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Abstract: We study the pressure spectrunir) of the maximal measure for arbitrary
rational maps. We also consider its modified versiin) which is defined by means of

the variational principle with respect to non-atomic invariant measures. It is shown that
for negative values af, the modified spectrum has all major features of the hyperbolic
case (analyticity, the existence of a spectral gap for the corresponding transfer operator,
rigidity properties, etc). The spectruf(s) can be computed in terms @f(z). Their
Legendre transforms are the Hausdorff and the box-counting dimension spectra of the
maximal measure respectively. This work is closely related to a paper [32] by D. Ruelle.

1. Introduction and Results

This is the first of two papers in which we study the pressure specfumof the
maximal measure for rational maps, and also some other related parameters. In this part
we consider the cage< 0.

We begin by briefly introducing the main objects. Lietbe a rational map on the
Riemann sphere, of degrée> 2. We write F” for the n'" iterate of F, and F; for
the derivative ofF”. Distances and derivatives are measured in the spherical metric.
The Julia setof F is denoted by/r. Crit F is the set of all critical points £ zeros of
F’), and PerF is the set of periodic points. We refer to [6,24] for definitions and basic
facts of complex dynamics. See also [3,29,40] regarding thermodynamical formalism
of conformal dynamical systems.

1.1. Pressure functiond_et M be the set of allF-invariant probability measures on
Jr. Forp € M, we denote by, the entropy and by,, the Lyapunov exponent ¢f,
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Xu = [log|F’'| du. For each real number the correspondinfiee energy
of uis
Fi(u) :=hy —txu.
Thepressure functioifor spectrun P(t) = Pr(t) of F can be defined by means of the
so calledvariational principle

P(t) :== sup Fi(n),
neM

see [3,36]. A measure satisfyitfg (1) = P(¢) is called arequilibrium statefor F;.

A version P(t) = Pr(t) of the pressure spectrum is obtained by restricting the
class of admissible measures to the subclass- M which consists of all invariant
non-atomic measures: ~

P() = sup Fr(w).
nemM

The functionsP (r) and P(r) have several useful interpretations, in particular in terms

of partition functions or in terms of certain transfer operators. Some of these approaches
are mentioned below. Our main result concerning the behavior of the pressure functions
fort < O is the following. Denote

Xmax := SUA ¥, : a € PerF},

wherey, is the Lyapunov exponent of a periodic pojna:
1 , .
Xa := —l0g|F,(a)l, (n = period ofa).
n

Theorem A. For an arbitrary rational mapF, the pressure functioR#(¢) is real ana-
lytic on (—o0, 0), and 5
Pp(t) = max{Pp (1), — xmaxt }-

1.2. Transfer operatorsOur motivation for Theorem A comes from the classical theory
of Sinai, Ruelle, and Bowen (see [3,29-31, 34]) which applies td'tiypérbolic” ) case
where the dynamics isxpandingon the Julia set (i.¢/F’|| > 1 on Jr with respect
to a smooth conformal metric defined nelaf), and from a more recent paper [32] by
Ruelle.

Let L, denote the (Ruelle—Perron—Frobenitrahsfer operatomwhich acts in appro-
priate function spaces according to the formula

Lif@= Y. [fOIF»I™ (1.2)

yeF1(2)

(the preimages are counted with multiplicities). Let us recall some properties of the
hyperbolic case.

e The operatorg.; act in the spac€ (Jr) of continuous functions and(r) := e ® is
the spectral radius df;.

e A(?) is a simple eigenvalue df;. There is a strictly positive eigenfunctiofa, and
there is a unique probability measureon Jr which is an eigenvector of the adjoint
operator.
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e The probability measurg, := f; v, (we always assume (f;) := [ fidv; = 1) is
a unique equilibrium state for the free enetfy We also have the usual form of the
Perron—Frobenius theorem

ALY ¢ — vi(p) fr as n— oo, (Yo € C(JF)). 1.2)

e The operatok.; isquasicompadi the spacé{,, of Holder continuous (with exponent
a > 0) functions onJr. Quasicompactness means that the essential spectral radius
of L, : Hy — He is strictly smaller than the spectral radiug). Moreover, the
eigenvaluel(¢) has spectral multiplicity one, and there are no other eigenvalues of
the same modulus.

e Consequently, the convergence in (1.2) is exponentially fast for Holder continuous
functions, and the pressure functi®ri) is real analytic.

The same is true for a transfer operator of the form

Lf@=Lef@= Y. [fO) g (1.3)

yeF~1(z)

provided thatF' is expanding and theeight functiorg is Hélder continuous anstrictly
positive.

In [32], Ruelle extended some of the mentioned properties to transfer operators asso-
ciated with arbitrarynon-expanding rational maps assuming that the weight function
g > 0 belongs to the spad@V> (= functions for which the second derivatives are com-
plex measures) and satisfies a certain integrability condition at all critical poirfts of
(The weightsg = |F’|~!, corresponding to our operatoks, satisfy this condition for
everyt < 0.) He showed that in this case

L is quasicompact irB V, provided thatg satisfies the following additional condition:

In: A > SJUP &ns (1.4)
F

wherel is the spectral radius of. in C(Jr), andg, := ]'[’};(1) g o F/. Moreover,\ is
an eigenvalue of. and there is a non-negative eigenfunction.

To relate the spectral radiusof L to the pressure

P(logg) := sup [h, + u(logg)l,
neM

Ruelle referred to the following fact which is due to Przytycki [28]:

Let F be an arbitrary rational function and le¢ be a non-negative continuous
function onJr. If » denotes the spectral radius of the transfer operator (1.3) (ir),
then

logh = P(logg).

The quasicompactness of transfer operators in spaces of smooth functions is usually
derived from thesmoothness improving propedfthe operators 1 L. In the hyperbolic
case, this property follows from the expanding nature of the dynamics. To establish qua-
sicompactness in the non-hyperbolic case, one can try to find an appropriate functional
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space which relates to the smoothness “on the average” or in some other generalized
sense. Ruelle’s choice @&V, seems to have been motivated by the similarity with the
spaceBV (functions of bounded variation) which is widely used in one-dimensional
real dynamics.

In this paper we will use the Sobolev spad#s,. They work almost as well as the
spaceB V>, but the corresponding estimates are somewhat simpler. We state a version of
Ruelle’s theorem for Sobolev spaces in Sect. 2.7. Moreover, our approach gives a weaker
condition (cf. (2.6)) than the condition (1.4) in Ruelle’s theorem. This weaker condition
(unlike the latter) is always satisfied for the weiglgts= |F’|~" with r < 0, so the
operatord.; are always quasicompact in appropriate Sobolev spaces. On the other hand,
the well-known (see, e.g., [14,7,28,13]) condition (1.4) will be used for uniqueness of
the equilibrium states. We discuss the uniqueness problem in the next subsection.

1.3. Exceptional maps and “phase transitionThe functionPg (t) may or may not be

real analytic. We will see that the first possibility is more typical. We say thhas a
phase transitionf Pg(z) is notreal analytic onN—oo, 0). (See the papers [2,10,18,25]

for the “physical” interpretation of this phenomenon.) If this is the case, then we have a
phase transition point < 0 at which the first derivative has a jump discontinuity, and

Pr(1), 1. <t<0,
PF(I) — F( ) c=>1 =
— Xmax 1, —00 <t = I.
To characterize the phase transition case, we need the following definition. A rational
map F is said to beexceptionalf there is a finite, non-empty s&t such that

F1S \CritF =x. (1.5)

Any such¥ has at most four elements (at most two in the polynomial case, cf. [21]),
and so there is a maximal sBt= X satisfying (1.5). This set contains at least one
periodic orbit, and we define

X+« :=Mmax{x,: a € Xr N PerF}.

Theorem B. A rational mapF has a phase transition if and only A is exceptional
and

X« > SUp{xu: neM, u(Xr) =0} (1.6)

According to an unpublished result by F. Przytycki, the supremum of Lyapunov
exponents in (1.6) can be computed by considering only periodic cycles and so (1.6) is
equivalent to the condition

Xx > SUp{x,: a € PerF\ Xr}. 2.7)

On the other hand, it is easy to see that if the exponent of a periodic point can not be
approximated by the exponents of periodic cycles with arbitrarily large periods, then this
point has to be in the exceptional set. Thus a rational map has a phase transition if and
only if there is a finite number of periodic points such that their Lyapunov exponents are
larger than the exponents of all other periodic points by a positive constant.

The algebraic condition (1.5) means that the (local) geometryrofiear T is
different from the geometry of other parts of the Julia set. The meaning of (1.6) or (1.7)
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in the polynomial case is the following: the Julia set has a “tip” at some poibQf
and this tip is substantially more “pointed” than any tip/in\ Zr, see [21].

In terms of equilibrium distributions, one can describe the phase transition case as
follows. For eachr € (., 0) there is a unique equilibrium state which is supported by
the whole Julia set. At = ¢, we have another equilibrium state that lives on a periodic
cycle in ©r and persists for < z.. The original equilibrium state, however, extends
analytically to{r < 7.} but its free energyP () is now smaller than that of the new
(degenerate) state. Thus we can thinkPaf) as a “hidden” pressure spectrum which
can be obtained by the analytic continuatiorPgf). Note that this phenomenon differs
from the phase transition in the positive spectrum (e.g. for parabolic maps, see [9]), or
from the one described in [10].

Critically finite rational functions with parabolic orbifold&see, e.g., [8,24]) provide
important examples of exceptional maps. Recall thatis critically finite, i.e. if

#{U F" (Crit F)} < 0,

n>0
then theramification function
vva:@—>NU{oo}
can be defined as a minimal function satisfying the following condition:
v(Fx) isamultiple of v(x) deg F,  (Vx € C).

Theorbifold ((f:, vr) is parabolicif its Euler characteristic

1
2- % (1 155)
xeC

is zero, or, equivalently, if

v(Fx) = v(x) deg, F, (Vx € (@).
The latter implies that the s& = {x : v(x) = max v} satisfies (1.5), and therefore
maps with parabolic orbifolds are exceptional.

The Euler characteristic of an orbifo{@, vr) is zero if and only if the set of values
of v at the ramification points is one of the following:

(2’ 2’ 27 2)7 (3’ 3’ 3)’ (27 4’ 4)’ (27 3’ 6)’ (29 2’ m)? Or (w’ m)’

The latter two cases correspond to Chebychev’s polynomials and to thezitaps-
spectively. In the four former cases, the Julia set is the whole Riemann sphere. One can
show that

P@) = max{1l—t, —2r} logd

for Chebychev’s polynomials, and
3
P(t) = max{l— % —kt} logd with k=1, > 2,3

forthe typeq2, 2, 2, 2), (3,3, 3), (2,4, 4) and(2, 3, 6) respectively. These maps play
a special role in many questions of rational dynamics. The fact that is relevant to our
study is essentially due to Zdunik [38]:
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Theorem C. LetF be arational function. Theﬁ’;(t) = Ofor some/every point< Oif
and only if the functiorF is critically finite and the corresponding orbifold is parabolic.

Itis easy to give examples of exceptional maps other than critically finite. For instance,
the family

A
FA(Z)Z—? ()‘E(C’ )‘#0)1

consists of exceptional maps wily = {0, co}. See also polynomial examples in [21].
Note though that polynomials with®4 = 2, and rational functions with¥r = 4
must be critically finite of typeg2, 2, oco) and(2, 2, 2, 2) respectively.

1.4. Dimension spectrum of the maximal meas@err results concerning the pressure
functionsP (¢) and P (¢) can be interpreted in terms of thaultifractal analysis” of the
maximal measure. See the book [27] for background material.

Recall that for every rational map, there is a natural invariant measute

. 1
m = weak*- lim o Z 8y,

n—oo
YEFT(2)

whered is the degree of" andz is any complex number (with at most two exceptions).
The measure: is called themaximal measuref F. It was characterized in [4,11,19]
as a unique invariant probability measure with entropy equal td log

If F is a polynomial, themn is the harmonic measuref Jr evaluated at infinity.
Harmonic measure is a basic object of harmonic and complex analysis, and there is
extensive literature relating the properties of harmonic measure to the geometry of the
boundary.

To each point € J = Jg one can associate a range of local dimensiogs/en by

iming 109 BG@ ) _ < lim suloIog m(B(z,r))
r—0 log r =0 log r

IA

whereB(z, r) is the ball of radiug aboutz and lim inf and lim sup are called the upper

and lower pointwise dimensions of at z respectively. For many these pointwise

dimensions will be equal so that one can talk tdeal dimensionx(z). Typically, there

are large fluctuations in the value®fz) asz ranges over . The multifractal analysis is

a description of the fine-scale geometry of thesethose “components” are the subsets

{z : a(z) = a} with a homogeneous concentrationmofparameterized by < R.
TheHausdorff dimension spectruaf m is defined as the function

f(@) :=dim{a(z) = o},

where dim denotes the Hausdorff dimension. Note that the standard notation for the
Hausdorff spectrum ig'(«) but we reserve the latter for the definition based on box-
counting methods (which are supposed to be more relevant for numerical simulations).
Namely, we define thbox-dimension spectrurfi(e) of m as the limit (assuming its
existence)
F(@) = lim 29 NG @)
§—0 |log é|

)
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whereN (8, «) denotes the number of squar@f as-grid satisfyingn(Q) ~ §¢; see
Sect. 5 for an accurate definition.

To relate the dimension spectra to the pressure functions, we denote

_ PO s PO
s(t) = logd and 5(r) := logd’

It is well-known that if F is hyperbolic then 7 (-) = f(-) ands(-) = §(-), and these
functions are Legendre-type transformations of each other:

f@—t (“i - (1.8)

s(t) = sup
fla) = ir)f [t 4+ as(1)]. (1.9)

If, in addition, F is not conjugate ta*“, then the equation
as'(t) = -1

establishes a one-to-one correspondence between the paifitend the local dimen-
sionsa in some intervalomin, @max)- IN particular, the negativeaxis corresponds to
the interval(amin, o), where

ap = |s'(0) "t = dimm.

Here dimn denotes the Hausdorff dimension of the measuree. the maximal Haus-
dorff dimension of a Borel set supporting

For generalnon-hyperbolicational maps, we have the following result.

Theorem D. SupposeF is not a critically finite map with parabolic orbifold. Denote
ap := dimm. Then

(i) the functionsi(¢) on{¢t < 0}, and the functionf («) on {« < «p} form a Legendre
pair in the sense qf1.8)+1.9);

(i) the same is true fa¥(r), r <0,and f(), « < ag.

This theorem shows that the Hausdo~rff dimension spectrum always has hyperbolic-
type behavior: if we s@¥min := sup {« : f(ax) > —oo}, then

f(oz) is real analytic on the interval (&min, o).

On the other hand, the box-counting spectrum may have a discontinuity edtoad
derivative.
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1.5. The paper is organized as follows. In Sect. 2, we prove quasicompactness of the
transfer operators, in appropriate Sobolev spaces. In Sect. 3, we establish analyticity of
the pressure function assuming the existence of a non-atomic eigenmeasure. In Sect. 4,
we study the phase transition case and complete the proofs of Theorems A and B.
Theorem C is discussed in Subsect. 3.8. Finally, in Sect. 5, we study the dimension
spectrum of the maximal measure and prove Theorem D.

In what follows, we consider only the polynomial case. This allows to replace some
of the dynamical arguments with shorter proofs based on complex analysis, and also to
reduce the number of cases in the study of exceptional maps. There is no difficulty in
extending the proofs to general rational maps.

In the study of the pressure spectrum, the gase0 is considerably more difficult
than the case < 0. We have only partial results concerning the positive part of the
pressure spectrum for some special classes of polynomials. This will be the topic of the
second part [22] of our work.

For related recent results and further references see [1,5,7,12,15,17,28,33,37].

2. Transfer Operators in Sobolev Spaces

In this section we prove the quasicompactness of the operatdeee (1.1)) in appro-
priate Sobolev spaces. The proof is based on the standard technigue — the two-norm
inequality of lonescu-Tulcea and Marinescu [16]. To state the result, we introduce the
following notation.

Let F be a polynomial of degreé. Fix a large open disf containingJ/r such that

Flaca.
For technical reasons we always assume titorbits of critical points ofF do not
intersect the boundar§<2. We will consider the operatois in C(2) and in the Sobolev
spacesVy ,(2). We write p(L;, X) for the spectral radiusof L, in the corresponding
functional spaceX,
1
I H nyn
p o= lim L7k

The essential spectral radius denoted by

pesdLs, X) :=inf {p(L;, — K, X) : K compact operator iX}.

2.1.

Theorem. Letr < 0. Then for allp > 2 sufficiently close t@, the transfer operatof.,
is bounded iy ,(£2), and

pesdLi, W1 ,(R)) < p(Ls, Wi 5(R) = p(Ly, C(Q)).

The proof takes the rest of this section. We begin by recalling some properties of
W1,,(R2). See [39] for general reference.
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2.2. Sobolev spaced.he Sobolev spac#y ,(2), p > 1, is equipped with the norm
Ifllep = I1Flp + 1V fllp,

where|| - ||, is the L”-norm. We will need only the case > 2. It is well known that
for p > 2, the elements o, ,(£2) can be represented as continuous functions and the
embedding _

W1 ,(2) C C(R)

is a compact operator. Moreover, continudis ,-functions areHolder continuous
1-2
(x=yl<3) = (lf(x) —fmIssr ||Vf||LP(B(x,5))> : (2.1)
The embedding result will be used in the following form.

Lemma. There is a constar@ (depending o1f2 and onp > 2) such that for any > 0
there exists a finite rank operatd in W1 ,(2) such that

Kl =C,
If = Kfllo =&l fllp- (2.2)

Proof. Extendf to the whole plane with Sobolev norm|| £ |1, ,, and consider a grid of
equilateral triangled of sized « 1. DefineK f to be a continuous function satisfying

Kf= f atall vertices
"~ |linear in each triangle\.

Then for each\, we have the following estimates:
1 @) i
IVIKNI < 5lIlf — flcenteyiLxa) S 8 (/ IVfI”> ,
A*
whereA* is the union ofA with the adjacent triangles. It follows that

Jvksrs [ v,

Summing up over ali\’s, we obtain the first inequality. The second inequality follows
from (2.1) by the choice of. O

2.3.
Lemma. If p > 2and r < —2(1 — %), then L, W1 ,(2) C W1 ().

Proof. Let f € W1 ,(€2). Changing the variable in the integral we obtain
[vane = [ vGErrEEr < e,
Q Q

where
I ;:/ IVFIPIF|7'P+27P < const] f]|1, p,
Q
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(because-tp +2 — p > 0), and
11 :=/Q|f|” IV(F'|™)IPIF' 2P < IIfII&/QIV(IF’I*’)I" |F'|>7P.

To see that the latter integral is finite, we only need to consider neighborhoods of critical
points. Suppose is a zero ofF’ of orderk > 1. Then we have (as— c¢):

IVAF1™) < =77,
and

|v(|F/|—t)|p |F/|2—[7 < |Z|—[7(1+kt)+k(2—p).
Since the inequality < —(1+ %)(1 — %) implies

—pQ+kt)+k(2—p) > -2,

the integral convergesn

2.4. The function s(t)We define
s(1) :=logy p(L;, C(Q)).

We will see later (Remark 3.4) that(L,, C(S_Z)) = p(L;, JF), and therefore by Przy-
tycki's result (see Subsect. 1.2), we have

P@)

s(1) = @,

in agreement with notation in Introduction. Some preliminary properties(fare
stated in the following lemma.

Lemma. (i) For every pointg € 92, we have
L} 1(z0) = 1L} lloc,

and therefore

|F/ (y)|—l — ds([)l’l-H)(l‘l)
E n .
YEF™"(z0)

(i) The functiorns(z), ¢ < Ois strictly decreasing and satisfies the inequality

stkt) < ks(t)  (Vk > 1). (2.3)
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Proof. Sincer < 0, the functiorz — L 1(z) is subharmonic, and therefore we have
1L} lloo = 1L} 1llco = SUP L7
El9)
If z1, z2 € 92, then we can choose a simply connected domain that confgiasd
z2 but does not contain forward iterates of the critical points. All branchgsdfare
conformal on such a domain, and by the distortion theorem we have
|F,(yD| =< |F,(y2)| as n — oo,
wherey;, y2 denote the images @f, z> under the same branch. Itis easy to see that the
constants in this relation can be chosen independent of the peints. This completes

the proof of the first statement.
Similar argument and the area estimate show that

> IEmITPSL

yeF™"(z0)
By Holder’s inequality,
2=1 2=
a= > 1= Y 1K™ Yo EmIT?]
yeF " (z0) yeF~"(z0) yeF " (z0)

and we have(r) > 1 — £, ands’(0—) < —3, sos(?) is strictly decreasing. To prove
(2.3), we simply observe thdt!, 1 < (L7 1)*. O

2.5. Two-norm inequality.

Lemma. Letr andp be asinLemma2.3. Thenthere exists a positive numbet(p, t)
such that

IL? flla, < d"SO=OFO )£+ Call flloo, (f € Wip(R).  (2.4)

Proof. We have

p

flV(L?f)V’ 5/ DT AHWINEMITHY | dAR)
Q Q =
YEFT(2)
p
+/ D IFOHEWMIT VAR DI | dAR
YEFT"(2)
=1+

By the argument of the previous lemma, we have

11 < C I f15%.
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On the other hand, by Holder’s inequality, we have

P

I < / S wpor e[ X BE@PC ] da.

YEFT(2) YEFT(2)

wherep’ is the conjugate exponent (i.e. 1+ (p/)~1 = 1). Using the obvious relation
|F!(y)|~?dA(z) = dA(y), we obtain the estimate

rd
I < |IVfIL |IL"
< VAR | Eyanz)|
It remains to note that

» L oip/(Atr—2
Ln =d”p/s(17( +t p))+0(n)
p(Att—2) ’

P lloo

and that

1 , 2 1 ,
—s (p . <1+t — —)) < —/s(p 1) <s(t)
4 p p

by Lemma 2.4. O

2.6. Proof of Theorem. Fix numbers < 0 andp > 2 satisfying

2
t<—2(1——).
p

The transfer operatdt, is bounded if¥y ,(2) by Lemma 2.3. By Lemma 2.5, for any
giveng € (0, 1), we can find an intege¥ and a constan® such that

ILY fllap <qd™ I flLp + QI fllos (s :=s@)). (2.5)
By induction, we have
ILEY fllnp < d*¥Uflup + OMill flloss Gk =1,2,...),
where the sequend@/,} is determined by the equations
Mi=1, M1 =d" M+ LV oo
Sinced® is the spectral radius df; in C(ﬁ), we have
My < d*Ho0INs gk — oo,

It follows that
”Li{N”l p < d(k+0(k))NS’

and
p(Li, Wy p(R)) < d°.
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The opposite inequality is obvious:
1LY oo = IL{ oo S NLY L p S LY L, p-
Let us now prove the strict inequality for the essential spectral radius. The argument
is again based on the estimate (2.5), in which we chgasgch that
1
< —7
3(1+0)
wherecC is the constant in Lemma 2.2. We also take
1
. dNS
& < 3Q
in (2.2). By Lemma 2.2, there is a finite rank operakosatisfying

IKll1p =C, If = Kflloo =&l fll1p-

q

Thus we have

ILY(f —KP)llnp < qd™IIf —Kfllup+ Ol f — Kfllos

IA

< d¥q@+O) lIflup + Qe llflLp
2
< ést I £l p,

and therefore .

2\¥ ,
pesdLi, W1,p(£2)) < <§> 4 < d°D g

2.7. A version of Ruelle’s theorenThe main result of this section can be extended

to general transfer operators with Sobolev weight functions. Repeating the argument
of Lemma 2.3 and Lemma 2.5 with obvious simple changes, we obtain the following
statement.

Proposition. Let F be a rational function, and leg be a non- negative continuous
function on the Riemann sphere such thatanishes at the critical points of and

belongs to some Sobolev SDGWQ’q(@) with ¢ > 2. Then for all numbergp > 2
sufficiently close t@, the condition

P(p'log [g |F'|7 ) < p'Plogg), <p/ = pL_l) , (2.6)

implies the quasicompactness of the transfer operatoin Wl,p((f:).

Corollary. LetF andg be as above, and latdenote the spectral radius &, in C(JFr).
Suppose also that satisfies Ruelle’s conditiofi.4):

In: A'>supg,.
Jr

Then for all numberg > 2 sufficiently close t@, the operator , acts inWy_,(C) and
is quasicompact.
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Proof. Sinceg vanishes at the critical points @f, we can represent it as follows:
g=hI|FT,

wherert is some positive number aride Wy, for someg > 2. By the argument of
Lemma 2.3, the transfer operator actd¥n , provided that

4
2<p<gqg and p< ——
2—1

(we can assume < 2). It remains to show that (1.4) implies (2.6) for alkclose to 2.
If the condition (1.4) is true, then therejig < A such that

Ignlloo < 27

It follows that for all sufficiently smalk > 0, we have

£ T—¢

I gn 1Fal ™ Flloo = Il iy 80" lloo S A5

for somex, < A. Givenp close to 2, we set = p — 2. Then we have

D D 1O L A C) 2

yeF—1(z) o

— e Y (el e

YEF"(2) 0

5 )‘éﬂ/—l)")\nJro(n) ,S )L:I;/"

with someis < A. This implies (2.6). O

The last statement represents a version of Ruelle’s theorem mentioned in Sect. 1.2. As
we noted, the condition (1.6) is weaker than Ruelle’s condition (1.4). The latter condition
can fail even if (1.6) is valid.

3. Analyticity of the Pressure Function

In this section we verify the statements of Theorems A and B for non-exceptional poly-
nomials.

3.1

Theorem. If F is not exceptional, then the functiefy) is real analytic fors < 0.
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Again, the proof is rather standard. It is contained in the next four lemmas.<®&
andp > 2 satisfying the condition of Lemma 2.3. Denote
r=A0) =d*®.
In other words, _
A= p(Ls, C(2) = p(Li, W1, p(82)).

We show thatA(z) is an isolated, simple eigenvalue bf : Wy ,(Q2) — W1 ,(R).

Then the theorem follows by the usual application of the analytic perturbation theory.
The first lemma is taken from [32]. Lemma 3.3 is a version of the construction of
conformal measures due to Patterson [26] and Sullivan [35]. Lemma 3.5 is essentially
Lemma 6.1 of [21]. For the convenience of the reader, we outline the proofs.

3.2. 1 is an eigenvalue.

Lemma. We haveer(L,—X) # Jin Wy ,(2). The corresponding eigenspace contains
a non-negative eigenfunction.

Proof. SincepesdL;, W1,,(2)) < A, there are only finitely many eigenvaluessatis-
fying |1 ;| = A, and the corresponding spectral projections have finite ranks. Denote
gi =P 1 go:= 1—Zgj.
Applying L?, we have
Ligo+ Y LI gi=LJ1,
and since

LY gollo < IIL7 goll2,p = o(IL{ 1llec) @s n — oo,

at least one o¢;’s is not zero.
We also have
illL, < n"i n— 0o,
L' gjlli, =< n*i A" as

wherek; > 0 is the maximal integer number such that
pj = (L—2)) g; #0,
(i.e.k; is the size of the corresponding Jordan cell). ket max{k;}. Then
poo=nN LD = Y Agj+00") (3.1)
Jikj=k
in Wy, ,(€2) and also irC(S_Z). Since the functiong; are linearly independent, we have
[Pulloc < lIpnlle, =< A",
and we also havep, (zg) < A" for some fixedg € Q. Sincep, > 0, it follows that

N
ER ey

n
anlk

N
> i Pn(20) - 1
~ N A

00 n=1

By (3.1), this is possible only if one of the eigenvalugss positive. O
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3.3. Existence of eigenmeasurdset L} denote the adjoint of the operator: C(2) —
C(2). ThenL} acts in the spac#/(2) of finite complex measures according to the
following formula:

LY:v e p=|F|7 (voF).

The latter means that
|F'|" e L*(w).
in particulary (Crit F) = 0, and that

V(FA) =/ Valm
A

for every setA such thatF' is one-to-one om and satisfiest N (Crit F) = @. In the
special case = §,, we have

Lis;= Y |F I8 (3.2)

yeFl(z)
Lemma. There exists a probability measureon Jr such that

LYv=A()v.
Proof. Fix a pointz € Q2 and consider the sequence of positive measures

o = AL S =0T Y [F'O)T 8y
YEFT(2)
Clearly, L}, = X uy+1, and by the proof of Lemma 3.2, we have
il = 27" L71Gz) =< n*

for some integek > 0. Next we define

n
Vn 1= Z Mn,
i=0

and take some (weak} limit point v of the sequence, / ||v,||. Thenv is a probability
measure supported ok, and since

ILfvn = vl IA(ars —po)ll 0t 1

= = = -0
lvall lvnl nk+1 n ’

we haveLyv = Av. O

3.4. Remark.The last lemma implies in particular that

p(Li, C(JF)) = p(Ly, C(Q)).

Indeed, ) is an eigenvalue of the adjoint df, : C(Jrp) — C(JF), and therefore
p(Ly, C(Jp)) = . The opposite inequality is obvious:

ILF lcwr = ILY Hiewr = ILY Lle@)-
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3.5. The support of an eigenmeasure.

Lemma. Letv be a probability measure o¥ir satisfying

LYv=2A(t)v.
Then either
suppv = Jr,
or the set
3 = suppv

is finite and satisfies
F IS\ CritF =%,

in particular F is exceptional. In the latter case, we have (see Introduction for notation)
logA(t) = —t s = —t Xmax-
Proof. From the equation
w=|F|"voF (3.3)

we have
F7lz\CritF c x.
It follows that if #2 = oo, then we can find a point € ¥ such that
JFracx,

n>0

which implies
Y =Jr.

On the other hand, if 8 < oo, then by (3.3) we have

(xeX) = Wx)#0) = (F'(x)|#0 and v(Fx) #0)
= (x € F712\ Crit F).

To prove the last statement of the lemma, observe thiatiPerF, then clearly
logA(t) = —txp.

On the other hand, we have
logA(t) = —txq

for every periodic poink € . O



722 N. Makarov, S. Smirnov

3.6. Multiplicity of i.

Lemma. Suppose there exists a probability measugeich that
L*v=x(t)v and suppv = Jr.
Thenix = A(¢) is a simple eigenvalue of the operatbr in Wy ,(Q):
dimker(L, — 1) = 1.
Proof. We will need the following fact: iff € Wy ,(Q), then
Lif =if
fliz =0

Assuming (3.4), we can use the following standard argument to prove the lemma. It is
known that the existence of an eigenmeasure with suppJr implies dim ker(L, —

A) = 1in C(Jp), see for example Sect. 3.6 of [21]. By (3.4), the same is true for the
spaceWy, ,(2). Suppose now that

implies f =0. (3.4)

(Li—2°h=0
for someh € Wy ,(€2). We need to show that := (L; — A)h is trivial. By (3.4), itis
sufficient to provef|;. = 0. We have
(fiv) = (Lth,v) — (A, v)
= (h,Lv) — A (h,v) =0.
Since dim kerL, — A) = 1, we can assume (by Lemma 3.2) thfat- 0, and therefore,
we havef = 0 v-almost everywhere. The equalif§{;, = 0 now follows from the

assumption supp = Jr.
It remains to prove (3.4). Fix € Q. We have

If@I =" L} f(2)]
Y ARG IO

YEF™"(2)

SATY IE )T disty, JR)°,
YEFT(2)

IA

wherea < —t is a fixed positive number such thidh, ,(22) C H,, see (2.1). Observe
now that

dist(y, Jr) < 1F, (0% (3.5)

Indeed, ifz is in the basin of attraction teo, andG(-) denotes the Green function with
pole at infinity, then (3.5) follows from the estimates
I[F, (DI IVG ()| =d" |[VG(y)l
d"G(y)
~ dist(y, Jr)
G(2)
dist(y, Jr) "

(3.6)
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On the other hand, if belongs to some bounded componentqaf/g, then the iterates
{F™} are uniformly bounded in the dis@&(y, dist(y, Jr)) (the discs lie in the filled-in
Julia set), and so (3.5) follows from the Schwarz lemma.

We can now finish the proof of (3.4). From (3.6) and (3.5), we have

F@OISA™ > IFmI ™

YEFT(2)

< d—50n gstteln go) . g as pn — oo,
because () is strictly decreasing.o

We conclude this section with several remarks concerning some other “hyperbolic”
features ohon-exceptionapolynomials.

3.7. Remarks (i) Perron-Frobenius TheorenThe probability eigenmeasute= v; in
Lemma 3.3 is unique, and if, € Wy ,(2) denotes the non-negative eigenfunction of
L, satisfying
vi(f) =1,
then the rank one operator
P=(v)fi

is the spectral projection df; : W1 ,(Q2) — Wy ,(2) corresponding to the isolated
eigenvalue. = A(r). One can show that
(I —=P)L;, W1, p(2)) < A, (3.7)
which implies that
ALY — P

with exponential rate of convergence in the uniform operator topology.
To prove (3.7), we first observe that the §6t = 0} is finite. Assume that

Ltf = if
for some numbek of modulusx and some functiOIf € W1, ,(2) with normalization
v:(If]) = 1. Then we have
1fl=
(use, e.g., the argument of [21], p.142). Define the functienn(z)
forz € Jp \ {f; = O} by the equation

A

f=nf

From the identity
A

L = -
(Lt f1)(2) )

(Lt nf) (),

we have

A
3 (1— A”(y)) FWIF' O™ =0,
An(z)

yeF~1z
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and therefore

n(Fy) _

nGy) A
except for a finite set of’s. Taking two periodic points with relatively prime periods
and with orbits avoiding this finite set, we have= 1. 0O

(ii) Equilibrium states.Let u, denote the probability measuyey;. Standard argument
shows tha, is an ergodicF-invariant measure. We claim thatis a unique equilibrium
state:

P(t) = hy — txy, (3.8)

where we writeh; andy; for the entropy and the exponent of.
The equality (3.8) follows from the Rokhlin-type formula

l’lt =/|Og J[ d//L[, (39)

where

=0l e e L
£

is theJacobianof u,. (We also use the obvious fact that Ifigs integrable with respect
to u,.) The formula (3.9) follows from the well-known estimate

ht 2f|ogjt d[/Lt

and from the variational principle.
To prove the uniqueness result, it is sufficient to show thaisfan equilibrium state,
then
nw(W) = u; () forall weC™.

The latter is an immediate consequence (cf. [28]) of the differentiability at O of the
pressure function
p(s) := P(—tlog|F'| +s¥), (s €R),

see the next remark and also Subsect. 2.7.

(iii) Derivatives of the pressure functiofor non-exceptional polynomials, one can
establish the same formulas for the derivativesPdf) as in the hyperbolic case (see
[29-31]). Namely, for the first derivative we have

Pt)=—x, (<0,

and also

P/(O_) = —Xm;

/ H 1 /
P'(—00) =supy, = lim —log|lF,llco-

M n—-oon
(Recall thatn denotes the measure of maximal entropy.) The first statement follows, for
example, from the variational principle which also implies the inequality

P/(O_) Z = Xm-
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To prove that
P,(O_) < —Xm>

we denote
Pe(1) = P(—tlog(|F'| + ¢)),

and consider the corresponding equilibrium sjate:

Pe(t)zha,t_t/|09(|F/|+8) dﬂs,z

(he, is the entropy of the equilibrium state). It follows that
hey — P.(0)=logd as r— 0,
and therefore

weak*-lim u.; =m
t—0

by the upper semicontinuity of the entropy and the uniqueness of the maximal measure.
SinceP.(t) < P(t), we have

P'(0—) > lim supw
t—0— -

. hey — Pe(t
> lim Supg’t—g()
t—0— —

= —liminf /Iog(|F/| +&) dte,
t—0—
= —/Iog(|F/| +e)dm — x, as e — 0.

To state the formula for the second derivative of the pressure function, we denote
A :=log|F'| andsS,, := Z?;é Ao F/. Fort < 0, consider theasymptotic variancet2
of the proces$A o F"},=0in L?(i,):

. 1
O’t2 = lim _/[Sn _Nt(Sn)]Z duy

n—>00 n

00
=/A2duz+22/A(A0F")sz-
n=1

The asymptotic variance is finite because of the exponential decay of the correlations
J A(Ao F")dpu, (use the fact that,(Af;) € W1 ,(€2) and apply Perron-Frobenius). As
in the hyperbolic case, we have

P'(1) = o2
Indeed, standard computation based on the differentiation of the identity
L:fr =X71)fr

(with normalizationv, ( f;) = 1 for the eigenfunctiong;) shows that

P"(t) = n Yy (8?) — wi(S)?1 — (018, fir, v1),
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(the dot denotes the derivative with respect)tand so we need to show that the last
term tends to zero as— oo. Since

(Ao FIyfi,v) = a(t) (AL i, w),

we have
(S, frove) = (AMy, fo, vy,
where
n—1 i
;o 1 L{ . Wip .
My fi = ;;M[)‘i fi — {fiv)fi =0.

(iv) P(r) = P(¢) for non-exceptional map&-his follows from the fact that the equilib-
rium statesu, are non-atomic. The latter can be proved as follows. The analyticity of
the pressure function implies that

P(t) > P'(—o0)t, (Yt <O0).
On the other hand, we have

IP(=00)] = lim > log||F}c.

n—-oo n

Hence, for every < 0, we have

IF Y = o(M(n)") as n — oo.
Suppose now that; (x) # 0. Sincey, is an eigenmeasure, we have

|Fl ™ (v 0 F") = A(6)" vy,

t(l .«f) - ( ) vl (“C) > OO
v | F/(x)|7t N

3.8. Rigidity. It follows from Remark (iii) that ifP” () = 0 for some < 0, thens; =0
and therefore the function ldg”’| is homologous to a constant Irf (i, ), i.e. for some
u € L%(u;) we have

log|F'| = u — u o F + const (3.10)

According to Zdunik [38], logF’| can be homologous to a constantlif(m), where

m is the maximal measure, if and only i is critically finite and the corresponding
orbifold is parabolic. One can modify the argument in [38] to extend her result to our
equilibrium stategt;.

Theorem. Let F be a nonexceptional rational function. Then

P’(t) >0 forall ¢t <O.
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Proof. SupposeP’(t) = 0 for somer < 0 and letu = u, denote the corresponding
equilibrium state. We claim that (3.10) implies

F~Y(cv)ccvuc, (3.11)

where
C:=JNCritF and CV:={F"'c: n>1, ceC}.

It then follows that the set CV is finite, in which case the statement is known.
To prove (3.11), we need the following lemma. Let us choose a s8bset/ with
uS > 1/2 such that is bounded ors$.

Lemma. Letp € J \ CV. Then there is a disB aboutp and a subseE c B of full
u-measure inB such that the following is true:

for every pair of pointsx, y € E, thereis an integet > 0and a componen® of F~"B
such that

(i) the mapF" : P — B isunivalent, and
(i) x,ye F'"(SNW).

Thislemmaimmediately implies (3.11). First we observettiabounded omm%B.

Indeed, ifx = F"a andy = F"b for somea, b € S N W, then by (3.10) we have
w) — u () = log 2 ) — uia),
|F, ()]

and the first term to the right is bounded by the distortion theorem. Next we takgV,
y € F~1x and suppose that ¢ C U CV. It follows thatu is u-bounded in some
neighborhood of. Applying (3.10), we see thatis u-bounded in some neighborhood
of x. On the other hand, there is a critical pain¢ C\ CV such thatc = F¥¢ for some
k > 1. Thenu is u-bounded near, but the equation

log|F{| = u o F¥ —u + const

shows thai: cannot beu-bounded ak. This proves (3.11) and hence the theorem.
We now turn to the proof of the lemma.

ansider the natural extensiad, F, i) of the dynamical systertv, F, i). Recall
that F' is the left shift in the space of sequences

J = {x=(..,x-1,x0,%1,...) € JZ . X1 = Fxi}.

Letm : J — J denote the projection onto the k-th coordinate. We will writéor mg.
The ergodic measuris defined as a uniquB-invariant measure satisfying = 7. i.

For a given discB andn > 0, we denote by/_,, the union of the components of
F~" B on which F" is univalent. Consider the set

O:={feJ: xpoe B, xx € Uy forall k <O0}.

We can introduce a direct product structur&lnn the following way. Letx be the set
of all infinite sequences of the inverse branches participating in the construction of

=0/~
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where, by definitiony ~ y if the pointsx; andy; belong to the same componentlaf
forallk < 0.1f T : O — X denotes the corresponding projection, then the map

nx1t: 0O — BxX

is a bijection.

Consider now the restriction gfto the setD as a measure abix . Let p denote the
projection of this measure © and{u, : o € X} the corresponding family (“canonical
system”) of conditional measures 8nThe proof of the lemma is based on the following
two facts:

(*) if the radius ofB is sifficiently small, thef(O) > 0;
(**) the restriction ofu to B is absolutely continuous with respectiig for p-a.e.o.

Assuming these facts, we can now finish the proof of the lemma. Giecels) > %
applying the ergodic theorem we can find a suseft© of full measurei(O\ €) = 0,
such that

x,yeé) = @Fk<0 x€8, yp€d).

Denote
E;, =n(EN t_lo).

Then we have
0= A0\ E) = /mB \ E,) dp(o),

and therefore
us(B\ E;)=0 forp-aeo.

By (**), we have
wE; =uB  forp-a.e.o,

and so almost every sé&}, satisfies the condition of the lemma.
It remains to verify (*) and (**).

Proof of (*). Recall thatu = fv, wheref = f; andv = v, are the corresponding
eigenfunction and eigenmeasure respectively. SingeCV, we havef (p) # 0. We
will also use the estimate

| Fylld S A, A< d:=240), (3.12)
which is true, as was already mentioned, for all non-exceptional maps. £ob, let
C_,, be the union of the componen®sof F~" B such that

PNC # ¢, but FP C Up_,.

It is clear that the number of such componentsf C_,, as well as the degrees of the
mapsF" : P — B are bounded by a constant depending only on the degrée of
Using the fact that is an eigenmeasure and thatp) # 0, it follows that if the radius
of B is small enough, then

F' < uB
uCoy < const”f||°°” o
f(p)an

’
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with a constant depending only on the degred'of-or an arbitraryV, we can takeB
so small that

C_1,...,C_ny =0,
and by (3.12), we can choogésuch that
Z nC_, = Z uC_, < uB.
n>0 n>N

Since
1B \O C U {x e 7 IB: x_, € C_,},

n>0
we have
1O > uB — Z nC_, > 0.0

Proof of (**). Fix n € (0, 1), and letB’ denote the disg B. We will show that if
aOnn i) >0, (3.13)
then
(ne>0, eCcB') = (use>0 for p-ae. o).

By (*), the inequality (3.13) holds for alj close to 1, and therefore (**) follows.o

We will use the symbol#%, k > 0, to denote any component &t ;. The statement
follows from the estimate

AIONmgteNn P > constii [0 Nrg B N R, (3.14)
with a constant independent bfand P;.. Since

Un:an\(’) as n — oo,
(Pn)

we have

ZONmgteNa P = lm Y G[ONT Pl

n — o

= lim Z w(P, N F"e), (3.15)

where the sums are taken over all componghtsuch thatF”—*pP, = P,. We can
represent the right-hand side of (3.14) in a similar way, and so to prove (3.14) we only
need to compare the-measures of the sefy, N F "¢ andP, N F~"B’.

Assume first that the eigenfunctiof does not vanish od. Then it is enough to
notice that the-measures of the above sets are comparable. The latter is a consequence
of the distortion theorem and of the fact thais an eigenmeasure:

w(P,NF"e) A" [ |FiI'd(vo F")

v(P, NF~"B') A" [p |Fild(vo F")’
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The eigenfunctiory may have zeros in general. L&tdenote the sdtf = 0}. Since
F in non-exceptional, there is an integer> 0 such that

§:=dist(Z, F~"Z) > 0.

We can also assume that the disis so small that the diameters of all s€t$ \F " B’ are
« 8. Returning to the computation (3.15), we modify some of the teu(\8, N F~"¢)
as follows. If the setP, N F~"e contains a point at whiclf is very small, then we
replace the coresponding term with the sum

Z U(Pppm N F""e)

taken over all component®,,, such thatF” P,,, = P,. In the new expression, the
eigenfunctionf is bounded away from zero by a constant independent afid so the
previous argument appliest

4. Hidden Spectrum

In this section we study the phase transition case, and complete the proof of Theorems
A and B.

Let F be an exceptional polynomial. We assume thids not conjugate to a Cheby-
chev’s polynomial. From the discussion in Sect. 1.3, it follows that there exists a fixed
pointa € Jg, F(a) = a, such that

Fla \ {a} C Crit F.
Consider the function
H(z) :=|z—al.

We have

HoF (e
_ (c)+1
= —C s
T (@) | | |z — ¢
ceCrit FNF~1q

wherek(c) denotes the multiplicity of a critical poiat We also define the numbér= 0
from the equation

=

= min{k(c) : ¢ € F~ta N Crit F}.

11—«

4.1. The functions, (¢). The idea is to replace the weightg'|~ in the transfer oper-
ators (1.1) with “homologous” weights of the form

G F,_I<HOF>KT
wr = :

If0 <k <k, then the weight&;,. ; are continuous iR and the corresponding transfer
operators

Leif@= Y. Ga(Wf)

yeF~1(2)
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are bounded irC ($2). The special property of the case= « is that every point ir2
has at least one preimage that is not a zer6 f. This means that we are no longer in
the “exceptional” situation — we have

L, v#0 4.1)
for every probability measuneon J. Unfortunately, the operators; ; are not bounded
in any spacé¥y ,(£2), and to apply the technique of Sects. 2 and 3 we have td.yse
with ¥ < . (The operators witk < & do not satisfy (4.1) but they are bounded in

appropriate Sobolev spaces.) B
Let 1, (¢) denote the spectral radius bf ; in C(S2). Define

s (1) :==10gy A (2).
We will need the following properties of the functiong).
() Ift <0and0 <k < «’ < i, thensy(t) < s,(1).
Proof. Denote
h(z) = |z —a| 7"«
and observe that
1
Ly, 1= 7 Ly, h
Let z, be the points ird2 such that
||LZ/J||oo = LZ/); 1(zn).
The existence of such points follows from the subharmonicity of the function
2> L, 1(2).
Then we have
1L Moo =< Lig, h(zn) < 1LY, hlloo
which implies the statementno
(i) If there is a probability measure satisfying
Ly, v="A(t)v

S ML lloos

~ K,

and ifv #£ §,, then
s (1) =s.(t) forall &' > «.

Proof. We have
1L Moo Z 1R Ly, Hioo = 1Ly, hlloo
2 AL, hyv) = AL (b, v)
= A (D),
which implies

s (1) = 8, (0).
O

(iif) Foreveryk € [0, k], the functions, (-) is strictly decreasing.

Proof. Itis clear thatv, # §, if ¢ is sufficiently close to 0. By the previous statement,
we haves, (1) = s(¢) for sucht’s, and therefore the functian (¢) is strictly decreasing
in a neighborhood of 0. It remains to note thais convex (use Holder’s inequality and
the definition ofs,). O
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4.2.
Lemma. §(r) > —r(1— &) log, |F'(a)|.

Proof. DenoteM := F’(a). The statement is obviousdfis a neutral fixed point, so we
assume that is repelling:|M| > 1. For simplicity, we writeG and L instead ofG; ;
andL; , respectively. Observe that

Ga) = [M|"49.
By (4.1), we can consider the operator
v |[L*v||"t L*v

on the set of probability measures dp. By Schauder’s theorem, this operator has a
fixed pointv, and we have

L*v =v 4.2)
for somex > 0. Itis clear that log A < 5(¢), and it remains to show that
G(a) < A. (4.3)

Sincea is a repelling point ofF, there is a conformal map from the unit disc onto
some neighborhood ef such that

9(Mz) = F(p(2)),  (z| < M™Y.
If |z| < M|~ then we have
lo"(M"z)|

=M
'@l

|Fl(p(2)| = IM]|"
and

Gulp(2) = IF,I™ <|q0(M"z>—a|>m
" " l9(2) —al

M7 (M = Ga)".
To prove (4.3), we consider the sequence of pairwise disjoint domains
Up = ¢ (M7 < jz] < [M|7H), (0> 0).
By construction, F" is injective onU,, F"(U,) = Uy, and
Gn(2) < G(@)" for z e U,.

X

Then by (4.2), we have

v(U,) = A" / Gn(2)dv(z)
U

= A" G@)" v(U).

Itis easy to see that supp= Jr. (This follows from (4.1), see the proof of Lemma 3.5.)
Hencev(U) > 0, and since the domairig, are disjoint, we have

3 (G;@)" <Y v < 1,

n>0 n>0

which implies (4.3). O
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4.3. The operatoré . ; with « < k. The argument of Lemma 2.3 shows that ik 0

and 0< « < k, thenL,, is bounded inWy ,(2) with p > 2 sufficiently close to 2.

We can now apply the methods of Sects. 2 and 3 to establish the following result. The
condition (4.4) below simply means that a measusatisfying

Liv="2x()v
cannot be equal t§,, and therefore
suppv = Jp
by the proof of Lemma 3.5. Indeed, we have
Li 80 = G 1(a) 8a,

and if we assume (4.4), then

Ger(@ = [F' (@] < ).
Lemma. LetO < k < k, andz < 0. Suppose that

si(t) > —t(L—«) log, |F'(a)|. (4.4)

Then the function, (-) is real analytic atz, and there is a non-atomic equilibrium state
¢ for the functionog G ;.

Proof. There are only minor changes in the reasoning of the previous sections. We again
write G andL for G, ; andL, ;.

(i) We first establish a two-norm inequality similar to (2.4). Chopse 2 such that.
acts inWy ,(€2). We claim that for some > 0,

IL" flla,, <d"C<O=OF0 )£l + Cull flloo s (f € Wi p(R2)). (4.5)

To prove (4.5), we repeat the computation of Lemma 2.5 to obtain
A~ P
/QIV(L”f)I” S ULV AL, + Call flig, (4.6)

whereL denotes the transfer operator

Lf@= Y, f0GWy
yeF~1z
with the weight function

A

’ g_ /
G =GP |F|GVP = ¢

=>
~

p’ is the conjugate exponent, and

N , 2 . Kt
t=p|t+1——), kKi=——.
p r+1-2
P
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Sincek > « andf > p't, the properties (i) and (jii) of Subsect. 4.1 imply that

1 R 1 ,

; se (@) < F sc(p't) < s (2),
and therefore )

”in”? — JrGc®=e)toln)
Together with (4.6), the latter implies (4.5).
(i) The quasicompactness 6f,
pesdL, W1,,(R)) < p(L, W1,,(R)) = p(L, C(Q)) = A (1),

is a consequence of the two-norm inequality (4.5). It also followsith&b is an eigen-
value ofL : W ,(Q2) — W1 ,(Q) and that there is a probability measugg satisfying

L*VK,I = A (1) Vi t-
The proofs are identical to those in Sects. 2 and 3. As we mentioned, from (4.4) we have
SUpp ve,r = Jr. 4.7

This in turn implies that, (¢) is a simple isolated eigenvalue of
L : Wy ,(Q) — Wy ,(R2), and so the spectrus (-) is analytic at. The proof is exactly
the same as in Lemma 3.6 except that the fact

(f € Wip(2), Lf=x@ f flir=0) = (f=0 (4.8)

requires a slightly different argument. Kixe @ \ Jr. Then we have

@] = M L" f(2)]

SO Y Gyl dist(y, Jp)P,
YEFT(2)

for some positive numbef < —t. Using the inequality (3.5), we have

F@I S A0 Y Ga) IF,I 7P

YEFT(2)
= "OH@™ Y FmITTP H) T

YEFT(2)

= 0 g=scOn gse(On

with ,

f:=t+,3>t, andk=m>lﬂ
By (i) and (iii) of Subsect. 4.1, we have

S/?(i) < 5 (1),

which completes the proof of (4.8).
(iii) The construction of an equilibrium stateand the proof that has no atoms is the
same as in Subsect. 3.1
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4.4. Corollary. P(t) = §(t) logd.
Proof. Fix r < 0. By property (i) of Subsect. 4.1 and by Lemma 4.2, we have
$c(t) = 5(t) > —1(1— k) log, |F'(a)l,
and therefore
sc(t) > —t(1—«)log, |F'(a)|
for some parametar € (0, k) which we now consider fixed. As we mentioned, the last

inequality implies that there exists an eigenmeasyesatisfying supp, ; = Jr. By
property (ii), it follows that

S(t) = 5,(1).
Applying the variational principle (see Subsect. 1.2), we have
s (1) logd = P(logGy.r).
We also have the equality
P(t) = P(Iog Gy,
which follows from the existence of a non-atomic equilibrium state for the function

log G, and from the fact that if. is a probability measure af- such thaf(a) = 0,
then

p(0gGi,) = —t xp. (4.9)
To prove (4.9), we observe that if

HoF

1
i & L™(w),

log

then both sides in (4.9) areoco, otherwise we have

HoF
I =0.
M(og T ) 0]

Indeed, fore € (0, 1) denoteH, := H + ¢. Then

H.oF
H,

H o
< (log

F
log + const

onJg, and

F
—> Iog% as ¢e—~0. O
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4.5. Proof of Theorems A and Bf F is not exceptional, the®r (¢) is real analytic on

the negative axis, and therefoPe (t) > — ymax for all r < 0. The equalityPr = Pr
was explained in Subsect. 3.7.

Suppose nhow thaft is an exceptional map. Clearly, we always have
Pp(t) = max {Pr(t), —xmaxt}-
If Pr(r) > —x«t for somer < 0, then we have®r(r) = Pr(r) by the property (ii) and

Lemma 3.5. This completes the proof of Theorem A.
A phase transition occurs if and only if

Xs > ﬁ}(—oo).

On the other hand, it is clear that

Pp(—00) =sup{x.: neM, u(Sp) =0},
and Theorem B follows.
4.6. Remark.One can extend all results of Sects. 3.7 and 3.8 to exceptional polynomials.
In particular, the argument of Sect. 3.8 proves TheoremFC(z) > O forallt < O
unlessF is critically finite with parabolic orbifold. In the next section we will also use
the following formula involvingP’ (¢).

Fort < 0, letk be a number satisfying the conditions of Lemma 4.3, and ket i, ;
be the corresponding equilibrium state. Then applying (4.9), we have

ﬁ/(t) = —Xu-
Since
P(t) = hy — txu,
we get
h P
dimp="2 _,_ PO (4.10)
Xu P'(1)

(The first equality in (4.10) follows from Mafié’s formula [23].)

5. Dimension Spectrum

In this section we study the dimension properties of the maximal measarel prove
Theorem D.
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5.1. Definitions and resultsWe define thébox-counting dimension spectrufife) of
m as follows:

s

o log N (§; «,
f(@) ;= lim lim supM
=0 50 |logs|
whereN (; «, n) is the maximal number of disjoint disd of radiuss centered atf g
and satisfying
84t <mB < %77,

TheHausdorff dimension spectrugfi«) is defined be the equation
f(@) :=dim{z : a(z) exists and= «},

wherex (z) is the pointwise dimension @t atz, and dim denotes Hausdorff dimension

if the set is uncountable andoo otherwise. Recall the statement of Theorem D.det
denote the Hausdorff dimension of the maximal measure. By (iii) of Subsect. 3.7, we
haveag = |s'(0—)| 1.

Claim. (i) The functions(¢) on {¢r < 0}, and the functionf («) on {« < g} form a
Legendre pair:
s(t) = sup M (t=<0),
o

a=cao

fly=inf [r+as®)], (¢ =e0).
1<

(i) The function$(¢), ¢ <0, and f(«), « < agform a Legendre pair.

Using Theorem D, we can restate our results on the pressure function in terms of

the spectraf (o) and f (). Let us assume thaft is not critically finite with parabolic
orbifold. Denote

. Py— l
= (ool
If s(z) has a phase transition point, then we also define the parameters
. 1
amin :\= ——————
M (—o0)]
and
1 1
Q¢

sl 18
We always have
0 < omin < ap,

and in the phase transition case we have
0< Omin < &mm < O, < Q.
Finally, note thatf (o) = f (xg) = ag becauseg = dimm.

Corollary 1. If F is not critically finite with parabolic orbifold, therf («) is a real ana-
lytic, strictly increasing and strictly convex ( > 0) function on the interval@min, @o),
and f (@) = —oo for a < amin.
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Proof. Define

a(t) =5 @)
Sinces” > 0, we have
g//(t)
(§(1))?
and sax(¢) is strictly increasing on the intervél-oco, 0), and the inverse function(«)
is real analytic onamin, o). It follows that fora € (amin, @o), the function

fl@) = inf [t +a5(®)]
<0

o () =

> 0,

t(a) + as(t(a))
has the stated properties. It is also clear gﬁémt) =-—o0oifa <amin. O

Corollary 2. If F is not exceptional (more generally, if there is no phase transition),
then

r=r
In the phase transition casg («) is C1 but notC2 on (amin, o). More precisely,
fl@), a<a<a,
linear, amin <o < .,

0, @ = Umin,

fla) =
—00, o < Omin-
Proof. Reasoning as above, we have
fl@)=t+as@), (a <o =ao),
wherea andr are related by the equatien’(r) = —1. We also have

f(Ol) =1l (1 -
It follows that £’ is continuous ad.. Indeed,

1
—[f(ae) — 1]
Qc

1
(02 Gmin

o

) on [amin, ctc].

Omin

f/(ac+)

The rest of the proof is obviouso

We will prove the theorem only fggolynomialswith connectedulia sets. The proof
is considerably shorter in this special case because we can express thesgpeatrd
5(t) in terms of the Riemann map

p: A= {z] > 1} - A(c0), (p(o0) = 00),

where A(oo) is the basin of attraction to infinity, and apply some general facts of the
conformal mapping theory. (For arbitrary rational maps, one should replace certain
parts of the argument with corresponding dynamical considerations.) Recall that for
connected polynomial Julia sets,is the image of the normalized Lebesgue measure
under the boundary correspondence. In what follows, we assume that the polyRomial
is exceptional (but not Chebychev’s) wikty = {a}.
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5.2.

Lemma. For eachr < 0, we have

dns(l) = dn(l*l)/ |¢/|l, (51)
|z|=1+d—"

50 g /| e —a " |e) (5.2)
Z|=14d ™"

Proof. Fix some point inA(co) and consider the preimagés} underF™.
The Riemann magp conjugates” with the dynamicsl” : z — z? on A . Differentiating
the identityF" o 9 = ¢ o T", we get
|Ey () =< d"l¢' (0~ I
The points{¢ 1y} are equidistributed on a circle of radiyssatisfying
rm—1=xd™".
Applying the distortion theorem, we have
Ll = a0 [
|z|=rn

and

1L oo < D IFn)I ™y —al ™
S

an(l_t)/l |(p_a|—lzl‘ |§0/|t.|:|
Z|=rp

5.3. Proof of (i). The key observation is thatr) coincides with thgacking spectrum
of the maximal measure:

. log L(e;t)
w(t) = limsup————=
© Hop |loge]

’

where
L(s:t) :=sup Y diam(B)’
B BeB
the supremum being taken over all collectidghsf disjoint discsB satisfying
mB = ¢. Itis a general fact (see [20]) that the harmonic measure packing spectrum of
an arbitrary simply connected domain is related to the integral means spectrum

(1) = lim sup i=r 12 OF 142
=P [log(r — 1)

of the corresponding conformal map by the equation

w(t) =B@)+1—rt.
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Thus for polynomials with connected Julia set, the equality = 7 () follows from
(5.1). The packing spectrum and the box-counting dimension spectrum of an arbitrary
measure satisfy the Legendre-type relation

s = sup L9 <o),

a<dimm (04

and so we obtain the first formula in (i).
Applying the inverse Legendre transform, we get

Co f(a) = tlr<n; [t +as@®)],

where cof denotes the&onvex envelopef f. Sinces(¢) is differentiable and strictly
convex on(z., 0), we have

fl@y=cof(a) on (o, ap),

and to finish the proof, it remains to show that

f@) =cof(a) =t (1— a ) on  (otmin, o). (5.3)

Omin

To prove (5.3), we fixe € (amin, o) and consider a neighborhodtof « such that
the dynamicsF|y : U — FU is conjugate to the map

z> Fl(a) : {lz| <1} — {|z] < e**}.

(Recall thaty, = log|F’(a)| andamin = X*—l logd.) For a small numbet let N be the
maximal number of disjoint discB C U of radiusé and harmonic measuee §%. We

have
1 flae)—e
N=>|-
()

with ¢ arbitrarily small (as$§ — 0).
Let k be an integer number such that

Applying (F|y)~* to the discsB, we find N new discs of radius
=8y == e g

and harmonic measure
> d 8% = 8‘(’k).

It follows that

Fle) = flao) limsup—292
o o
- s—0 1008w

& — Umin
= flae) ———
Q¢ — Omin

=t (1— ¢ >
Gmin
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5.4. Proof of (ii). Let us now prove the statement concerning the Hausdorff dimension
spectrum. Fot > 0, letU, denote the-neighborhood of the exceptional point» . the
restriction of the maximal measureto J \ Ug, and letr, (z) and f (@) be the packing

and the box dimension spectramef. As we mentionedy, (¢) is the Legendre transform

of fe(a). From (5.2) it is easy to see that

(1) < 5(1).
Applying the inverse transform to this inequality, we have

cofe < im:) [t +as()].
1<

On the other hand, it is clear that the Hausdorff spectfim) satisfies the inequality

fl@) < supfe(a),

e>0

and therefore we have

fla) < im; [t + as()].
t<

To finish the proof, we need to verify the opposite inequality.
FiX « € (@min, o) and defing = ¢ («) by the equation

as’(t) +1=0.
We will show that

S()
5'(1)

dim{z:a(z) > a} > as@t)+t=1t—

Let « be a number satisfying the conditions of Lemma 4.3, ang:let p,, be the
corresponding equilibrium state. By (4.10), we have

0]
5'(1)

dimpu =1 —

On the other hand standard ergodic argument shows thatfare.z, we have

logd 1

a(z) = T =«

This completes the proof of Theorem D.
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