Supplementary Information for Sum frequency generation, calculation of absolute intensities, comparison with experiments, and two-field relaxation-based derivation

Kai Niu $^{\rm a,b}$ and Rudolph A. Marcus $^{\rm b,1}$

^a School of Science, Tianjin University of Technology and Education, 1310, Dagu South Road, Hexi, Tianjin, 300222, P. R. China; ^bNoyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125

January 23, 2020

Supplementary Information

A. Projection from the molecule coordinates onto the lab coordinates. The averaging in Eq. 33 is over the phase space, Γ , including the coordinates in Q and the molecular orientations in the Ds, and indeed over all coordinates other than the OH vibrational coordinate q. The product of the various Ds with $\omega(Q[t])$ serves to distinguish the surface molecules from the molecules in the bulk, when ensemble averaged, since it will give rise to a zero SFG signal from the interior molecules. The exponential in Eq. 32 containing $\omega(Q)$ serves, in effect, to single out the contributions to the dangling OH peak, in the case of a water surface, from the contributions from the motion of the other H₂O vibrational coordinates.

 $D_{l\xi}$ in Eq. 33 represents projection from molecule coordinates for the OH bond, $\hat{\xi} = (\hat{u}, \hat{v}, \hat{w})$, onto the lab coordinates, $\hat{l} = (\hat{x}, \hat{y}, \hat{z})$. (1) The \hat{z} axis of the lab coordinates points from bulk to vapor along the surface normal, while the xy plane is perpendicular to \hat{z} . The \hat{w} lies along the OH bond with a direction from O to H, while the $\hat{u}\hat{v}$ plane is perpendicular to \hat{w} . θ is the angle between \hat{w} and surface normal, while ϕ is the angle between the projection of \hat{w} onto the xy plane and the \hat{x} axis. We then have

$$\begin{pmatrix} \hat{u} \\ \hat{v} \\ \hat{w} \end{pmatrix} = \begin{pmatrix} \cos\phi\cos\theta & \sin\phi\cos\theta & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \\ \cos\phi\sin\theta & \sin\phi\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$
 [S1]

Inserting Eq. S1 into Eq. 33, one finds that three items, $a_{q,www}$, $a_{q,uuw}$, and $a_{q,vvw}$, survive after summing over all coordinates λ , μ , and ν . We then have

$$\chi_{ijk}^{(2)}(\omega) = -iN_s \int_0^\infty e^{-i\omega t} < e^{i\int \omega(Q[t'])dt'} \\ \times \{ [a_{www}(\hat{w}(0) \cdot \hat{i})(\hat{w}(0) \cdot \hat{j}) + a_{uuw}(\hat{u}(0) \cdot \hat{i})(\hat{u}(0) \cdot \hat{j}) \\ + a_{vvw}(\hat{v}(0) \cdot \hat{i})(\hat{v}(0) \cdot \hat{j})][\hat{r}(t) \cdot \hat{k}] \} > dt$$
[S2]

The right hand side of Eq. S2 can be interpreted as the ensemble average of the projection of the molecule hyperpolarizabilities onto the i, j and k polarization vectors.

For simplicity, we may assume that the hyperpolarizabilities perpendicular to the OH bond are the same. Then Eq. S2 becomes(1)

$$\chi_{ijk}^{(2)}(\omega) = -iN_s \int_0^\infty e^{-i\omega t} < e^{i\int_0^t \omega(Q[t'])dt'} \\ \times \{ [a_{\parallel}(\hat{r}(0) \cdot \hat{i})(\hat{r}(0) \cdot \hat{j}) + a_{\perp}(\hat{i} \cdot \hat{j}) \\ -a_{\perp}(\hat{r}(0) \cdot \hat{i})(\hat{r}(0) \cdot \hat{j})] [\hat{r}(t) \cdot \hat{k}] \} > dt$$
[S3]

where $a_{\parallel} = a_{q,www}$ and $a_{\perp} = a_{q,uuw} = a_{q,vvw}$. $\hat{r}(t)$ is the OH bond unit vector.

¹To whom correspondence should be addressed. E-mail: ram@caltech.edu

B. Integrated SSP SFG intensity for Ref. (2). The integrated SSP SFG intensity for dangling OH region in Fig. 1 of Ref. (2) is $1.2 \times 10^{-13} \text{A}^8 \text{e}^2 \text{K}^{-2} \text{cm}^{-1}$. Presuming that A is angstrom, 10^{-10} m, that e is the electronic charge, 1.6×10^{-19} C, and that K is the energy unit Kelvin * , where $1\text{K} = 1.38 \times 10^{-23}$ J (8.63×10^{-5} eV). So $1.2 \times 10^{-13} \text{A}^8 \text{e}^2 \text{K}^{-2} \text{cm}^{-1} = 1.6 \times 10^{-85} \text{m}^8 \text{V}^{-2} \text{cm}^{-1}$. Then, the value should be divided by the surface area ($18.7 \times 18.7 \text{ A}^2$) square, i.e. $1.6 \times 10^{-85} \text{m}^8 \text{V}^{-2} \text{cm}^{-1}$ divide by ($18.7 \times 18.7 \times 10^{-20} \text{m}^2$)² = $1.3 \times 10^{-50} \text{m}^4 \text{V}^{-2} \text{cm}^{-1}$.

- Wang Y, Hodas NO, Jung Y, Marcus RA (2011) Microscopic structure and dynamics of air/water interface by computer simulations-comparison with sumfrequency generation experiments. *Phys. Chem. Chem. Phys.* 13(12):5388--5393.
- Perry A, Neipert C, Ridley C, Space B, Moore PB (2005) Identification of a wagging vibrational mode of water molecules at the water/vapor interface. *Phys. Rev. E* 71(5):050601.

^{*}K is normally a unit of absolute temperature but for the units of $|\chi_{eff}^{(2)}|^2$ in Ref. (2) to translate into the conversional units, we took it to be a unit of energy.