on(tc, 0), we have

f (α) ≡ cof (α) on (αc, α0),

and to finish the proof, it remains to show that

f (α) ≥ cof (α) ≡ tc

(
1 − α

αmin

)
on (αmin, αc). (5.3)

To prove (5.3), we fixα ∈ (αmin, αc) and consider a neighborhoodU of a such that
the dynamicsF |U : U → FU is conjugate to the map

z 7→ F ′(a) : {|z| < 1} → {|z| < eχ∗}.
(Recall thatχ∗ = log |F ′(a)| andαmin = χ−1∗ logd.) For a small numberδ let N be the
maximal number of disjoint discsB ⊂ U of radiusδ and harmonic measure≥ δαc . We
have

N ≥
(

1

δ

)f (αc)−ε

with ε arbitrarily small (asδ → 0).
Let k be an integer number such that

k ≈ 1

χ∗
αc − α

α − αmin
log

1

δ
.

Applying (F |U)−k to the discsB, we findN new discs of radius

� δ(k) := e−χ∗nδ

and harmonic measure
≥ d−nδαc = δα

(k).

It follows that

f (α) ≥ f (αc) lim sup
δ→0

logδ

logδ(k)

= f (αc)
α − αmin

αc − αmin

= tc

(
1 − α

αmin

)
.
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5.4. Proof of (ii). Let us now prove the statement concerning the Hausdorff dimension
spectrum. Forε > 0, letUε denote theε-neighborhood of the exceptional pointa, mε the
restriction of the maximal measurem to J \ Uε, and letπε(t) andfε(α) be the packing
and the box dimension spectra ofmε. As we mentioned,πε(t) is the Legendre transform
of fε(α). From (5.2) it is easy to see that

πε(t) ≤ s̃(t).

Applying the inverse transform to this inequality, we have

cofε ≤ inf
t≤0

[t + αs̃(t)].

On the other hand, it is clear that the Hausdorff spectrumf̃ (α) satisfies the inequality

f̃ (α) ≤ sup
ε>0

fε(α),

and therefore we have

f̃ (α) ≤ inf
t≤0

[t + αs̃(t)].

To finish the proof, we need to verify the opposite inequality.
Fix α ∈ (α̃min, α0) and definet = t (α) by the equation

αs̃′(t) + 1 = 0.

We will show that

dim{z : α(z) ≥ α} ≥ αs̃(t) + t = t − s̃(t)

s̃′(t)
.

Let κ be a number satisfying the conditions of Lemma 4.3, and letµ ≡ µκ,t be the
corresponding equilibrium state. By (4.10), we have

dimµ = t − s̃(t)

s̃′(t)
.

On the other hand standard ergodic argument shows that forµ- a.e.z, we have

α(z) ≥ logd

χµ

= − 1

s̃′(t)
= α.

This completes the proof of Theorem D.
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